Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.008
Filtrar
1.
PeerJ ; 12: e17461, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952992

RESUMEN

Agricultural soils contaminated with heavy metals poison crops and disturb the normal functioning of rhizosphere microbial communities. Different crops and rhizosphere microbial communities exhibit different heavy metal resistance mechanisms. Here, indoor pot studies were used to assess the mechanisms of grain and soil rhizosphere microbial communities on chromium (Cr) stress. Millet grain variety 'Jingu 21' (Setaria italica) and soil samples were collected prior to control (CK), 6 hours after (Cr_6h), and 6 days following (Cr_6d) Cr stress. Transcriptomic analysis, high-throughput sequencing and quantitative polymerase chain reaction (qPCR) were used for sample determination and data analysis. Cr stress inhibited the expression of genes related to cell division, and photosynthesis in grain plants while stimulating the expression of genes related to DNA replication and repair, in addition to plant defense systems resist Cr stress. In response to chromium stress, rhizosphere soil bacterial and fungal community compositions and diversity changed significantly (p < 0.05). Both bacterial and fungal co-occurrence networks primarily comprised positively correlated edges that would serve to increase community stability. However, bacterial community networks were larger than fungal community networks and were more tightly connected and less modular than fungal networks. The abundances of C/N functional genes exhibited increasing trends with increased Cr exposure. Overall, these results suggest that Cr stress primarily prevented cereal seedlings from completing photosynthesis, cell division, and proliferation while simultaneously triggering plant defense mechanisms to resist the toxic effects of Cr. Soil bacterial and fungal populations exhibited diverse response traits, community-assembly mechanisms, and increased expression of functional genes related to carbon and nitrogen cycling, all of which are likely related to microbial survival during Cr stress. This study provides new insights into resistance mechanisms, microbial community structures, and mechanisms of C/N functional genes responses in cereal plants to heavy metal contaminated agricultural soils. Portions of this text were previously published as part of a preprint (https://www.researchsquare.com/article/rs-2891904/v1).


Asunto(s)
Cromo , Grano Comestible , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Cromo/toxicidad , Cromo/efectos adversos , Cromo/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/efectos adversos , Grano Comestible/microbiología , Estrés Fisiológico/efectos de los fármacos , Hongos/efectos de los fármacos , Hongos/genética , Microbiota/efectos de los fármacos , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo
2.
Adv Sci (Weinh) ; : e2404444, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965797

RESUMEN

The trap states at both the upper and bottom interfaces of perovskite layers significantly impact non-radiative carrier recombination. The widely used solvent-based passivation methods result in the disordered distribution of surface components, posing challenges for the commercial application of large-area perovskite solar cells (PSCs). To address this issue, a novel NH3 gas-assisted all-inorganic dual-interfaces passivation strategy is proposed. Through the gas treatment of the perovskite surface, NH3 molecules significantly enhanced the iodine vacancy formation energy (1.54 eV) and bonded with uncoordinated Pb2+ to achieve non-destructive passivation. Meanwhile, the reduction of the film defect states is accompanied by a decrease in the work function, which promotes carrier transport between the interface. Further, a stable passivation layer is constructed to manage the bottom interfacial defects using inorganic potassium tripolyphosphate (PT), whose ─P═O group effectively mitigated the charged defects and lowered the carrier transport barriers and nucleation barriers of PVK, while the gradient distribution of K+ improved the crystalline quality of PVK film. Based on the dual-interface synergistic effect, the optimal MA-contained PSCs with an effective area of 0.1 cm2 achieved an efficiency of 24.51% and can maintain 90% of the initial value after aging (10-20% RH and 20 °C) for 2000 h.

3.
J Adv Res ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969093

RESUMEN

INTRODUCTION: Dysbiosis of the gut microbiota is emerging as a pivotal factor in the pathogenesis of colorectal cancer (CRC). Ginsenoside Rh4 (Rh4) is an active compound isolated from ginseng with beneficial effects in modulating intestinal inflammation and gut microbiota dysbiosis, but how Rh4 regulates the gut microbiota to alleviate CRC remains underexplored. OBJECTIVES: We investigated the impact of Rh4 on CRC and the mechanism of its action in inhibiting CRC via modulation of gut microbiota. METHODS: We used the AOM/DSS model and employed transcriptomics, genomics and metabolomics techniques to explore the inhibitory impact of Rh4 on CRC. Furthermore, we employed experiments involving antibiotic treatment and fecal microbiota transplantation (FMT) to investigate the role of the gut microbiota. Finally, we elucidated the pivotal role of key functional bacteria and metabolites regulated by Rh4 in CRC. RESULTS: Our research findings indicated that Rh4 repaired intestinal barrier damage caused by CRC, alleviated intestinal inflammation, and inhibited the development of CRC. Additionally, Rh4 inhibited CRC in a gut microbiota-dependent manner. Rh4 increased the diversity of gut microbiota, enriched the probiotic Akkermansia muciniphila (A. muciniphila), and alleviated gut microbiota dysbiosis caused by CRC. Subsequently, Rh4 regulated A. muciniphila-mediated bile acid metabolism. A. muciniphila promoted the production of UDCA by enhancing the activity of 7α-hydroxysteroid dehydrogenase (7α-HSDH). UDCA further activated FXR, modulated the TLR4-NF-κB signaling pathway, thus inhibiting the development of CRC. CONCLUSION: Our results confirm that Rh4 inhibits CRC in a gut microbiota-dependent manner by modulating gut microbiota-mediated bile acid metabolism and promoting the production of UDCA, which further activates the FXR receptor and regulates the TLR4-NF-κB signaling pathway. Our results confirm that Rh4 has the potential to be used as a modulator of gut microbiota for preventing and treatment of CRC.

5.
Front Public Health ; 12: 1425883, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993701

RESUMEN

Objectives: This study aimed to identify the key elements and develop a formation mechanism model of quality geriatric care behavior for nursing assistants. Methods: This qualitative research employed the strategy of grounded theory proposed by Strauss and Corbin. Furthermore, the data was collected by participatory observation and semi-structured interviews. A total of 12 nursing managers, 63 nursing assistants, and 36 older people from 9 nursing homes in 6 cities were interviewed, whereas for the observatory survey, participants were recruited from 2 nursing homes. Results: The comparative and analysis process revealed 5 key elements of quality geriatric care behavior, including holistic care, personalized care, respect, positive interaction, and empowerment. Based on the Capability-Opportunity-Motivation-Behavior (COM-B) model, key elements and the 3 stages of quality geriatric care behavior (negative behavior cognition stage, practice exchange run-in stage, and positive behavior reinforcement stage), the theoretical framework of the formation mechanism was established. Conclusion: The results indicated that nursing assistants' capabilities, motivation, and organizational and environmental support are vital for quality care behaviors. The theoretical framework established in this study provides theoretical support and practical reference to policymakers, institutional administrators, and healthcare professionals for improving nursing assistant's care behaviors.


Asunto(s)
Teoría Fundamentada , Asistentes de Enfermería , Casas de Salud , Investigación Cualitativa , Calidad de la Atención de Salud , Humanos , Casas de Salud/normas , Femenino , Masculino , Anciano , Adulto , Persona de Mediana Edad , Entrevistas como Asunto
7.
Biochim Biophys Acta Mol Basis Dis ; : 167356, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39025375

RESUMEN

Lysine lactylation (Kla), a recently discovered post-translational modification (PTM), is not only present in histone proteins but also widely distributed among non-histone proteins in tumor cells and immunocytes. However, the precise characterization and functional implications of these non-histone Kla proteins remain to be explored. Herein, a comprehensive proteomic analysis of Kla was conducted in HeLa cells. As a result, a total of 3633 Kla sites on 1637 proteins were identified. Subsequently, the stable Kla substrates were obtained and sorted to investigate the characterization and function of Kla proteins. Moreover, we characterized the Kla-related features of cervical cancers through integrative analyses of multiple datasets with proteomes, transcriptomes and single-cell transcriptome profiling. Kla-related genes (KRGs) were used to stratify cervical cancers into two clusters (C1 and C2). C2 cluster display inhibition in glycosylation and increased oxidative phosphorylation activity with high survival rate. In addition, we constructed a prognostic model based on two lactate signature genes, namely ISY1 and PPP1R14B. Interestingly, our findings revealed a negative correlation between PPP1R14B expression and the infiltration of CD8+ T cells, as well as a lower survival rate. This observation was further validated at the single-cell resolution. Simultaneously, we found that K140R mutant of PPP1R14B resulted in the decrease of Kla level and enhanced the proliferation and migration capabilities of cervical cancer cell lines, suggesting PPP1R14B-K140la has an effect on tumor behaviors. Collectively, we provides a Kla-based insight to understanding the characterization of cervical cancer, offering a potential avenue for therapeutic approaches.

8.
J Colloid Interface Sci ; 675: 1069-1079, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39018634

RESUMEN

Efficient charge transfer and effective separation of photo-generated charge carriers are crucial factors in photocatalysis. In this study, we present the design of a composite photocatalyst consisting of cobalt and bismuth (CoBi) bimetallic nanoparticles incorporated into a honeycomb nitrogen-doped graphitic carbon (N-GC) matrix. The ultra-thin porous N-GC matrix exhibits excellent electrical conductivity, a high number of active sites, and enables efficient absorption and multiple reflection of incident light. The CoBi bimetal-N-GC interface establishes a self-driven charge transport channel that effectively suppresses the backflow of photogenerated electrons, leading to prolonged separation of photo-generated carriers and a significant improvement in photocatalytic activity. The CoBi@N-GC catalyst showcases outstanding performance, producing CH4 and CO at rates of 36.07 µmol·g-1·h-1 and 44.09 µmol·g-1·h-1 respectively, confirming its superior photocatalytic capabilities.

9.
Environ Monit Assess ; 196(8): 750, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028430

RESUMEN

Pollution from mineral exploitation is an important risk factor affecting surface water environment in mineral regions. It is urgent to construct a simple and accurate model to assess the surface water pollution risk from mineral exploitation in the regional scale. Thus, taking a mining province namely Liaoning in northeastern China as the study area, we proposed a framework to simulate the transport process of pollutants from mineral exploitation points to the surrounding surface water based on the "source-sink" theory. In our framework, we adopted the regional growth method (RGM) to extract the potential polluted water area as the certain "sink" considering the influence of the topography, and then applied Minimum Cumulative Resistance (MCR) model to assess the surface water pollution risk from mineral exploitation. The results revealed that: (1) 9.5% of the water areas were located at the potential impact area of MEPs. (2) The total value of resistance surface in Liaoning is relatively low, and gradually decreased from west to east. (3) MEPs in Liaoning had a high risk and seriously threatened the surface water environment, among 2125 MEPs, 733 MEPs (32.99%) were assessed as extremely high risk level, and about 35% of the MEPs were distributed within 10KM buffer zone of surface water. (4) Water pollution risk of MEPs in Dalian, Tieling, Fuxin and Dandong need to be emphasized. (5) Compared to previous studies, we considered the topographical influence before applying MCR model directly, so the results of water pollution risk were more reliable. This study provides a methodological support and scientific reference for the water environment protection and regional sustainable development.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Minería , Medición de Riesgo , Contaminación Química del Agua/estadística & datos numéricos , Minerales/análisis
10.
Sci Total Environ ; 947: 174734, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39002589

RESUMEN

The ongoing and progressive evolution of antibiotic resistance presents escalating challenges for the clinical management and prevention of bacterial infections. Understanding the makeup of resistance genomes and accurately quantifying the current abundance of antibiotic resistance genes (ARGs) are crucial for assessing the threat of antimicrobial resistance (AMR) to public health. This comprehensive study investigated the distribution and diversity of bacterial community composition, ARGs, and virulence factors (VFs) across human, chicken, pig fecal, and soil microbiomes in various provinces of China. As a result, multidrug resistance was identified across all samples. Core ARGs primarily related to multidrug, MLS (Macrolides-Lincosamide-Streptogramins), and tetracycline resistance were characterized. A significant correlation between ARGs and bacterial taxa was observed, especially in soil samples. Probiotic strains such as Lactobacillus harbored ARGs, potentially contributing to the dissemination of antibiotic resistance. We screened subsets of ARGs from samples from different sources as indicators to assess the level of ARGs contamination in samples, with high accuracy. These results underline the complex relationship between microbial communities, resistance mechanisms, and environmental factors, emphasizing the importance of continued research and monitoring to better understand these dynamics.

11.
Bioresour Technol ; 407: 131108, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009046

RESUMEN

The prolonged period of low temperatures in northern China poses a significant challenge to the bioremediation of antibiotic pollution. This study reports that a white-rot fungus Bjerkandera adusta DH0817, isolated from a poultry farm in Liaoning Province, can remove 60 % of SDZ within 20 days at 10°C and reduce the biotoxicity of SDZ. Six degradation pathways were proposed. SDZ biodegradation was primarily driven by cytochrome P450. Transcriptome analysis revealed that DH0817 upregulated genes associated with cell membrane, transcription factors and soluble sugars in response to low temperatures. Subsequently, genes associated with fatty acid, proteins and enzymes were upregulated to remove SDZ at low temperatures. This study provides valuable microbial resources and serves as a theoretical reference for addressing antibiotic pollution in livestock and poultry farms under low temperature conditions.

12.
J Appl Clin Med Phys ; : e14450, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031891

RESUMEN

The purpose of this study is to develop an electronic portal imaging device-based multi-leaf collimator calibration procedure using log files. Picket fence fields with 2-14 mm nominal strip widths were performed and normalized by open field. Normalized pixel intensity profiles along the direction of leaf motion for each leaf pair were taken. Three independent algorithms and an integration method derived from them were developed according to the valley value, valley area, full-width half-maximum (FWHM) of the profile, and the abutment width of the leaf pairs obtained from the log files. Three data processing schemes (Scheme A, Scheme B, and Scheme C) were performed based on different data processing methods. To test the usefulness and robustness of the algorithm, the known leaf position errors along the direction of perpendicular leaf motion via the treatment planning system were introduced in the picket fence field with nominal 5, 8, and 11 mm. Algorithm tests were performed every 2 weeks over 4 months. According to the log files, about 17.628% and 1.060% of the leaves had position errors beyond ± 0.1 and ± 0.2 mm, respectively. The absolute position errors of the algorithm tests for different data schemes were 0.062 ± 0.067 (Scheme A), 0.041 ± 0.045 (Scheme B), and 0.037 ± 0.043 (Scheme C). The absolute position errors of the algorithms developed by Scheme C were 0.054 ± 0.063 (valley depth method), 0.040 ± 0.038 (valley area method), 0.031 ± 0.031 (FWHM method), and 0.021 ± 0.024 (integrated method). For the efficiency and robustness test of the algorithm, the absolute position errors of the integration method of Scheme C were 0.020 ± 0.024 (5 mm), 0.024 ± 0.026 (8 mm), and 0.018 ± 0.024 (11 mm). Different data processing schemes could affect the accuracy of the developed algorithms. The integration method could integrate the benefits of each algorithm, which improved the level of robustness and accuracy of the algorithm. The integration method can perform multi-leaf collimator (MLC) quality assurance with an accuracy of 0.1 mm. This method is simple, effective, robust, quantitative, and can detect a wide range of MLC leaf position errors.

13.
Medicine (Baltimore) ; 103(29): e38844, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029005

RESUMEN

The aim of this study is to assess alterations in heart function and structure in patients diagnosed with non-ST segment elevation acute myocardial infarction (NSTEAMI), unstable angina (UA), and stable angina (SA) 1 year after undergoing off-pump coronary artery bypass grafting (OPCABG) performed without extracorporeal circulation. A total of 182 patients who underwent OPCABG were included and classified into 3 groups based on their preoperative diagnosis: the NSTEAMI group (n = 68), the UA group (n = 64), and the SA group (n = 50). Cardiac ultrasonography data were collected for all groups both preoperatively and 1 year postoperatively. Clinical data were subjected to statistical analysis. In the NSTEAMI group, postoperative observations revealed increases in left ventricular stroke volume and left ventricular end-systolic diameter, along with reductions in left ventricular end-diastolic volume (LVEDV) and left ventricular end-diastolic diameter (LVEDD) 1-year post-surgery. The UA group demonstrated decreases in LVEDV and LVEDD 1-year post-surgery. Similarly, the SA group exhibited an increase in left ventricular ejection fraction (LVEF) and reductions in LVEDV and LVEDD 1-year post-surgery. Comparative analysis of cardiac ultrasonography data revealed that the NSTEAMI group displayed significantly lower left ventricular stroke volume and notably higher left ventricular end-systolic diameter and volume compared to the UA and SA groups 1-year post-surgery. Furthermore, the SA group exhibited significantly elevated LVEF compared to the UA and NSTEAMI groups 1-year post-surgery. Cardiac ultrasonography findings indicate that all 3 groups exhibited improvements in cardiac function and left ventricular structure 1-year post-surgery. However, the NSTEAMI group demonstrated more substantial improvements in comparison to the UA and SA groups.


Asunto(s)
Puente de Arteria Coronaria Off-Pump , Humanos , Masculino , Femenino , Persona de Mediana Edad , Puente de Arteria Coronaria Off-Pump/métodos , Anciano , Volumen Sistólico/fisiología , Función Ventricular Izquierda/fisiología , Ecocardiografía/métodos , Angina Inestable/cirugía , Angina Inestable/fisiopatología , Angina Inestable/diagnóstico por imagen , Angina Estable/cirugía , Angina Estable/fisiopatología , Angina Estable/diagnóstico por imagen , Infarto del Miocardio sin Elevación del ST/cirugía , Infarto del Miocardio sin Elevación del ST/fisiopatología , Infarto del Miocardio sin Elevación del ST/diagnóstico por imagen , Puente de Arteria Coronaria/métodos
14.
Sci Total Environ ; 948: 174675, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002593

RESUMEN

Pesticide residues in agricultural products are serious threat to people's health. Real-time monitoring of pesticides residues in the environment and agricultural products posed challenges to sustainable methods with high analytical performance for pesticide detection. Herein, waste PVC/coal fly ash (the mass ratio of PVC and coal fly ash was 4:1) was dechlorinated in subcritical water at low temperature to achieve nearly 100 % dechlorination of PVC and obtain carbon-based composite materials (CM-Fe/Al/Si-dPVC) with strong sening activity. For CM-Fe/Al/Si-dPVC, CFe bonding resulted in strong electron migration, and nano/µm SiO2 and Al2O3 doping in the layered polyene C matrix provided large specific surface area, and silicon hydroxyl created good heterogeneous catalytic interfaces. CM-Fe/Al/Si-dPVC could strongly trigger luminol chemiluminescence (CL) reaction and produce intense CL signals. Neonicotinoid pesticides (acetamiprid and imidacloprid) bonded with CM-Fe/Al/Si-dPVC through coordination chelation and hydrogen bonding, which shielded the catalytic active site and increased the Fermi level of system, thus quenching CL reaction. Inspired by these, a cheap CL assay was constructed for detecting neonicotinoids combinations of acetamiprid and imidacloprid (NICs). The detection limits of NICs were 0.7 ng/L. Satisfactory recoveries were obtained for real agricultural products and environmental samples. The results of life cycle evaluation (LCA) revealed that the strategy had significantly small global warming potential (GWP). This work presented a sustainable method with environmental benefits for the detection of neonicotinoids, and also opened up new way for the recycling of organic solid wastes.

15.
Clin Nucl Med ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39010319

RESUMEN

ABSTRACT: We present 68Ga-FAPI PET/CT findings of benign carotid body tumor in a 33-year-old woman. Benign carotid body tumor demonstrated intense tracer uptakes on 68Ga-FAPI PET/CT. Our case suggests that benign carotid body tumors should be considered in the differential diagnosis of neck mass with elevated 68Ga-FAPI activity.

16.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000995

RESUMEN

A reliable and efficient rail track defect detection system is essential for maintaining rail track integrity and avoiding safety hazards and financial losses. Eddy current (EC) testing is a non-destructive technique that can be employed for this purpose. The trade-off between spatial resolution and lift-off should be carefully considered in practical applications to distinguish closely spaced cracks such as those caused by rolling contact fatigue (RCF). A multi-channel eddy current sensor array has been developed to detect defects on rails. Based on the sensor scanning data, defect reconstruction along the rails is achieved using an inverse algorithm that includes both direct and iterative approaches. In experimental evaluations, the EC system with the developed sensor is used to measure defects on a standard test piece of rail with a probe lift-off of 4-6 mm. The reconstruction results clearly reveal cracks at various depths and spacings on the test piece.

17.
Inflamm Res ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008037

RESUMEN

BACKGROUND: Microglia, the main innate immune cells in the central nervous system, are key drivers of neuroinflammation, which plays a crucial role in the pathogenesis of neurodegenerative diseases. The Sin3/histone deacetylase (HDAC) complex, a highly conserved multiprotein co-repressor complex, primarily performs transcriptional repression via deacetylase activity; however, the function of SDS3, which maintains the integrity of the complex, in microglia remains unclear. METHODS: To uncover the regulatory role of the transcriptional co-repressor SDS3 in microglial inflammation, we used chromatin immunoprecipitation to identify SDS3 target genes and combined with transcriptomics and proteomics analysis to explore expression changes in cells following SDS3 knocking down. Subsequently, we validated our findings through experimental assays. RESULTS: Our analysis revealed that SDS3 modulates the expression of the upstream kinase ASK1 of the p38 MAPK pathway, thus regulating the activation of signaling pathways and ultimately influencing inflammation. CONCLUSIONS: Our findings provide important evidence of the contributions of SDS3 toward microglial inflammation and offer new insights into the regulatory mechanisms of microglial inflammatory responses.

18.
Proteins ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023292

RESUMEN

Butanol dehydrogenase (BDH) plays a crucial role in butanol biosynthesis by catalyzing the conversion of butanal to butanol using the coenzyme NAD(P)H. In this study, we observed that BDH from Thermotoga maritima (TmBDH) exhibits dual coenzyme specificity and catalytic activity with NADPH as the coenzyme under highly alkaline conditions. Additionally, a thermal stability analysis on TmBDH demonstrated its excellent activity retention even at elevated temperatures of 80°C. These findings demonstrate the superior thermal stability of TmBDH and suggest that it is a promising candidate for large-scale industrial butanol production. Furthermore, we discovered that TmBDH effectively catalyzes the conversion of aldehydes to alcohols and exhibits a wide range of substrate specificities toward aldehydes, while excluding alcohols. The dimeric state of TmBDH was observed using rapid online buffer exchange native mass spectrometry. Additionally, we analyzed the coenzyme-binding sites and inferred the possible locations of the substrate-binding sites. These results provide insights that improve our understanding of BDHs.

19.
iScience ; 27(7): 110188, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38989468

RESUMEN

Hypoxia promotes tumorigenesis and lactate accumulation in esophageal squamous cell carcinoma (ESCC). Lactate can induce histone lysine lactylation (Kla, a recently identified histone marks) to regulate transcription. However, the functional consequence of histone Kla under hypoxia in ESCC remains to be explored. Here, we reveal that hypoxia facilitates histone H3K9la to enhance LAMC2 transcription for proliferation of ESCC. We found that global level of Kla was elevated under hypoxia, and thus identified the landscape of histone Kla in ESCC by quantitative proteomics. Furthermore, we show a significant increase of H3K9la level induced by hypoxia. Next, MNase ChIP-seq and RNA-seq analysis suggest that H3K9la is enriched at the promoter of cell junction genes. Finally, we demonstrate that the histone H3K9la facilitates the expression of LAMC2 for ESCC invasion by in vivo and in vitro experiments. Briefly, our study reveals a vital role of histone Kla triggered by hypoxia in cancer.

20.
J Immunol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975727

RESUMEN

Inactivating mutations of Foxp3, the master regulator of regulatory T cell development and function, lead to immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome in mice and humans. IPEX is a fatal autoimmune disease, with allogeneic stem cell transplant being the only available therapy. In this study, we report that a single dose of adeno-associated virus (AAV)-IL-27 to young mice with naturally occurring Foxp3 mutation (Scurfy mice) substantially ameliorates clinical symptoms, including growth retardation and early fatality. Correspondingly, AAV-IL-27 gene therapy significantly prevented naive T cell activation, as manifested by downregulation of CD62L and upregulation of CD44, and immunopathology typical of IPEX. Because IL-27 is known to induce IL-10, a key effector molecule of regulatory T cells, we evaluated the contribution of IL-10 induction by crossing IL-10-null allele to Scurfy mice. Although IL-10 deficiency does not affect the survival of Scurfy mice, it largely abrogated the therapeutic effect of AAV-IL-27. Our study revealed a major role for IL-10 in AAV-IL-27 gene therapy and demonstrated that IPEX is amenable to gene therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA