Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.509
Filtrar
1.
J Nanobiotechnology ; 22(1): 337, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886712

RESUMEN

BACKGROUND: Molybdenum disulfide (MoS2) has excellent physical and chemical properties. Further, chiral MoS2 (CMS) exhibits excellent chiroptical and enantioselective effects, and the enantioselective properties of CMS have been studied for the treatment of neurodegenerative diseases. Intriguingly, left- and right-handed materials have different effects on promoting the differentiation of neural stem cells into neurons. However, the effect of the enantioselectivity of chiral materials on peripheral nerve regeneration remains unclear. METHODS: In this study, CMS@bacterial cellulose (BC) scaffolds were fabricated using a hydrothermal approach. The CMS@BC films synthesized with L-2-amino-3-phenyl-1-propanol was defined as L-CMS. The CMS@BC films synthesized with D-2-amino-3-phenyl-1-propanol was defined as D-CMS. The biocompatibility of CMS@BC scaffolds and their effect on Schwann cells (SCs) were validated by cellular experiments. In addition, these scaffolds were implanted in rat sciatic nerve defect sites for three months. RESULTS: These chiral scaffolds displayed high hydrophilicity, good mechanical properties, and low cytotoxicity. Further, we found that the L-CMS scaffolds were superior to the D-CMS scaffolds in promoting SCs proliferation. After three months, the scaffolds showed good biocompatibility in vivo, and the nerve conducting velocities of the L-CMS and D-CMS scaffolds were 51.2 m/s and 26.8 m/s, respectively. The L-CMS scaffolds showed a better regenerative effect than the D-CMS scaffolds. Similarly, the sciatic nerve function index and effects on the motor and electrophysiological functions were higher for the L-CMS scaffolds than the D-CMS scaffolds. Finally, the axon diameter and myelin sheath thickness of the regenerated nerves were improved in the L-CMS group. CONCLUSION: We found that the CMS@BC can promote peripheral nerve regeneration, and in general, the L-CMS group exhibited superior repair performance. Overall, the findings of this study reveal that CMS@BC can be used as a chiral nanomaterial nerve scaffold for peripheral nerve repair.


Asunto(s)
Celulosa , Disulfuros , Molibdeno , Regeneración Nerviosa , Células de Schwann , Andamios del Tejido , Regeneración Nerviosa/efectos de los fármacos , Animales , Ratas , Andamios del Tejido/química , Disulfuros/química , Disulfuros/farmacología , Células de Schwann/efectos de los fármacos , Molibdeno/química , Molibdeno/farmacología , Celulosa/química , Celulosa/farmacología , Celulosa/análogos & derivados , Ratas Sprague-Dawley , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/fisiología , Proliferación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Masculino , Traumatismos de los Nervios Periféricos , Estereoisomerismo
2.
Int J Biol Macromol ; 272(Pt 2): 132883, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838898

RESUMEN

Glycyrrhiza glabra extract is widely known for its antioxidant and anti-inflammatory properties and can improve the wound healing process. The aim of this work was to shorten the time of the healing process by using an eco-sustainable wound dressing based on Spanish broom flexible cellulosic fabric by impregnation with G. glabra extract-loaded ethosomes. Chemical analysis of G. glabra extract was performed by LC-DAD-MS/MS and its encapsulation into ethosomes was obtained using the ethanol injection method. Lipid vesicles were characterized in terms of size, polydispersity index, entrapment efficiency, zeta potential, and stability. In vitro release studies, biocompatibility, and scratch test on 3T3 fibroblasts were performed. Moreover, the structure of Spanish broom dressing and its ability to absorb wound exudate was characterized by Synchrotron X-ray phase contrast microtomography (SR-PCmicroCT). Ethosomes showed a good entrapment efficiency, nanometric size, good stability over time and a slow release of polyphenols compared to the free extract, and were not cytotoxic. Lastly, the results revealed that Spanish broom wound dressing loaded with G. glabra ethosomes is able to accelerate wound closure by reducing wound healing time. To sum up, Spanish broom wound dressing could be a potential new green tool for biomedical applications.


Asunto(s)
Vendajes , Celulosa , Glycyrrhiza , Extractos Vegetales , Spartium , Cicatrización de Heridas , Animales , Ratones , Glycyrrhiza/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Cicatrización de Heridas/efectos de los fármacos , Celulosa/química , Celulosa/farmacología , Spartium/química , Células 3T3
3.
Nanotechnology ; 35(38)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38906121

RESUMEN

In the present study, pyroligneous acid, also known as wood vinegar, has been employed as reducing and stabilizing agent in the synthesis of silver nanoparticles (AgNPs) anchored on nanocellulose (NC). The idea is to confer the latter bactericidal properties for its typical uses such as in cosmetics and food-packing. It has been demonstrated that AgNPs can be directly produced onto NC in one-pot fashion while dramatically enhancing the kinetics of AgNPs synthesis (2 h for reaction completion) in comparison to the NC-less counterpart (10 days for reaction completion). Furthermore, NC allowed for a narrower size distribution of AgNPs. NC-supported and non-supported AgNPs had sizes of 5.1 ± 1.6 nm and 16.7 ± 4.62 nm, respectively. Immortalized human keratinocytes (HaCat) cells were then employed as model to evaluate the cytotoxicity of the AgNPs-NC compound. The latter was found not to impact cell proliferation at any formulation, while decreasing the viability by only 6.8% after 72 h. This study contributes to the development of more environmentally benign routes to produce nanomaterials and to the understanding of their impact on cells.


Asunto(s)
Supervivencia Celular , Celulosa , Células HaCaT , Nanopartículas del Metal , Plata , Humanos , Plata/química , Nanopartículas del Metal/química , Celulosa/química , Celulosa/farmacología , Supervivencia Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Queratinocitos/citología , Tamaño de la Partícula , Proliferación Celular/efectos de los fármacos , Ácido Acético/química , Ácido Acético/farmacología
4.
Int J Biol Macromol ; 272(Pt 1): 132848, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38830491

RESUMEN

Collagen-based (COL) hydrogels could be a promising treatment option for injuries to the articular cartilage (AC) becuase of their similarity to AC native extra extracellular matrix. However, the high hydration of COL hydrogels poses challenges for AC's mechanical properties. To address this, we developed a hydrogel platform that incorporating cellulose nanocrystals (CNCs) within COL and followed by plastic compression (PC) procedure to expel the excessive fluid out. This approach significantly improved the mechanical properties of the hydrogels and enhanced the chondrogenic differentiation of mesenchymal stem cells (MSCs). Radially confined PC resulted in higher collagen fibrillar densities together with reducing fibril-fibril distances. Compressed hydrogels containing CNCs exhibited the highest compressive modulus and toughness. MSCs encapsulated in these hydrogels were initially affected by PC, but their viability improved after 7 days. Furthermore, the morphology of the cells and their secretion of glycosaminoglycans (GAGs) were positively influenced by the compressed COL-CNC hydrogel. Our findings shed light on the combined effects of PC and CNCs in improving the physical and mechanical properties of COL and their role in promoting chondrogenesis.


Asunto(s)
Diferenciación Celular , Celulosa , Condrogénesis , Colágeno , Hidrogeles , Células Madre Mesenquimatosas , Nanopartículas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Celulosa/química , Celulosa/farmacología , Condrogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Nanopartículas/química , Colágeno/química , Colágeno/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Animales , Plásticos/química , Plásticos/farmacología , Supervivencia Celular/efectos de los fármacos , Glicosaminoglicanos/metabolismo , Cartílago/citología , Cartílago/efectos de los fármacos
5.
Int J Biol Macromol ; 272(Pt 1): 132893, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838883

RESUMEN

Foodborne pathogens result in a great harm to human, which is an urgent problem to be addressed. Herein, a novel cellulose-based packaging films with excellent anti-bacterial properties under visible light were prepared. A porphyrin-based covalent organic polymer (Por-COPs) was constructed, then covalently grafted onto dialdehyde cellulose (DAC). The addition of Por-COPs enhanced the mechanical, hydrophobicity, and water resistance of the DAC-based composite films. DAC/Por-COP-2.5 film exhibited outstanding properties for the photodynamic inactivation of bacteria under visible light irradiation, delivering inactivation efficiencies of 99.90 % and 99.45 % towards Staphylococcus aureus and Escherichia coli within 20 min. The DAC/Por-COPs films efficiently generated •O2- and 1O2 under visible light, thereby causing oxidative stress to cell membranes for bacterial inactivation. The prepared composite film forms a protective barrier against bacterial contamination. Results guide the development of high performance and more sustainable packaging films for the food sector.


Asunto(s)
Celulosa , Escherichia coli , Porfirinas , Staphylococcus aureus , Celulosa/química , Celulosa/análogos & derivados , Celulosa/farmacología , Porfirinas/química , Porfirinas/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Luz , Embalaje de Alimentos/métodos , Polímeros/química , Polímeros/farmacología , Esterilización/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología
6.
Int J Biol Macromol ; 273(Pt 1): 133030, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38857730

RESUMEN

Skin wound healing and regeneration is very challenging across the world as simple or acute wounds can be transformed into chronic wounds or ulcers due to foreign body invasion, or diseases like diabetes or cancer. The study was designed to develop a novel bioactive scaffold, by loading aloesin to chitosan-coated cellulose scaffold, to cure full-thickness skin wounds. The physiochemical characterization of the scaffold was carried out using scanning electron microscopy (SEM) facilitated by energy-dispersive spectrophotometer (EDS), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results indicated the successful coating of chitosan and aloesin on cellulose without any physical damage. The drug release kinetics confirmed the sustained release of aloesin by showing a cumulative release of up to 88 % over 24 h. The biocompatibility of the aloesin-loaded chitosan/cellulose (AlCsCFp) scaffold was evaluated by the WST-8 assay that confirmed the significantly increased adherence and proliferation of fibroblasts on the AlCsCFp scaffold. The in vivo wound healing study showed that both 0.05 % and 0.025 % AlCsCFp scaffolds have significantly higher wound closure rates (i.e. 88.2 % and 95.6 % approximately) as compared to other groups. This showed that novel composite scaffold has a wound healing ability. Furthermore, histological and gene expression analysis demonstrated that the scaffold also induced cell migration, angiogenesis, re-epithelialization, collagen deposition, and tissue granulation formation. Thus, it is concluded that the aloesin-loaded chitosan/cellulose-based scaffold has great therapeutic potential for being used in wound healing applications in the clinical setting in the future.


Asunto(s)
Celulosa , Quitosano , Regeneración , Piel , Andamios del Tejido , Cicatrización de Heridas , Quitosano/química , Quitosano/farmacología , Celulosa/química , Celulosa/farmacología , Cicatrización de Heridas/efectos de los fármacos , Piel/efectos de los fármacos , Animales , Andamios del Tejido/química , Regeneración/efectos de los fármacos , Ratas , Fibroblastos/efectos de los fármacos , Ratones , Proliferación Celular/efectos de los fármacos , Liberación de Fármacos , Masculino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124646, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38875926

RESUMEN

In this research, we fabricated a functional conductive nanocomposite with valuable properties through a chitin (CH) and cellulose (CE) polymerization process, incorporating ZnO/(0.1, 0.2, 0.3 mol.%) CuO bioactive nanoparticles. These bioactive nanoparticles, synthesized through sol-gel and polymerization interactions, greatly enhanced the structural, dielectric, and antimicrobial characteristics of CH-CE@ZnO/CuO conductive nanocomposites. The morphological analysis revealed that these nanoparticles, with diameters ranging from 11-25 nm, formed covalent bonds with the membrane matrix, bolstering the conductive nanocomposites ' structural integrity and dielectric performance. The dielectric properties of the conductive nanocomposites were significantly enhanced by the even distribution of ZnO/CuO nanoparticles within the CH-CE composite. Additionally, antimicrobial assessments demonstrated that the CH-CE@ZnO/CuO conductive nanocomposites displayed significant antibacterial properties against the Escherichia coli and Staphylococcus aureus, showcasing their potential as active packaging materials for electronic, biosensors, and sustainable applications.


Asunto(s)
Celulosa , Quitina , Cobre , Conductividad Eléctrica , Escherichia coli , Pruebas de Sensibilidad Microbiana , Nanocompuestos , Staphylococcus aureus , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Nanocompuestos/química , Celulosa/química , Celulosa/farmacología , Cobre/química , Cobre/farmacología , Quitina/química , Quitina/farmacología , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Espectroscopía Infrarroja por Transformada de Fourier , Espectroscopía Dieléctrica , Difracción de Rayos X
8.
Int J Biol Macromol ; 273(Pt 2): 133091, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878924

RESUMEN

The increasing significance of biopolymer-based food packaging can be attributed to its biodegradability and independence from petroleum-derived materials. Concurrently, metal oxide nanoparticles (NPs) have gained prominence as effective antimicrobial agents against both wild-type and antibiotic-resistant microbes. In this study, cerium oxide or ceria, CeO2, nanoparticles with an average diameter of 50 nm were synthesized via a green method utilizing Vibrio sp. VLC cell lysate supernatant. The synthesized CeO2 NPs displayed remarkable antimicrobial properties, inhibiting the growth of Escherichia coli and Staphylococcus aureus by 93.7 % and 98 %, respectively. To enhance the potential of bacterial cellulose (BC) for advanced applications, we developed a BC/xanthan/CeO2 nanocomposite using both ex situ and in situ techniques. The integration of CeO2 NPs within the nanocomposite structure not only improved the inherent properties of BC, but also rendered it suitable for use in active food packaging systems. The nanocomposite exhibited no significant cytotoxicity on the human dermal fibroblast (HDF) cells, confirming its safety. Nanocomposites containing biogenically synthesized CeO2 NPs demonstrated exceptional efficacy for reducing microbial contamination. Bread samples coated with nanocomposite films displayed no signs of microbial growth. These results support the application of BC/xanthan/CeO2 nanocomposites as suitable and effective coating materials for antimicrobial food packaging applications.


Asunto(s)
Antibacterianos , Celulosa , Cerio , Embalaje de Alimentos , Nanocompuestos , Polisacáridos Bacterianos , Celulosa/química , Celulosa/farmacología , Embalaje de Alimentos/métodos , Cerio/química , Cerio/farmacología , Nanocompuestos/química , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Nanopartículas del Metal/química
9.
Int J Biol Macromol ; 273(Pt 2): 133191, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38880455

RESUMEN

Abdominal hernia mesh is a common product which is used for prevention of abdominal adhesion and repairing abdominal wall defect. Currently, designing and preparing a novel bio-mesh material with prevention of adhesion, promoting repair and good biocompatibility simultaneously remain a great bottleneck. In this study, a novel siloxane-modified bacterial cellulose (BC) was designed and fabricated by chemical vapor deposition silylation, then the effects of different alkyl chains length of siloxane on surface properties and cell behaviors were explored. The effect of preventing of abdominal adhesion and repairing abdominal wall defect in rats with the siloxane-modified BC was evaluated. As the grafted alkyl chains become longer, the surface of the siloxane-modified BC can be transformed from super hydrophilic to hydrophobic. In vivo results showed that BC-C16 had good long-term anti-adhesion effect, good tissue adaptability and histocompatibility, which is expected to be used as a new anti-adhesion hernia repair material in clinic.


Asunto(s)
Celulosa , Animales , Celulosa/química , Celulosa/farmacología , Ratas , Adherencias Tisulares/prevención & control , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Masculino , Pared Abdominal/cirugía , Pared Abdominal/patología , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Propiedades de Superficie , Hernia Abdominal/prevención & control , Mallas Quirúrgicas , Ratas Sprague-Dawley
10.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731545

RESUMEN

Functional Lyocell fibers gain interest in garments and technical textiles, especially when equipped with inherently bioactive features. In this study, Lyocell fibers are modified with an ion exchange resin and subsequently loaded with copper (Cu) ions. The modified Lyocell process enables high amounts of the resin additive (>10%) through intensive dispersion and subsequently, high uptake of 2.7% Cu throughout the whole cross-section of the fiber. Fixation by Na2CO3 increases the washing and dyeing resistance considerably. Cu content after dyeing compared to the original fiber value amounts to approx. 65% for reactive, 75% for direct, and 77% for HT dyeing, respectively. Even after 50 household washes, a recovery of 43% for reactive, 47% for direct and 26% for HT dyeing is proved. XRD measurements reveal ionic bonding of Cu fixation inside the cellulose/ion exchange resin composite. A combination of the fixation process with a change in Cu valence state by glucose/NaOH leads to the formation of Cu2O crystallites, which is proved by XRD. Cu fiber shows a strong antibacterial effect against Staphylococcus aureus and Klebsiella pneumonia bacteria, even after 50 household washing cycles of both >5 log CFU. In nonwoven blends with a share of only 6% Cu fiber, a strong antimicrobial (CFU > log 5) and full antiviral effectiveness (>log 4) was received even after 50 washing cycles. Time-dependent measurements already show strong antiviral behavior after 30 s. Further, the fibers show an increased die off of the fungal isolate Candida auris with CFU log 4.4, and nonwovens made from 6% Cu fiber share a CFU log of 1.7. Findings of the study predestines the fiber for advanced textile processing and applications in areas with high germ loads.


Asunto(s)
Antibacterianos , Antifúngicos , Antivirales , Cobre , Antifúngicos/farmacología , Antifúngicos/química , Antibacterianos/farmacología , Antibacterianos/química , Antivirales/farmacología , Antivirales/química , Cobre/química , Cobre/farmacología , Celulosa/química , Celulosa/farmacología , Staphylococcus aureus/efectos de los fármacos , Textiles , Pruebas de Sensibilidad Microbiana , Klebsiella pneumoniae/efectos de los fármacos , Lignina/química , Lignina/farmacología , Humanos
11.
J Biomater Appl ; 39(2): 83-95, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38768480

RESUMEN

Tissue adhesives and sealants offer promising alternatives to traditional wound closure methods, but the existing trade-off between biocompatibility and strength is still a challenge. The current study explores the potential of a gelatin-alginate-based hydrogel, cross-linked with a carbodiimide, and loaded with two functional fillers, the hemostatic agent kaolin and cellulose fibres, to improve the hydrogel's mechanical strength and hemostatic properties for use as a sealant. The effect of the formulation parameters on the mechanical and physical properties was studied, as well as the biocompatibility and microstructure. The incorporation of the two functional fillers resulted in a dual micro-composite structure, with uniform dispersion of both fillers within the hydrogel, and excellent adhesion between the fillers and the hydrogel matrix. This enabled to strongly increase the sealing ability and the tensile strength and modulus of the hydrogel. The fibres' contribution to the enhanced mechanical properties is more dominant than that of kaolin. A combined synergistic effect of both fillers resulted in enhanced sealing ability (247%), tensile strength (400%), and Young's modulus (437%), compared to the unloaded hydrogel formulation. While the incorporation of kaolin almost did not affect the physical properties of the hydrogel, the incorporation of the fibres strongly increased the viscosity and decreased the gelation time and swelling degree. The cytotoxicity tests indicated that all studied formulations exhibited high cell viability. Hence, the studied new dual micro-composite hydrogels may be suitable for medical sealing applications, especially when it is needed to get a high sealing effect within a short time. The desired hemostatic effect is obtained due to kaolin incorporation without affecting the physical properties of the sealant. Understanding the effects of the formulation parameters on the hydrogel's properties enables the fitting of optimal formulations for various medical sealing applications.


Asunto(s)
Alginatos , Celulosa , Hemostáticos , Hidrogeles , Caolín , Ensayo de Materiales , Resistencia a la Tracción , Adhesivos Tisulares , Celulosa/química , Celulosa/farmacología , Hemostáticos/química , Hemostáticos/farmacología , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Alginatos/química , Caolín/química , Caolín/farmacología , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Módulo de Elasticidad , Viscosidad , Animales , Gelatina/química , Ratones , Supervivencia Celular/efectos de los fármacos
12.
Int J Biol Macromol ; 271(Pt 1): 132335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768923

RESUMEN

Development of renewable and biodegradable plastics with good properties, such as the gas barrier, UV-shielding, solvent resistance, and antibacterial activity, remains a challenge. Herein, cellulose/ZnO based bioplastics were fabricated by dissolving cellulose carbamate in an aqueous solution of NaOH/Zn(OH)42-, followed by coagulation in aqueous Na2SO4 solution, and subsequent hot-pressing. The carbamate groups detached from cellulose, and ZnO which transformed from cosolvent to nanofiller was uniformly immobilized in the cellulose matrix during the dissolution/regeneration process. The appropriate addition of ZnO (below 10.67 wt%) not only improved the mechanical properties but also enhanced the water and oxygen barrier properties of the material. Additionally, our cellulose/ZnO based bioplastic demonstrated excellent UV-blocking capabilities, increased water contact angle, and enhanced antibacterial activity against S. aureus and E. coli, deriving from the incorporation of ZnO nanoparticles. Furthermore, the material exhibited resistance to organic solvents such as acetone, THF, and toluene. Indeed, the herein developed cellulose/ZnO based bioplastic presents a promising candidate to replace petrochemical plastics in various applications, such as plastic toys, anti-UV guardrails, window shades, and oil storage containers, offering a combination of favorable mechanical, gas barrier, UV-blocking, antibacterial, and solvent-resistant properties.


Asunto(s)
Antibacterianos , Celulosa , Escherichia coli , Staphylococcus aureus , Rayos Ultravioleta , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Celulosa/química , Celulosa/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Plásticos Biodegradables/química , Plásticos Biodegradables/farmacología , Gases/química , Solventes/química
13.
Int J Biol Macromol ; 271(Pt 2): 132679, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38801854

RESUMEN

Uncontrollable bleeding caused by severe trauma is life-threatening. Therefore, it is of great significance to develop hemostatic materials that meet the rapid hemostasis of wounds. In this study, a water-triggered shape memory carboxylated cellulose nanofiber/sodium alginate/montmorillonite (CNSAMMTCa) composite hemostatic sponge was prepared, which can promote coagulation by concentrating the blood and activating intrinsic pathway. The anisotropic three-dimensional porous structure formed by directional freeze-drying technology improved the performance of composite sponges which showed good prospects in rapid hemostasis. The results showed that CNSAMMTCa composite sponge had good porous structure, water absorption ability, cytocompatibility and blood cell aggregation capacity. Simultaneously, we confirmed that CNSA3MMT2Ca has best coagulation performance in the mouse censored bleeding model and liver rupture bleeding model. Therefore, CNSAMMTCa composite hemostatic sponge is a safe and efficient rapid hemostatic material which is expected to become an alternative material for clinical hemostatic materials.


Asunto(s)
Alginatos , Bentonita , Celulosa , Hemostasis , Hemostáticos , Agua , Animales , Bentonita/química , Alginatos/química , Alginatos/farmacología , Ratones , Celulosa/química , Celulosa/farmacología , Hemostáticos/farmacología , Hemostáticos/química , Hemostasis/efectos de los fármacos , Agua/química , Hemorragia/tratamiento farmacológico , Porosidad , Coagulación Sanguínea/efectos de los fármacos
14.
Int J Biol Macromol ; 272(Pt 2): 132772, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821299

RESUMEN

Bacteria and virus infections have posed a great threat to public health and personnel safety. For realizing rapid sterilization of the bacteria and virus, electrical stimulation sterilization was adopted to endow cellulose fibers with instantaneous antibacterial and antiviral properties. In the proposed strategy, the fiber is fluffed by mechanical refining, and then by means of the hydrogen bond between hydroxyl and aniline, the polyaniline (PANI) directionally grows vertically along the fine fibers via in-situ oxidative polymerization. Benefiting from the conductive polyaniline nanorod arrays on the fiber stem, the paper made from PANI modified refined fibers (PANI/BCF/P) exhibited excellent antibacterial and antiviral activity, the inhibition rates against S. aureus, E. coli, and bacteriophage MS2 can up to 100 %, 100 %, and 99.89 %, respectively when a weak voltage (2.5 V) was applied within 20 min. This study provides a feasible path for plant fiber to achieve efficient antibacterial and antiviral activity with electrical stimulation, which is of great significance for the preparation of electroactive antibacterial and antiviral green health products.


Asunto(s)
Compuestos de Anilina , Antibacterianos , Celulosa , Compuestos de Anilina/química , Compuestos de Anilina/farmacología , Celulosa/química , Celulosa/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Estimulación Eléctrica , Esterilización/métodos , Antivirales/química , Antivirales/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Levivirus/efectos de los fármacos
15.
Int J Biol Macromol ; 272(Pt 1): 132589, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788882

RESUMEN

This work presents a comparison of physicochemical and in vitro active wound healing properties of two distinct Graphene Oxides (GOs) from graphite and coal. These GOs are incorporated in Bacterial Nanocellulose (BNC) to form hydrogels. The performance and limitations of the loading fraction of both GOs in BNC are controlled by the processing technology and the source materials from which GOs are derived. Edge functionalization with C-GO offers the advantage of facilitating face-to-edge assembly in the hydrogel leading to better dispersion than the face-to-face assembly of basal functionalized G-GO. The latter leads to more aggregation of G-GO, resulting in a lower optimal loading fraction. Our investigation into the antibacterial properties of the BNC and BNC/GO hydrogels against gram-negative E. coli revealed inhibitory effects of the BNC/GO hydrogels that intensified with an increase in the concentration of GO. Furthermore, an in vitro wound scratch assay demonstrated that BNC/C-GO hydrogels promote better cell migration, confirming their superior biocompatibility and suitability as active wound dressings, albeit limited by loading fraction due to agglomeration. These findings shed light on the performance and limitations of GOs for diverse applications, emphasizing the significance of exploring the influence of different methods and source materials of GOs.


Asunto(s)
Antibacterianos , Celulosa , Escherichia coli , Grafito , Hidrogeles , Cicatrización de Heridas , Grafito/química , Grafito/farmacología , Cicatrización de Heridas/efectos de los fármacos , Celulosa/química , Celulosa/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Carbón Mineral , Humanos , Movimiento Celular/efectos de los fármacos
16.
Int J Biol Macromol ; 270(Pt 1): 132221, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729499

RESUMEN

Cellulose acetate (CA) is a non-toxic, renewable, and biodegradable polymeric material that can be effectively electrospuned into bacterial filtration efficient nanofiber membrane for face mask application. However, its fragile and non-antibacterial nature influenced its scalability. In this context, natural antibacterial gum rosin (GR) additive can be explored. Therefore, the present study aimed to produce a CA/GR composite nanofibers membrane for the finest bacterial filtration, excellent antibacterial moiety, and improved tensile properties for facemask application. Hence, in this work, we have studied the effect of GR concentrations (0-15 g) on the needleless electrospinning behavior and fibers' morphology through rheology, electrical conductivity, and SEM analysis. These analyses revealed that GR significantly affects the fibers' spinning behavior, morphology, and diameter of the produced fibers. Later, ATR-FTIR spectroscopy mapped the functional changes in the produced nanofibers that affirmed the integration of GR with CA polymer. This modification resulted in a 3-fold rise in tensile strength and an 11-fold decline in elongation% in 15 g CA/GR composite nanofibers membrane than the control sample. Furthermore, it has shown 98.79 ± 0.10% bacterial filtration efficiency and âˆ¼ 93 % reduction in Staphylococcus Aureus and Klebsiella Pneumoniae bacterial growth, elucidating a high-efficiency level for potential facemask application.


Asunto(s)
Antibacterianos , Bacterias , Celulosa , Máscaras , Nanofibras , Resinas de Plantas , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Conductividad Eléctrica , Filtración/métodos , Filtración/normas , Máscaras/microbiología , Máscaras/normas , Nanofibras/química , Nanofibras/microbiología , Nanofibras/ultraestructura , Resinas de Plantas/química , Reología , Celulosa/análogos & derivados , Celulosa/química , Celulosa/farmacología
17.
Environ Res ; 252(Pt 3): 119068, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705452

RESUMEN

Cellulose acetate membranes exhibit a potential to be applied in hemodialysis. However, their performance is limited by membrane fouling and a lack of antibacterial properties. In this research, copper oxide (I) nanoparticles were fabricated in situ into a cellulose acetate matrix in the presence of polyvinylpyrrolidone (pore-forming agent) and sulfobetaine (stabilising agent) to reduce the leakage of copper ions from nano-enhanced membranes. The influence of nanoparticles on the membrane structure and their antibacterial and antifouling properties were investigated. The results showed that incorporating Cu2O NPs imparted significant antibacterial properties against Staphylococcus aureus and fouling resistance under physiological conditions. The Cu2O NPs-modified membrane could pave the way for potential dialysis applications.


Asunto(s)
Antibacterianos , Incrustaciones Biológicas , Celulosa , Cobre , Membranas Artificiales , Staphylococcus aureus , Celulosa/análogos & derivados , Celulosa/química , Celulosa/farmacología , Cobre/química , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Nanopartículas/química , Nanopartículas del Metal/química , Povidona/química , Povidona/análogos & derivados
18.
J Mater Chem B ; 12(22): 5496-5512, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38742807

RESUMEN

Bacterial infections in wounds significantly impair the healing process. The use of natural antibacterial products over synthetic antibiotics has emerged as a new trend to address antimicrobial resistance. An ideal tissue engineering scaffold to treat infected wounds should possess antibacterial properties, while simultaneously promoting tissue regrowth. Synthesis of hydrogel scaffolds with antibacterial properties using hemp shive (HT1/HT2) lignin, sugarcane bagasse (SCB) lignin and cellulose was carried out. All lignin samples had low molecular weights and were constituted of G-type ß-5 dimers, linked by ß-O-4 bonds, as determined by MALDI-TOF-MS. Hemp lignin was more cytotoxic to mouse fibroblasts (L929) compared to SCB lignin. All lignin samples demonstrated antibacterial properties against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis, with greater efficiency against Gram-negative strains. 3D hydrogels were engineered by crosslinking SCB lignin with SCB cellulose in varying weight ratios in the presence of epichlorohydrin. The stiffness of the hydrogels could be tailored by varying the lignin concentration. All hydrogels were biocompatible; however, better fibroblast adhesion was observed on the blended hydrogels compared to the 100% cellulose hydrogel, with the cellulose : lignin 70 : 30 hydrogel showing the highest L929 proliferation and best antibacterial properties with a 24-hour bacterial growth reduction ranging from 30.8 to 57.3%.


Asunto(s)
Antibacterianos , Celulosa , Lignina , Ingeniería de Tejidos , Celulosa/química , Celulosa/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Lignina/química , Lignina/farmacología , Animales , Ratones , Andamios del Tejido/química , Pruebas de Sensibilidad Microbiana , Fibroblastos/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
19.
Int J Biol Macromol ; 270(Pt 2): 132419, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759859

RESUMEN

Bacterial infection is a serious challenge in the treatment of open bone defects, and reliance on antibiotic therapy may contribute to the emergence of drug-resistant bacteria. To solve this problem, this study developed a mineralized hydrogel (PVA-Ag-PHA) with excellent antibacterial properties and osteogenic capabilities. Silver nanoparticles (CNC/TA@AgNPs) were greenly synthesized using natural macromolecular cellulose nanocrystals (CNC) and plant polyphenolic tannins (TA) as stabilizers and reducing agents respectively, and then introduced into polyvinyl alcohol (PVA) and polydopamine-modified hydroxyapatite (PDA@HAP) hydrogel. The experimental results indicate that the PVA-Ag-PHA hydrogel, benefiting from the excellent antibacterial properties of CNC/TA@AgNPs, can not only eliminate Staphylococcus aureus and Escherichia coli, but also maintain a sustained sterile environment. At the same time, the HAP modified by PDA is uniformly dispersed within the hydrogel, thus releasing and maintaining stable concentrations of Ca2+ and PO43- ions in the local environment. The porous structure of the hydrogel with excellent biocompatibility creates a suitable bioactive environment that facilitates cell adhesion and bone regeneration. The experimental results in the rat critical-sized calvarial defect model indicate that the PVA-Ag-PHA hydrogel can effectively accelerate the bone healing process. Thus, this mussel-inspired hydrogel with antibacterial properties provides a feasible solution for the repair of open bone defects, demonstrating the considerable potential for diverse applications in bone repair.


Asunto(s)
Regeneración Ósea , Celulosa , Hidrogeles , Nanopartículas del Metal , Plata , Cráneo , Taninos , Plata/química , Plata/farmacología , Animales , Regeneración Ósea/efectos de los fármacos , Celulosa/química , Celulosa/farmacología , Nanopartículas del Metal/química , Ratas , Hidrogeles/química , Hidrogeles/farmacología , Cráneo/efectos de los fármacos , Cráneo/lesiones , Taninos/química , Taninos/farmacología , Bivalvos/química , Antibacterianos/farmacología , Antibacterianos/química , Alcohol Polivinílico/química , Staphylococcus aureus/efectos de los fármacos , Durapatita/química , Durapatita/farmacología , Ratas Sprague-Dawley , Escherichia coli/efectos de los fármacos
20.
Int J Biol Macromol ; 270(Pt 1): 132176, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750845

RESUMEN

Cancer is a fatal disease, and unfortunately, the anticancer drugs harm normal cells. Plant's extracts are the golden key to solving this issue. In this research, fig latex - from Ficus carica- was encapsulated using cellulose acetate (CA) and poly (ethylene oxide) (PEO) polymers via electrospinning method (Fig@CA/PEO). Fig@CA/PEO nanofiber scaffold was characterized by thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The average fiber diameter was decreased with an increase in latex concentration from 715 nm to 583 nm. FT-IR spectroscopy indicated the presence of fig latex in Fig@CA/PEO nanofibers. Compared to 5-fluorouracil, Fig@CA/PEO nanofiber scaffold considered safe towards normal cells (WI-38). Moreover, the nanofiber scaffold was efficient against colon cancer cells (Caco) and liver cancer cells (HepG2) as it demonstrated IC50 values for cells by 23.97 µg/mL and 23.96 µg/mL, respectively. Besides, the nanofiber scaffold revealed mechanistic variations in apoptotic oncogenes; described by the upregulation of BCL2 and P21, combined by downregulation of p53 and TNF. Moreover, the nanofiber scaffold showed antioxidant activity counting 33.4, 36 and 41 % of DPPH scavenging as the fig latex concentration increased. The results demonstrate that the Fig@CA/PEO nanofiber scaffold is a promising substitute to traditional chemotherapy.


Asunto(s)
Antineoplásicos , Antioxidantes , Celulosa , Ficus , Látex , Nanofibras , Polietilenglicoles , Nanofibras/química , Celulosa/química , Celulosa/análogos & derivados , Celulosa/farmacología , Humanos , Ficus/química , Polietilenglicoles/química , Antioxidantes/farmacología , Antioxidantes/química , Látex/química , Látex/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Células Hep G2 , Espectroscopía Infrarroja por Transformada de Fourier , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...