Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.297
Filtrar
1.
Microb Ecol ; 87(1): 94, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008061

RESUMEN

Common bean (Phaseolus vulgaris L.) is an essential food staple and source of income for small-holder farmers across Africa. However, yields are greatly threatened by fungal diseases like root rot induced by Rhizoctonia solani. This study aimed to evaluate an integrated approach utilizing vermicompost tea (VCT) and antagonistic microbes for effective and sustainable management of R. solani root rot in common beans. Fourteen fungal strains were first isolated from infected common bean plants collected across three Egyptian governorates, with R. solani being the most virulent isolate with 50% dominance. Subsequently, the antagonistic potential of vermicompost tea (VCT), Serratia sp., and Trichoderma sp. was assessed against this destructive pathogen. Combinations of 10% VCT and the biocontrol agent isolates displayed potent inhibition of R. solani growth in vitro, prompting in planta testing. Under greenhouse conditions, integrated applications of 5 or 10% VCT with Serratia marcescens, Trichoderma harzianum, or effective microorganisms (EM1) afforded up to 95% protection against pre- and post-emergence damping-off induced by R. solani in common bean cv. Giza 6. Similarly, under field conditions, combining VCT with EM1 (VCT + EM1) or Trichoderma harzianum (VCT + Trichoderma harzianum) substantially suppressed disease severity by 65.6% and 64.34%, respectively, relative to untreated plants. These treatments also elicited defense enzyme activity and distinctly improved growth parameters including 136.68% and 132.49% increases in pod weight per plant over control plants. GC-MS profiling of Trichoderma harzianum, Serratia marcescens, and vermicompost tea (VCT) extracts revealed unique compounds dominated by cyclic pregnane, fatty acid methyl esters, linoleic acid derivatives, and free fatty acids like oleic, palmitic, and stearic acids with confirmed biocontrol and plant growth-promoting activities. The results verify VCT-mediated delivery of synergistic microbial consortia as a sustainable platform for integrated management of debilitating soil-borne diseases, enhancing productivity and incomes for smallholder bean farmers through regeneration of soil health. Further large-scale validation can pave the adoption of this climate-resilient approach for securing food and nutrition security.


Asunto(s)
Phaseolus , Enfermedades de las Plantas , Raíces de Plantas , Rhizoctonia , Serratia marcescens , Phaseolus/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Serratia marcescens/fisiología , Serratia marcescens/metabolismo , Rhizoctonia/fisiología , Raíces de Plantas/microbiología , Agentes de Control Biológico/farmacología , Control Biológico de Vectores , Antibiosis , Hypocreales/fisiología , Hypocreales/metabolismo , Egipto , Compostaje , Microbiología del Suelo
2.
J Agric Food Chem ; 72(28): 15920-15932, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38973096

RESUMEN

The objective of this work was to investigate the effect of succinylation treatment on the physicochemical properties of black bean proteins (BBPI), and the relationship mechanism between BBPI structure and gel properties was further analyzed. The results demonstrated that the covalent formation of higher-molecular-weight complexes with BBPI could be achieved by succinic anhydride (SA). With the addition of SA at 10% (v/v), the acylation of proteins amounted to 92.53 ± 1.10%, at which point there was a minimized particle size of the system (300.90 ± 9.57 nm). Meanwhile, the protein structure was stretched with an irregular curl content of 34.30% and the greatest processable flexibility (0.381 ± 0.004). The dense three-dimensional mesh structure of the hydrogel as revealed by scanning electron microscopy was the fundamental prerequisite for the ability to resist external extrusion. The thermally induced hydrogels of acylated proteins with 10% (v/v) addition of SA showed excellent gel elastic behavior (1.44 ± 0.002 nm) and support capacity. Correlation analysis showed that the hydrogel strength and stability of hydrogels were closely related to the changes in protein conformation. This study provides theoretical guidance for the discovery of flexible proteins and their application in hydrogels.


Asunto(s)
Proteínas de Plantas , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Anhídridos Succínicos/química , Acilación , Hidrogeles/química , Geles/química , Phaseolus/química , Conformación Proteica , Estabilidad Proteica
3.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999009

RESUMEN

Skin aging is an inevitable and intricate process instigated, among others, by oxidative stress. The search for natural sources that inhibit this mechanism is a promising approach to preventing skin aging. The purpose of our study was to evaluate the composition of phenolic compounds in the micellar extract of Phaseolus vulgaris sprouts. The results of a liquid chromatography-mass spectrometry (LC-MS) analysis revealed the presence of thirty-two constituents, including phenolic acids, flavanols, flavan-3-ols, flavanones, isoflavones, and other compounds. Subsequently, the extract was assessed for its antioxidant, anti-inflammatory, anti-collagenase, anti-elastase, anti-tyrosinase, and cytotoxic properties, as well as for the evaluation of collagen synthesis. It was demonstrated that micellar extract from common bean sprouts has strong anti-aging properties. The performed WST-8 (a water-soluble tetrazolium salt) assay revealed that selected concentrations of extract significantly increased proliferation of human dermal fibroblasts compared to the control cells in a dose-dependent manner. A similar tendency was observed with respect to collagen synthesis. Our results suggest that micellar extract from Phaseolus vulgaris sprouts can be considered a promising anti-aging compound for applications in cosmetic formulations.


Asunto(s)
Antioxidantes , Fibroblastos , Phaseolus , Fitoquímicos , Extractos Vegetales , Phaseolus/química , Humanos , Fitoquímicos/farmacología , Fitoquímicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Fibroblastos/efectos de los fármacos , Envejecimiento de la Piel/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/química
4.
Molecules ; 29(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38999174

RESUMEN

This study investigated a novel probiotic-enriched ice cream containing fermented white kidney bean homogenate to explore its potential health benefits in the future. We assessed the viability of various probiotic strains during ice cream production and storage, focusing on their potential to reach the gut, and evaluated overall antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and total polyphenol content (TPC) assays. The incorporation of fermented white bean homogenate significantly increased antioxidant capacity compared to the control group. Notably, strains such as Lacticaseibacillus rhamnosus GG and Lactiplantibacillus plantarum 299v demonstrated the most pronounced effects on antioxidant activity, suggesting potential synergistic benefits between probiotics and bioactive compounds in fermented white beans. Although all probiotic strains experienced decreased viability during storage, certain strains, particularly L. plantarum 299v and Lacticaseibacillus casei DN-114001, showed promising survival rates even after 6 months. These results suggest the potential for developing probiotic ice cream containing viable bacteria capable of reaching the gut and contributing to a healthy gut microbiota. Overall, this study highlights the potential of probiotic-enriched ice cream with fermented white kidney bean homogenate to combine the established benefits of probiotics for gut health with the enjoyment of consuming ice cream.


Asunto(s)
Antioxidantes , Fermentación , Helados , Probióticos , Antioxidantes/farmacología , Antioxidantes/química , Helados/microbiología , Phaseolus/química , Polifenoles/química , Polifenoles/farmacología , Viabilidad Microbiana/efectos de los fármacos
5.
J Food Sci ; 89(7): 4123-4135, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957110

RESUMEN

Extraction of starch from waste is also an effective way to recover resources and provide new sources of starch. In this study, starch was isolated from white kidney bean residue, chickpea residue, and tiger nut meal after protein or oil extraction, and the morphology of starch particles was observed to determine their physicochemical properties and in vitro digestibility. All these isolated starches had unique properties, among which white kidney bean starch (KBS) had a high amylose content (43.48%), and its structure was better ordered. Scanning electron microscopy revealed distinct granular morphologies for the three starches. KBS and chickpea starch (CHS) were medium-granular starches, whereas tiger nut starch was a small granular starch. Fourier transform infrared spectroscopy analysis confirmed the absence of significant differences in functional groups and chemical bonds among the three starch molecules. In vitro digestibility studies showed that CHS is more resistant to enzymatic degradation. Overall, these results will facilitate the development of products based on the separation of nonconventional starches from waste.


Asunto(s)
Cicer , Digestión , Almidón , Almidón/química , Cicer/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Amilosa/química , Phaseolus/química , Microscopía Electrónica de Rastreo
6.
Sci Rep ; 14(1): 15596, 2024 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971939

RESUMEN

Common beans (CB), a vital source for high protein content, plays a crucial role in ensuring both nutrition and economic stability in diverse communities, particularly in Africa and Latin America. However, CB cultivation poses a significant threat to diseases that can drastically reduce yield and quality. Detecting these diseases solely based on visual symptoms is challenging, due to the variability across different pathogens and similar symptoms caused by distinct pathogens, further complicating the detection process. Traditional methods relying solely on farmers' ability to detect diseases is inadequate, and while engaging expert pathologists and advanced laboratories is necessary, it can also be resource intensive. To address this challenge, we present a AI-driven system for rapid and cost-effective CB disease detection, leveraging state-of-the-art deep learning and object detection technologies. We utilized an extensive image dataset collected from disease hotspots in Africa and Colombia, focusing on five major diseases: Angular Leaf Spot (ALS), Common Bacterial Blight (CBB), Common Bean Mosaic Virus (CBMV), Bean Rust, and Anthracnose, covering both leaf and pod samples in real-field settings. However, pod images are only available for Angular Leaf Spot disease. The study employed data augmentation techniques and annotation at both whole and micro levels for comprehensive analysis. To train the model, we utilized three advanced YOLO architectures: YOLOv7, YOLOv8, and YOLO-NAS. Particularly for whole leaf annotations, the YOLO-NAS model achieves the highest mAP value of up to 97.9% and a recall of 98.8%, indicating superior detection accuracy. In contrast, for whole pod disease detection, YOLOv7 and YOLOv8 outperformed YOLO-NAS, with mAP values exceeding 95% and 93% recall. However, micro annotation consistently yields lower performance than whole annotation across all disease classes and plant parts, as examined by all YOLO models, highlighting an unexpected discrepancy in detection accuracy. Furthermore, we successfully deployed YOLO-NAS annotation models into an Android app, validating their effectiveness on unseen data from disease hotspots with high classification accuracy (90%). This accomplishment showcases the integration of deep learning into our production pipeline, a process known as DLOps. This innovative approach significantly reduces diagnosis time, enabling farmers to take prompt management interventions. The potential benefits extend beyond rapid diagnosis serving as an early warning system to enhance common bean productivity and quality.


Asunto(s)
Aprendizaje Profundo , Phaseolus , Enfermedades de las Plantas , Phaseolus/virología , Phaseolus/microbiología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/microbiología , Agricultura/métodos , Hojas de la Planta/virología , Hojas de la Planta/microbiología , África , Colombia
7.
Genes (Basel) ; 15(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39062714

RESUMEN

Common beans (Phaseolus vulgaris L.), besides being an important source of nutrients such as iron, magnesium, and protein, are crucial for food security, especially in developing countries. Common bean cultivation areas commonly face production challenges due to drought occurrences, mainly during the reproductive period. Dry spells last approximately 20 days, enough time to compromise production. Hence, it is crucial to understand the genetic and molecular mechanisms that confer drought tolerance to improve common bean cultivars' adaptation to drought. Sixty six RNASeq libraries, generated from tolerant and sensitive cultivars in drought time sourced from the R5 phenological stage at 0 to 20 days of water deficit were sequenced, generated over 1.5 billion reads, that aligned to 62,524 transcripts originating from a reference transcriptome, as well as 6673 transcripts obtained via de novo assembly. Differentially expressed transcripts were functionally annotated, revealing a variety of genes associated with molecular functions such as oxidoreductase and transferase activity, as well as biological processes related to stress response and signaling. The presence of regulatory genes involved in signaling cascades and transcriptional control was also highlighted, for example, LEA proteins and dehydrins associated with dehydration protection, and transcription factors such as WRKY, MYB, and NAC, which modulate plant response to water deficit. Additionally, genes related to membrane and protein protection, as well as water and ion uptake and transport, were identified, including aquaporins, RING-type E3 ubiquitin transferases, antioxidant enzymes such as GSTs and CYPs, and thioredoxins. This study highlights the complexity of plant response to water scarcity, focusing on the functional diversity of the genes involved and their participation in the biological processes essential for plant adaptation to water stress. The identification of regulatory and cell protection genes offers promising prospects for genetic improvement aiming at the production of common bean varieties more resistant to drought. These findings have the potential to drive sustainable agriculture, providing valuable insights to ensure food security in a context of climate change.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Phaseolus , Proteínas de Plantas , Phaseolus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Estrés Fisiológico/genética , Adaptación Fisiológica/genética , Deshidratación/genética , Perfilación de la Expresión Génica/métodos , Resistencia a la Sequía
8.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063210

RESUMEN

The common bean (Phaseolus vulgaris L.) is an economically important food crop grown worldwide; however, its production is affected by various environmental stresses, including cold, heat, and drought stress. The plant U-box (PUB) protein family participates in various biological processes and stress responses, but the gene function and expression patterns of its members in the common bean remain unclear. Here, we systematically identified 63 U-box genes, including 8 tandem genes and 55 non-tandem genes, in the common bean. These PvPUB genes were unevenly distributed across 11 chromosomes, with chromosome 2 holding the most members of the PUB family, containing 10 PUB genes. The analysis of the phylogenetic tree classified the 63 PUB genes into three groups. Moreover, transcriptome analysis based on cold-tolerant and cold-sensitive varieties identified 4 differentially expressed PvPUB genes, suggesting their roles in cold tolerance. Taken together, this study serves as a valuable resource for exploring the functional aspects of the common bean U-box gene family and offers crucial theoretical support for the development of new cold-tolerant common bean varieties.


Asunto(s)
Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Phaseolus , Filogenia , Proteínas de Plantas , Phaseolus/genética , Respuesta al Choque por Frío/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Genoma de Planta , Cromosomas de las Plantas/genética , Frío
9.
BMC Plant Biol ; 24(1): 688, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39026161

RESUMEN

BACKGROUND: Laccase (LAC) gene family plays a pivotal role in plant lignin biosynthesis and adaptation to various stresses. Limited research has been conducted on laccase genes in common beans. RESULTS: 29 LAC gene family members were identified within the common bean genome, distributed unevenly in 9 chromosomes. These members were divided into 6 distinct subclades by phylogenetic analysis. Further phylogenetic analyses and synteny analyses indicated that considerable gene duplication and loss presented throughout the evolution of the laccase gene family. Purified selection was shown to be the major evolutionary force through Ka / Ks. Transcriptional changes of PvLAC genes under low temperature and salt stress were observed, emphasizing the regulatory function of these genes in such conditions. Regulation by abscisic acid and gibberellins appears to be the case for PvLAC3, PvLAC4, PvLAC7, PvLAC13, PvLAC14, PvLAC18, PvLAC23, and PvLAC26, as indicated by hormone induction experiments. Additionally, the regulation of PvLAC3, PvLAC4, PvLAC7, and PvLAC14 in response to nicosulfuron and low-temperature stress were identified by virus-induced gene silence, which demonstrated inhibition on growth and development in common beans. CONCLUSIONS: The research provides valuable genetic resources for improving the resistance of common beans to abiotic stresses and enhance the understanding of the functional roles of the LAC gene family.


Asunto(s)
Lacasa , Familia de Multigenes , Phaseolus , Filogenia , Estrés Fisiológico , Phaseolus/genética , Phaseolus/enzimología , Phaseolus/fisiología , Lacasa/genética , Lacasa/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
10.
Nat Commun ; 15(1): 6347, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068162

RESUMEN

Mitigating the effects of climate stress on crops is important for global food security. The microbiome associated with plant roots, the rhizobiome, can harbor beneficial microbes that alleviate stress, but the factors influencing their recruitment are unclear. We conducted a greenhouse experiment using field soil with a legacy of growing switchgrass and common bean to investigate the impact of short-term drought severity on the recruitment of active bacterial rhizobiome members. We applied 16S rRNA and 16S rRNA gene sequencing for both crops and metabolite profiling for switchgrass. We included planted and unplanted conditions to distinguish environment- versus plant-mediated rhizobiome drivers. Differences in community structure were observed between crops and between drought and watered and planted and unplanted treatments within crops. Despite crop-specific communities, drought rhizobiome dynamics were similar across the two crops. The presence of a plant more strongly explained the rhizobiome variation in bean (17%) than in switchgrass (3%), with a small effect of plant mediation during drought observed only for the bean rhizobiome. The switchgrass rhizobiome was stable despite changes in rhizosphere metabolite profiles between planted and unplanted treatments. We conclude that rhizobiome responses to short-term drought are crop-specific, with possible decoupling of plant exudation from rhizobiome responses.


Asunto(s)
Bacterias , Sequías , Microbiota , Panicum , Raíces de Plantas , ARN Ribosómico 16S , Rizosfera , Microbiología del Suelo , Microbiota/genética , ARN Ribosómico 16S/genética , Raíces de Plantas/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Panicum/microbiología , Panicum/genética , Productos Agrícolas/microbiología , Phaseolus/microbiología , Phaseolus/fisiología , Suelo/química
11.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891825

RESUMEN

This study aimed to investigate the availability of flavonoids, anthocyanins, and phenolic acids in mutant bean seeds, focusing on M7 mutant lines, and their corresponding initial and local cultivars. HPLC-DAD-MS/MS and HPLC-MS/MS were used to analyze twenty-eight genotypes of common bean. The obtained results suggest that the mutations resulted in four newly synthesized anthocyanins in the mutant bean seeds, namely, delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, pelargonidin 3-O-glucoside, and petunidin 3-O-glucoside, in 20 accessions with colored seed shapes out of the total of 28. Importantly, the initial cultivar with white seeds, as well as the mutant white seeds, did not contain anthocyanins. The mutant lines were classified into groups based on their colors as novel qualitative characteristics. Five phenolic acids were further quantified: ferulic, p-coumaric, caffeic, sinapic, and traces of chlorogenic acids. Flavonoids were represented by epicatechin, quercetin, and luteolin, and their concentrations in the mutant genotypes were several-fold superior compared to those of the initial cultivar. All mutant lines exhibited higher concentrations of phenolic acids and flavonoids. These findings contribute to the understanding of the genetics and biochemistry of phenolic accumulation and anthocyanin production in common bean seeds, which is relevant to health benefits and might have implications for common bean breeding programs and food security efforts.


Asunto(s)
Antocianinas , Mutación , Phaseolus , Polifenoles , Semillas , Semillas/genética , Semillas/metabolismo , Semillas/química , Phaseolus/genética , Phaseolus/metabolismo , Polifenoles/biosíntesis , Antocianinas/biosíntesis , Flavonoides/biosíntesis , Flavonoides/metabolismo , Genotipo , Hidroxibenzoatos/metabolismo , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem
12.
Food Funct ; 15(12): 6395-6407, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38828506

RESUMEN

In this study, five different black bean (Phaseolus vulgaris L. cv. Tolosa) populations cultivated in different geographical areas including Oiartzun, Andoain, Azkoitia, San Esteban and Amasa Villabona, were studied and their polyphenolic content was determined. Two food products were prepared from the five different bean populations, cooked "Tolosa" beans and a hummus made with "Tolosa" cooked beans. Moreover, the variations of total polyphenol content (TPC), total anthocyanin content (TAC) and free radical scavenging activity by the 1,1-diphenyl-1-picrylhydrazyl (DPPH) method were analyzed for raw beans, cooked beans, and "Tolosa" beans hummus. Polyphenolic detailed composition was determined by means of HPLC-MS-QTOF analysis. The "Tolosa" bean population richest in polyphenols was selected in order to study the effect of in vitro digestion on the polyphenolic content and antioxidant effect and the degradation of the main anthocyanins was followed during the in vitro digestion. Finally, the effect of the different phases of digestion on the cytotoxicity in Caco-2 cells was determined. The results suggest that cooking "Tolosa" black beans results in an increase in the bioaccessibility of polyphenols and their antioxidant activity, which, additionally has a positive effect on Caco-2 intestinal cell viability.


Asunto(s)
Antioxidantes , Culinaria , Digestión , Phaseolus , Polifenoles , Phaseolus/química , Polifenoles/química , Humanos , Células CACO-2 , Antioxidantes/farmacología , Antioxidantes/química , Antocianinas/química , Cromatografía Líquida de Alta Presión , Extractos Vegetales/farmacología , Extractos Vegetales/química
13.
Sci Rep ; 14(1): 12685, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830962

RESUMEN

White kidney bean (Phaseolus vulgaris L.) extracts can aid weight management by reducing calorie intake from complex carbohydrates through alpha-amylase inhibition. We examined the impact of a proprietary aqueous extract from whole dried white kidney beans standardized by its alpha-amylase inhibitor activity (Phase 2 white kidney bean extract (WKBE)) on weight management in subjects with overweight and moderate obesity. In a randomized, double-blind, placebo-controlled fashion, 81 participants completed the study and ingested either a high dose of Phase 2 (1000 mg, WKBE HIGH), a low dose (700 mg, WKBE LOW), or a matching placebo (microcrystalline cellulose, PLA) three times a day, 30 min before meals, for 12 weeks during a calorie restricted diet. In a dose-dependent manner, Phase 2 significantly reduced body weight, fat mass, BMI, waist, hip and in the WKBE HIGH group thigh circumference. Phase 2 is an effective and safe supplement aiding weight and fat loss. ClinicalTrials.gov identifier NCT02930668.


Asunto(s)
Phaseolus , Extractos Vegetales , Humanos , Masculino , Femenino , Método Doble Ciego , Phaseolus/química , Persona de Mediana Edad , Adulto , Extractos Vegetales/química , Extractos Vegetales/farmacología , Pérdida de Peso/efectos de los fármacos , Obesidad/tratamiento farmacológico , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Sobrepeso/tratamiento farmacológico , Lectinas de Plantas
14.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892008

RESUMEN

The NAC family of transcription factors includes no apical meristem (NAM), Arabidopsis thaliana transcription activator 1/2 (ATAF1/2), and cup-shaped cotyledon (CUC2) proteins, which are unique to plants, contributing significantly to their adaptation to environmental challenges. In the present study, we observed that the PvNAC52 protein is predominantly expressed in the cell membrane, cytoplasm, and nucleus. Overexpression of PvNAC52 in Arabidopsis strengthened plant resilience to salt, alkali, osmotic, and ABA stresses. PvNAC52 significantly (p < 0.05) reduced the degree of oxidative damage to cell membranes, proline content, and plant water loss by increasing the expression of MSD1, FSD1, CSD1, POD, PRX69, CAT, and P5CS2. Moreover, the expression of genes associated with abiotic stress responses, such as SOS1, P5S1, RD29A, NCED3, ABIs, LEAs, and DREBs, was enhanced by PvNAC52 overexpression. A yeast one-hybrid assay showed that PvNAC52 specifically binds to the cis-acting elements ABRE (abscisic acid-responsive elements, ACGTG) within the promoter. This further suggests that PvNAC52 is responsible for the transcriptional modulation of abiotic stress response genes by identifying the core sequence, ACGTG. These findings provide a theoretical foundation for the further analysis of the targeted cis-acting elements and genes downstream of PvNAC52 in the common bean.


Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Phaseolus , Proteínas de Plantas , Factores de Transcripción , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Álcalis , Arabidopsis/genética , Arabidopsis/metabolismo , Presión Osmótica , Phaseolus/genética , Phaseolus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación hacia Arriba
15.
Environ Sci Pollut Res Int ; 31(31): 44036-44048, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38922465

RESUMEN

Fungicides are pesticides that are frequently used in agriculture because of their action against fungal diseases. However, the widespread application of pesticides around the world raises environmental and public health concerns, since these compounds are toxic and can pose risks to ecosystems and human health. The aim of this study was to evaluate the phytotoxic, cytogenotoxic, and biochemical effects of azoxystrobin and carbendazim on Lactuca sativa L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects of azoxystrobin and carbendazim on Phaseolus vulgaris L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects by analyzing the activity of antioxidant enzymes in L. sativa; and the physiological effects by analyzing chlorophyll content and chlorophyll a fluorescence in P. vulgaris. It was observed that both fungicides were phytotoxic and cytotoxic, reducing root growth and the mitotic index, cytogenotoxic, increasing the occurrence of chromosomal alterations, as well as inducing oxidative stress and an increase in chlorophyll fluorescence emission and altered energy absorption in the plants used as a test system. In view of this, studies such as the one presented here indicate that the use of pesticides, even in small quantities, can lead to damage to the metabolism of plant organisms.


Asunto(s)
Bencimidazoles , Carbamatos , Fungicidas Industriales , Lactuca , Phaseolus , Estrobilurinas , Phaseolus/efectos de los fármacos , Estrobilurinas/toxicidad , Bencimidazoles/toxicidad , Fungicidas Industriales/toxicidad , Carbamatos/toxicidad , Lactuca/efectos de los fármacos , Pirimidinas/toxicidad , Clorofila/metabolismo
16.
Int J Biol Macromol ; 273(Pt 2): 133127, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876245

RESUMEN

In this work, the metabolomics, physicochemical and in vitro digestion properties of black beans influenced by different calcium ion solutions (0, 0.5 %, 1 %, and 2 %) were explored. The addition of calcium ions had a significant effect on the metabolic processing of black beans, including 16 differential metabolites and 4 metabolic pathways related to the cell wall. From the results of FT-IR and ICP-OES, it was confirmed that calcium ions can interact with COO- in non-methylated galacturonic acid in pectin to form calcium carboxylate strengthening the middle lamellae of the cell wall. Based on this mechanism, the soaked beans with an intact and dense cell structure were verified by the analyses of SEM and CLSM. Compared with other soaked beans, BB-2 exhibited lower cell permeability with electrical conductivity value decreased to 0.60 µs·cm-1. Additionally, BB-2 demonstrated slower digestion properties with digestion rate coefficient at 0.0020 min-1 and digestion extent only at 30.83 %, which is attributed to its increasingly compact cell wall and densely cellular matrix. This study illustrates the effect of calcium ions on the cellular structure of black beans, providing an effective process method for low glycemic index diets.


Asunto(s)
Calcio , Pared Celular , Metabolómica , Pectinas , Pectinas/farmacología , Pectinas/química , Pectinas/metabolismo , Pared Celular/metabolismo , Pared Celular/química , Calcio/metabolismo , Digestión/efectos de los fármacos , Iones , Phaseolus/química , Fabaceae/química , Fenómenos Químicos , Espectroscopía Infrarroja por Transformada de Fourier
17.
J Agric Food Chem ; 72(26): 14844-14850, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885440

RESUMEN

The 11S globulin legumin typically accounts for approximately 3% of the total protein in common beans (Phaseolus vulgaris). It was previously reported that a legumin peptide of approximately 20 kDa is resistant to pepsin digestion. Sequence prediction suggested that the pepsin-resistant peptide is located at the C-terminal end of the α-subunit, within a glutamic acid-rich domain, overlapping with a chymotrypsin-resistant peptide. Using purified legumin, the peptide of approximately 20 kDa was found to be resistant to pepsin digestion in a pH-dependent manner, and its location was determined by two-dimensional gel electrophoresis and LC-MS-MS. The location of the chymotrypsin-resistant peptide was confirmed by immunoblotting with peptide-specific polyclonal antibodies. The presence of a consensus site for proline hydroxylation and arabinosylation, the detection of hydroxyproline residues, purification by lectin affinity chromatography, and a difference in electrophoretic migration between the chymotrypsin- and pepsin-resistant peptides suggest the presence of a large O-glycan within these peptides.


Asunto(s)
Secuencia de Aminoácidos , Quimotripsina , Pepsina A , Péptidos , Phaseolus , Phaseolus/química , Pepsina A/química , Pepsina A/metabolismo , Quimotripsina/química , Quimotripsina/metabolismo , Péptidos/química , Péptidos/aislamiento & purificación , Leguminas/química , Espectrometría de Masas en Tándem , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo
18.
BMC Genomics ; 25(1): 579, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858660

RESUMEN

BACKGROUND: Disease can drastically impair common bean (Phaseolus vulgaris L.) production. Anthracnose, caused by the fungal pathogen Colletotrichum lindemuthianum (Sacc. and Magnus) Briosi and Cavara, is one of the diseases that are widespread and cause serious economic loss in common bean. RESULTS: Transcriptome analysis of the early response of common bean to anthracnose was performed using two resistant genotypes, Hongyundou and Honghuayundou, and one susceptible genotype, Jingdou. A total of 9,825 differentially expressed genes (DEGs) responding to pathogen infection and anthracnose resistance were identified by differential expression analysis. By using weighted gene coexpression network analysis (WGCNA), 2,051 DEGs were found to be associated with two resistance-related modules. Among them, 463 DEGs related to anthracnose resistance were considered resistance-related candidate genes. Nineteen candidate genes were coexpressed with three resistance genes, Phvul.001G243600, Phvul.001G243700 and Phvul.001G243800. To further identify resistance genes, 46 candidate genes were selected for experimental validation using salicylic acid (SA) and methyl jasmonate (MeJA). The results indicated that 38 candidate genes that responded to SA/MeJA treatment may be involved in anthracnose resistance in common bean. CONCLUSIONS: This study identified 38 resistance-related candidate genes involved in the early response of common bean, and 19 resistance-related candidate genes were coexpressed with anthracnose resistance genes. This study identified putative resistance genes for further resistance genetic investigation and provides an important reference for anthracnose resistance breeding in common bean.


Asunto(s)
Colletotrichum , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Phaseolus , Enfermedades de las Plantas , Phaseolus/microbiología , Phaseolus/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Redes Reguladoras de Genes , Genes de Plantas
19.
BMC Plant Biol ; 24(1): 525, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858659

RESUMEN

Common bean provides diet rich in vitamins, fiber, minerals, and protein, which could contribute into food security of needy populations in many countries. Developing genotypes that associate favorable agronomic and grain quality traits in the common bean crop could increase the chances of adopting new cultivars black bean. In this context, the present study aimed at selection of superior black bean lines using multi-variate indexes, Smith-Hazel-index, and genotype by yield*trait biplot analysis. These trials were conducted in Campos dos Goytacazes - RJ, in 2020 and 2021. The experimental design used was randomized blocks, with 28 treatments and three replications. The experimental unit consisted of four rows 4.0 m long, spaced at 0.50 m apart, with a sowing density of 15 seeds per meter. The two central rows were used for the evaluations. The selection of superior genotypes was conducted using the multiple trait stability index (MTSI), multi-trait genotype-ideotype distance index (MGIDI), multi-trait index based on factor analysis and genotype-ideotype distance (FAI-BLUP), Smith-Hazel index, and Genotype by Yield*Trait Biplot (GYT). The multivariate indexes efficiently selected the best black bean genotypes, presenting desirable selection gains for most traits. The use of multivariate indexes and GYT enable the selection of early genotypes with higher grain yields. These lines G9, G13, G17, G23, and G27 were selected based on their performance for multiple traits closest to the ideotype and could be recommended as new varieties.


Asunto(s)
Genotipo , Phaseolus , Phaseolus/genética , Fitomejoramiento/métodos , Selección Genética , Productos Agrícolas/genética , Fenotipo
20.
Virol J ; 21(1): 147, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943139

RESUMEN

Vertical transmission, the transfer of pathogens across generations, is a critical mechanism for the persistence of plant viruses. The transmission mechanisms are diverse, involving direct invasion through the suspensor and virus entry into developing gametes before achieving symplastic isolation. Despite the progress in understanding vertical virus transmission, the environmental factors influencing this process remain largely unexplored. We investigated the complex interplay between vertical transmission of plant viruses and pollination dynamics, focusing on common bean (Phaseolus vulgaris). The intricate relationship between plants and pollinators, especially bees, is essential for global ecosystems and crop productivity. We explored the impact of virus infection on seed transmission rates, with a particular emphasis on bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV). Under controlled growth conditions, BCMNV exhibited the highest seed transmission rate, followed by BCMV and CMV. Notably, in the field, bee-pollinated BCMV-infected plants showed a reduced transmission rate compared to self-pollinated plants. This highlights the influence of pollinators on virus transmission dynamics. The findings demonstrate the virus-specific nature of seed transmission and underscore the importance of considering environmental factors, such as pollination, in understanding and managing plant virus spread.


Asunto(s)
Phaseolus , Enfermedades de las Plantas , Polinización , Animales , Enfermedades de las Plantas/virología , Abejas/virología , Phaseolus/virología , Semillas/virología , Transmisión Vertical de Enfermedad Infecciosa , Cucumovirus/fisiología , Potyvirus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA