Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Parasit Vectors ; 17(1): 224, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750608

ABSTRACT

BACKGROUND: Ivermectin mass drug administration to humans or livestock is a potential vector control tool for malaria elimination. Racemic ivermectin is composed of two components, namely a major component (> 80%; ivermectin B1a), which has an ethyl group at C-26, and a minor component (< 20%; ivermectin B1b), which has a methyl group at C-26. There is no difference between the efficacy of ivermectin B1a and ivermectin B1b efficacy in nematodes, but only ivermectin B1b has been reported to be lethal to snails. The ratios of ivermectin B1a and B1b ratios in ivermectin formulations and tablets can vary between manufacturers and batches. The mosquito-lethal effects of ivermectin B1a and ivermectin B1b have never been assessed. As novel ivermectin formulations are being developed for malaria control, it is important that the mosquito-lethal effects of individual ivermectin B1a and ivermectin B1b compounds be evaluated. METHODS: Racemic ivermectin, ivermectin B1a or ivermectin B1b, respectively, was mixed with human blood at various concentrations, blood-fed to Anopheles dirus sensu stricto and Anopheles minimus sensu stricto mosquitoes, and mortality was observed for 10 days. The ivermectin B1a and B1b ratios from commercially available racemic ivermectin and marketed tablets were assessed by liquid chromatography-mass spectrometry. RESULTS: The results revealed that neither the lethal concentrations that kills 50% (LC50) nor 90% (LC90) of mosquitoes differed between racemic ivermectin, ivermectin B1a or ivermectin B1b for An. dirus or An. minimus, confirming that the individual ivermectin components have equal mosquito-lethal effects. The relative ratios of ivermectin B1a and B1b derived from sourced racemic ivermectin powder were 98.84% and 1.16%, respectively, and the relative ratios for ivermectin B1a and B1b derived from human oral ivermectin tablets were 98.55% and 1.45%, respectively. CONCLUSIONS: The ratio of ivermectin B1a and B1b does not influence the Anopheles mosquito-lethal outcome, an ideal study result as the separation of ivermectin B1a and B1b components at scale is cost prohibitive. Thus, variations in the ratio of ivermectin B1a and B1b between batches and manufacturers, as well as potentially novel formulations for malaria control, should not influence ivermectin mosquito-lethal efficacy.


Subject(s)
Anopheles , Insecticides , Ivermectin , Ivermectin/pharmacology , Animals , Anopheles/drug effects , Insecticides/pharmacology , Humans , Mosquito Vectors/drug effects , Female , Mosquito Control/methods , Malaria/prevention & control , Malaria/transmission
2.
Antimicrob Agents Chemother ; 68(2): e0068423, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38193705

ABSTRACT

Due to the spread of resistance to front-line artemisinin derivatives worldwide, there is a need for new antimalarials. Tartrolon E (TrtE), a secondary metabolite of a symbiotic bacterium of marine bivalve mollusks, is a promising antimalarial because it inhibits the growth of sexual and asexual blood stages of Plasmodium falciparum at sub-nanomolar levels. The potency of TrtE warrants further investigation into its mechanism of action, cytotoxicity, and ease with which parasites may evolve resistance to it.


Subject(s)
Antimalarials , Artemisinins , Lactones , Malaria, Falciparum , Humans , Plasmodium falciparum , Artemisinins/pharmacology , Antimalarials/pharmacology , Malaria, Falciparum/parasitology
3.
Arthropod Struct Dev ; 76: 101296, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37657362

ABSTRACT

Mosquitoes rely mainly on the olfactory system to track hosts. Sensilla contain olfactory neuron receptors that perceive different kinds of odorants and transfer crucial information regarding the surrounding environment. Anopheles maculatus and An. sawadwongporni, members of the Maculatus Group, are regarded as vectors of malaria in Thailand. The fine structure of their sensilla has yet to be identified. Herein, scanning electron microscopy is used to examine the sensilla located on the antennae of adults An. maculatus and An. sawadwongporni, collected from the Thai-Myanmar border. Four major types of antennal sensilla are discovered in both species: chaetica, coeloconica, basiconica (grooved pegs) and trichodea. The antennae of female An. maculatus have longer lengths (µm, mean ± SE) in the long sharp-tipped trichodea (40.62 ± 0.35 > 38.20 ± 0.36), blunt-tipped trichodea (20.39 ± 0.62 > 18.62 ± 0.35), and basiconica (7.84 ± 0.15 > 7.41 ± 0.12) than those of An. sawadwongporni. Using light microscopy, it is found that the mean numbers of large sensilla coeloconica (lco) on both flagella in An. maculatus (left: 32.97 ± 0.48; right: 33.27 ± 0.65) are also greater when compared to An. sawadwongporni (left: 30.40 ± 0.62; right: 29.97 ± 0.49). The mean counts of lco located on flagellomeres 1-3, 6, and 9 in An. maculatus are significantly higher than those of An. sawadwongporni. The data in this study indicate that two closely related Anopheles species exhibit similar morphology of sensilla types, but show variations in length, and likewise in the number of large sensilla coeloconica between them, suggesting they might be causative factors that affect their behaviors driven by the sense of smell.


Subject(s)
Anopheles , Malaria , Female , Animals , Sensilla , Mosquito Vectors , Microscopy, Electron, Scanning
4.
Heliyon ; 9(7): e18083, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483793

ABSTRACT

Dengue is a major public health concern in Myanmar. We carried out a cross-sectional study to investigate the efficacy of larval control practices in household water containers, such as the use of the larvicide, temephos, covering the containers with lids and weekly cleaning. We surveyed 300 households in Kaw Hmu Township, a peri-urban community in the Yangon region. We inspected 1,892 water storage containers and 342 non-water storage/household waste containers during the rainy season and 1,866 water storage containers and 287 non-water storage/household waste containers during the dry season. The presence of Aedes larvae and larval control measures were recorded for each container. Results revealed that larval indices were higher than World Health Organization standard indices, and infestations in water storage containers were more common in the rainy season (6.6%) than in the dry season (5.7%). Infestations were also more likely in containers of non-potable water (9.1%-9.9%) than in containers of potable water (0.1%-0.7%). Two thirds of water storage containers were treated with temephos. Containers most likely to contain Aedes larvae were cement basins and barrels. Temephos was effective in controlling infestations in cement basins, while weekly cleaning was effective in controlling infestations in barrels. Combinations of control methods were more effective at larval control than the use of a single method. Larval infestations were high (18.4% in the rainy season) in unused containers and in containers which were household waste. Overall, we found a complex interaction between household water use, container characteristics, and larval control practices. Larval control strategies in Myanmar will require ongoing entomological surveillance and the identification of key breeding sources and optimal control methods.

5.
Heliyon ; 9(6): e16759, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37292340

ABSTRACT

Background: Dengue is one of the health problems in Myanmar. Thus, health promotion in schools is considered a key approach for reducing risk-taking behaviours related to dengue. Objectives: The study aimed to evaluate a dengue training programme for high school students to measure changes in knowledge, attitude and practices (KAP) towards dengue; evaluate the effectiveness of the programme in improving prevention and control practices among families and determining changes in larval indices in their dwelling places. Methodology: The dengue school training programme was conducted for Grades 9 and 10 students in Yangon. In total, 300 students in the intervention school received training and were compared with 300 students as control. KAP was assessed using a self-administered questionnaire, whereas larval and control practice surveys were conducted at the homes of both groups 3 months before and after the programme. Results: The KAP scores of the intervention group increased after the programme. Moreover, the programme improved prevention and control practices and decreased the larval indices in the intervention group. Students from the same group with high scores in knowledge and self-reported practices were less likely to exhibit Aedes larval positivity in their residential areas. Conclusion: This study demonstrated the impact of the dengue training programme on the KAP of students and short-term family larval control practices, which influenced household larval indices.

6.
Sci Rep ; 13(1): 8131, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208382

ABSTRACT

Ivermectin mass drug administration to humans or livestock is a potential vector control tool for malaria elimination. The mosquito-lethal effect of ivermectin in clinical trials exceeds that predicted from in vitro laboratory experiments, suggesting that ivermectin metabolites have mosquito-lethal effect. The three primary ivermectin metabolites in humans (i.e., M1 (3″-O-demethyl ivermectin), M3 (4-hydroxymethyl ivermectin), and M6 (3″-O-demethyl, 4-hydroxymethyl ivermectin) were obtained by chemical synthesis or bacterial modification/metabolism. Ivermectin and its metabolites were mixed in human blood at various concentrations, blood-fed to Anopheles dirus and Anopheles minimus mosquitoes, and mortality was observed daily for fourteen days. Ivermectin and metabolite concentrations were quantified by liquid chromatography linked with tandem mass spectrometry to confirm the concentrations in the blood matrix. Results revealed that neither the LC50 nor LC90 values differed between ivermectin and its major metabolites for An. dirus or An. minimus., Additionally, there was no substantial differences in the time to median mosquito mortality when comparing ivermectin and its metabolites, demonstrating an equal rate of mosquito killing between the compounds evaluated. These results demonstrate that ivermectin metabolites have a mosquito-lethal effect equal to the parent compound, contributing to Anopheles mortality after treatment of humans.


Subject(s)
Anopheles , Insecticides , Malaria , Animals , Humans , Ivermectin/pharmacology , Insecticides/pharmacology , Mosquito Vectors , Malaria/drug therapy , Mosquito Control/methods
7.
J Med Entomol ; 60(1): 122-130, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36373613

ABSTRACT

Controlling mosquitoes is vital for counteracting the rising number of mosquito-borne illnesses. Vector control requires the implementation of various measures; however, current methods lack complete effectiveness, and new control agents or substances are urgently needed. Therefore, this study developed a nonwoven fabric sheet coated with hydroxyapatite-binding silver/titanium dioxide compound (hydroxyapatite-binding silver/titanium dioxide sheet [HATS])and evaluated its effectiveness on all stages of laboratory Aedes aegypti (Linnaeus); Diptera: Culicidae and Anopheles dirus (Peyton & Harrison); Diptera: Culicidae. We reared larvae with HATS and control sheets and assessed their mortality, emergence, and hatching rates. The submersion rates of engorged female mosquitoes in submerged HATS and control sheets were also compared. The HATS strongly affected mosquito development, resulting in high mortality rates (mean ± SE) of 99.66 ± 0.58% (L1-L2) and 91.11 ± 9.20% (L3-L4) for Ae. aegypti and 100% of both stages for An. dirus. In contrast, mosquitoes raised in the control sheet showed relatively high survival rates of 92.33 ± 3.21% (L1-L2) and 95.67 ± 0.58% (L3-L4) for Ae. aegypti and 86.07 ± 3.53% (L1-L2) and 92.01 ± 8.67% (L3-L4) for An. dirus. Submersion of engorged females was found in the HATS oviposition cup, leading to a decreased number of eggs and a low hatching rate compared to that of the control. Overall, HATS may be a useful new control method for Ae. aegypti and An. dirus.


Subject(s)
Aedes , Anopheles , Culicidae , Female , Animals , Silver/chemistry , Mosquito Vectors , Larva , Mosquito Control/methods , Hydroxyapatites
8.
Insects ; 13(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36354859

ABSTRACT

The occurrence and spread of insecticide resistance has had a negative effect on the efficacy of insecticide-based tools and is distributed worldwide, including the Greater Mekong Subregion (GMS). This study aims to determine the insecticide susceptibility of malaria and dengue vectors in malaria and dengue hotspots on the Thai-Myanmar border. Mosquito larvae and pupae were obtained from water sources from December 2019 to April 2020 in Tha Song Yang District, Tak province, western Thailand. WHO bioassay susceptibility tests were conducted with three classes of insecticides to evaluate the knockdown and mortality rates of Anopheles and Aedes aegypti female adults. V1016G and F1534C kdr mutations in the voltage-gated sodium channel of Ae. aegypti were identified using a multiplex PCR. A total of 5764 female mosquitoes were bioassayed in this study, including Anopheles spp. (92.63%) and F1 Ae. aegypti (7.37%). After 24 h of observation, An. minimus s.l. (n = 3885) and An. maculatus s.l. (n = 1138) in Suan Oi (SO) and Tala Oka (TO) were susceptible to pyrethroids, organophosphates and carbamates (except bendiocarb) with 98-100% mortality (MR). Resistance to bendiocarb was detected with a mortality rate of 88.80%, 88.77%, and 89.92% for An. minimus s.l. (n = 125, 125) and An. maculatus s.l. (n = 66), respectively. The first generation of Ae. aegypti adult females were suspected of resistance to deltamethrin (n = 225, MR = 96.89%) and confirmed resistance to permethrin (n = 200, MR = 20.00%). V1016G and F1534C mutations were detected in three genotypes, heterozygote and homozygote forms. The correlation between the kdr alleles and deltamethrin resistance was significant. In conclusion, bendiocarb resistance was found in primary malaria vectors, An. minimus s.l. and An. maculatus s.l. F1 Ae. aegypti population was pyrethroids-resistant, associated with kdr alleles. Therefore, molecular analysis should be conducted to gain insights into the mechanism of insecticide resistance. Routine malaria vector control programmes, such as fogging implementation in hotspot villages to induce Aedes resistance available in peri-domestic sites, are questionable.

9.
Am J Trop Med Hyg ; 107(4_Suppl): 138-151, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36228909

ABSTRACT

In the course of malaria elimination in the Greater Mekong Subregion (GMS), malaria epidemiology has experienced drastic spatiotemporal changes with residual transmission concentrated along international borders and the rising predominance of Plasmodium vivax. The emergence of Plasmodium falciparum parasites resistant to artemisinin and partner drugs renders artemisinin-based combination therapies less effective while the potential spread of multidrug-resistant parasites elicits concern. Vector behavioral changes and insecticide resistance have reduced the effectiveness of core vector control measures. In recognition of these problems, the Southeast Asian International Center of Excellence for Malaria Research (ICEMR) has been conducting multidisciplinary research to determine how human migration, antimalarial drug resistance, vector behavior, and insecticide resistance sustain malaria transmission at international borders. These efforts allow us to comprehensively understand the ecology of border malaria transmission and develop population genomics tools to identify and track parasite introduction. In addition to employing in vivo, in vitro, and molecular approaches to monitor the emergence and spread of drug-resistant parasites, we also use genomic and genetic methods to reveal novel mechanisms of antimalarial drug resistance of parasites. We also use omics and population genetics approaches to study insecticide resistance in malaria vectors and identify changes in mosquito community structure, vectorial potential, and seasonal dynamics. Collectively, the scientific findings from the ICEMR research activities offer a systematic view of the factors sustaining residual malaria transmission and identify potential solutions to these problems to accelerate malaria elimination in the GMS.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Resistance/genetics , Humans , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Mosquito Vectors , Plasmodium falciparum/genetics
10.
Am J Trop Med Hyg ; 107(4_Suppl): 152-159, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36228914

ABSTRACT

The malaria landscape in the Greater Mekong Subregion has experienced drastic changes with the ramp-up of the control efforts, revealing formidable challenges that slowed down the progress toward malaria elimination. Problems such as border malaria and cross-border malaria introduction, multidrug resistance in Plasmodium falciparum, the persistence of Plasmodium vivax, the asymptomatic parasite reservoirs, and insecticide resistance in primary vectors require integrated strategies tailored for individual nations in the region. In recognition of these challenges and the need for research, the Southeast Asian International Center of Excellence for Malaria Research has established a network of researchers and stakeholders and conducted basic and translational research to identify existing and emerging problems and develop new countermeasures. The installation of a comprehensive disease and vector surveillance system at sentinel sites in border areas with the implementation of passive/active case detection and cross-sectional surveys allowed timely detection and management of malaria cases, provided updated knowledge for effective vector control measures, and facilitated the efficacy studies of antimalarials. Incorporating sensitive molecular diagnosis to expose the significance of asymptomatic parasite reservoirs for sustaining transmission helped establish the necessary evidence to guide targeted control to eliminate residual transmission. In addition, this program has developed point-of-care diagnostics to monitor the quality of artemisinin combination therapies, delivering the needed information to the drug regulatory authorities to take measures against falsified and substandard antimalarials. To accelerate malaria elimination, this program has actively engaged with stakeholders of all levels, fostered vertical and horizontal collaborations, and enabled the effective dissemination of research findings.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Cross-Sectional Studies , Humans , Malaria/diagnosis , Malaria/drug therapy , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Plasmodium falciparum
11.
Insects ; 13(7)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35886836

ABSTRACT

Mosquito repellents reduce human-vector contact of vector-borne diseases. We compared the repellent activity of 10 undiluted essential oils (anise, basil, bergamot, coriander, patchouli, peppermint, petitgrain, rosemary, sage and vetiver) against A. aegypti, A. dirus and C. quinquefasciatus using the arm-in-cage method. Petitgrain oil was the most effective against A. aegypti (270 min). Peppermint oil was the most effective against A. dirus (180 min). Interestingly, all single oils had attributes of repellency against C. quinquefasciatus (ranged, 120−360 min). Moreover, we integrated their binary combinations of highly effective essential oils against A. aegypti and A. dirus to potentially increase the protection time. A 1:1 combination of petitgrain/basil, petitgrain/coriander, basil/coriander and basil/sage reduced the median complete-protection time of 150 min for A. aegypti; a combination of sage and patchouli oils prolonged the median complete-protection time of 270 min for A. dirus. Combining essential oils effect protection time from these two mosquito species.

12.
Insects ; 13(3)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35323585

ABSTRACT

All members of the ant genus Odontomachus Latreille, 1804 are venomous ants. Four species in this genus have been identified from Thailand: Odontomachus latidens Mayr, 1867; O. monticola Emery, 1892; O. rixosus Smith, 1757; and O. simillimus Smith, 1758. The three latter species are available and have been used for an outline morphometric study. They display similar morphology, which makes their distinction very difficult except for highly qualified individuals. A total of 80 worker specimens were studied, exploring the contour shapes of their head and pronotum as possible taxonomic characters. The size of each body part was estimated determining the contour perimeter, the values for which were largely overlapping between O. rixosus and O. simillimus; most O. monticola specimens exhibited a significantly larger size. In contrast to the size, each contour shape of the head or pronotum established O. rixosus as the most distinct species. An exploratory data analysis disclosed the higher taxonomic signal of the head contour relative to the pronotum one. The scores obtained for validated reclassification were much better for the head (99%) than for the pronotum (82%). This study supports outline morphometrics of the head as a promising approach to contribute to the morphological identification of ant species, at least for monomorphic workers.

13.
Parasit Vectors ; 14(1): 496, 2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34565456

ABSTRACT

BACKGROUND: The malaria vector Anopheles minimus has been influenced by external stresses affecting the survival rate and vectorial capacity of the population. Since An. minimus habitats have continuously undergone ecological changes, this study aimed to determine the population genetic structure and the potential gene flow among the An. minimus populations in Thailand. METHODS: Anopheles minimus was collected from five malaria transmission areas in Thailand using Centers for Disease Control and Prevention (CDC) light traps. Seventy-nine females from those populations were used as representative samples. The partial mitochondrial cytochrome c oxidase subunit I (COI), cytochrome c oxidase subunit II (COII) and cytochrome b (Cytb) gene sequences were amplified and analyzed to identify species and determine the current population genetic structure. For the past population, we determined the population genetic structure from the 60 deposited COII sequences in GenBank of An. minimus collected from Thailand 20 years ago. RESULTS: The current populations of An. minimus were genetically divided into two lineages, A and B. Lineage A has high haplotype diversity under gene flow similar to the population in the past. Neutrality tests suggested population expansion of An. minimus, with the detection of abundant rare mutations in all populations, which tend to arise from negative selection. CONCLUSIONS: This study revealed that the population genetic structure of An. minimus lineage A was similar between the past and present populations, indicating high adaptability of the species. There was substantial gene flow between the eastern and western An. minimus populations without detection of significant gene flow barriers.


Subject(s)
Anopheles/genetics , Insect Proteins/genetics , Malaria/transmission , Mitochondria/genetics , Mosquito Vectors/genetics , Animals , Anopheles/classification , Anopheles/physiology , Cytochromes b/genetics , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Gene Flow , Genetic Markers , Mosquito Vectors/classification , Mosquito Vectors/physiology , Phylogeny , Thailand
14.
Sci Rep ; 11(1): 4838, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33649429

ABSTRACT

Microscopic observation of mosquito species, which is the basis of morphological identification, is a time-consuming and challenging process, particularly owing to the different skills and experience of public health personnel. We present deep learning models based on the well-known you-only-look-once (YOLO) algorithm. This model can be used to simultaneously classify and localize the images to identify the species of the gender of field-caught mosquitoes. The results indicated that the concatenated two YOLO v3 model exhibited the optimal performance in identifying the mosquitoes, as the mosquitoes were relatively small objects compared with the large proportional environment image. The robustness testing of the proposed model yielded a mean average precision and sensitivity of 99% and 92.4%, respectively. The model exhibited high performance in terms of the specificity and accuracy, with an extremely low rate of misclassification. The area under the receiver operating characteristic curve (AUC) was 0.958 ± 0.011, which further demonstrated the model accuracy. Thirteen classes were detected with an accuracy of 100% based on a confusion matrix. Nevertheless, the relatively low detection rates for the two species were likely a result of the limited number of wild-caught biological samples available. The proposed model can help establish the population densities of mosquito vectors in remote areas to predict disease outbreaks in advance.


Subject(s)
Culicidae/classification , Deep Learning , Mosquito Vectors/classification , Animals , Female , Male
15.
Zookeys ; 998: 1-182, 2020.
Article in English | MEDLINE | ID: mdl-33335444

ABSTRACT

Thailand has a great diversity of ant fauna as a zoogeographical crossroads and biodiversity hotspot. The last publication presenting a Thai ant checklist was published in 2005. In the present paper, based on an examination of museum specimens and published records, a comprehensive and critical species list of Thai ants is synthesized. Currently, 529 valid species and subspecies in 109 genera among ten subfamilies are known from Thailand with their diversity and distribution within 77 provinces presented and assigned to six geographical regions. Furthermore, Thailand is the type locality for 81 ant species. Forty-one species are here newly recorded for Thailand with photographs illustrating these species. The checklist provides information on distribution and a comprehensive bibliography. This study will also serve as a guide for the upper northeast and central Thailand, which are poorly sampled; a comprehensive reference list relating to endemic taxa and localities where conservation is an important priority, thus an essential resource for policy makers and conservation planners concerned with the management of insect diversity in Thailand; and a list of exotic ant species found in Thailand, which could possibly impact the ecological balance.

16.
Parasit Vectors ; 13(1): 574, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33176862

ABSTRACT

BACKGROUND: Anopheles sawadwongporni Rattanarithikul & Green, Anopheles maculatus Theobald and Anopheles pseudowillmori (Theobald) of the Anopheles maculatus group (Diptera: Culicidae) are recognized as potential malaria vectors in many countries from the Indian subcontinent through Southeast Asia to Taiwan. A number of malaria vectors in malaria hotspot areas along the Thai-Myanmar border belong to this complex. However, the species distribution and dynamic trends remain understudied in this malaria endemic region. METHODS: Mosquitoes of the Maculatus group were collected using CDC light traps every other week from four villages in Tha Song Yang District, Tak Province, Thailand from January to December 2015. Adult female mosquitoes were morphologically identified on site using taxonomic keys. Molecular species identification was performed by multiplex PCR based on the internal transcribed spacer 2 (ITS2) region of ribosomal DNA (rDNA) and sequencing of the cox1 gene at a DNA barcoding region in a subset of 29 specimens. RESULTS: A total of 1328 An. maculatus (sensu lato) female mosquitoes were captured with An. maculatus, An. sawadwongporni and An. pseudowilmori accounting for 75.2, 22.1 and 2.7% respectively. The field captured mosquitoes of the Maculatus group were most abundant in the wet season and had a preferred distribution in villages at higher elevations. The phylogenetic relationships of 29 cox1 sequences showed a clear-cut separation of the three member species of the Maculatus group, with the An. pseudowillmori cluster being separated from An. sawadwongporni and An. maculatus. CONCLUSIONS: This study provides updated information for the species composition, seasonal dynamics and microgeographical distribution of the Maculatus group in malaria-endemic areas of western Thailand. This information can be used to guide the planning and implementation of mosquito control measures in the pursuance of malaria transmission.


Subject(s)
Anopheles/classification , Malaria/transmission , Mosquito Vectors/classification , Seasons , Animals , Anopheles/physiology , DNA, Ribosomal Spacer/genetics , Feeding Behavior , Female , Humans , Malaria/epidemiology , Male , Phylogeny , Social Planning , Thailand/epidemiology
17.
Insects ; 11(4)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260093

ABSTRACT

Crude extracts and essential oils of A. conyzoides were tested with larva and adult stages of Ae. aegypti mosquitoes to determine their insecticidal properties. The crude extracts and essential oils came from three varieties of A. conyzoides (with white flowers, purple flowers, or white-purple flowers) and from two places on each plant (leaves and flowers), giving six types overall: leaf-white (LW); leaf-purple (LP); leaf white-purple (LW-P); flower-white (FW); flower-purple (FP); and flower white-purple (FW-P). Chemical constituents and components of the essential oils were identified using gas chromatography-mass spectrometry (GC-MS). Electron microscopic and histopathological studies were performed to determine the toxicological effects on mosquitoes in terms of morphological alterations. The six types of crude extracts exhibited no activity against individuals in the larval stages. However, six types of essential oils were effective against adult Ae. aegypti females. The mortality of adult Ae. aegypti females was higher from leaf extracts, particularly LP (median lethal dose, LD50 = 0.84%). The number of chemical constituents identified by GC-MS was high in flowers, especially W-P. Precocene I was the most abundant chemical component among the five types of essential oils, except in LP, in which precocene II was the most abundant. Histopathological alterations in adult Ae. aegypti females included compound eye degeneration, muscular damage with cellular infiltration, gut epithelial degeneration and necrosis, pyknotic nuclei in the malpighian epithelium and ovarian cell degeneration. FW and FP plant types exhibited the highest severity of histopathological alterations in mosquitoes compared with other plants, probably owing to the presence of monoterpene compounds in their tissues. The present study demonstrated LP plant extracts from A. conyzoides could be effective adulticides against adult Ae. aegypti. As natural products are biodegradable and exhibit low toxicity to mammalian and non-target organisms, they are suitable candidates for use in vector control programmes.

18.
BMC Complement Med Ther ; 20(1): 63, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32111225

ABSTRACT

BACKGROUND: Giardia duodenalis causes giardiasis in humans, particularly in developing countries. Despite the availability of treatments, resistance to some of the commercial anti-Giardia drugs has been reported in addition to their harmful side effects. Therefore, novel treatments for giardiasis are required. In this study, we aimed to assess the in vitro activity of crude extracts of Ageratum conyzoides against G. duodenalis trophozoites. METHODS: Plants were classified into three groups based on their flower colors: white (W), purple (P), and white-purple (W-P). Plants were separately cut into leaf (L) and flower (F) parts. Changes in internal organelle morphology of trophozoites following exposure to crude extracts were assessed using transmission electron microscopy (TEM). In subsequent experiments, efficacy of the most active essential oils from crude extracts [half maximal inhibitory concentrations (IC50) ≤ 100 µg/mL] against G. duodenalis trophozoites was tested. In vitro anti-Giardia assays using essential oils were performed in the same way as those performed using crude extracts. RESULTS: LW-P and FP extracts showed high activity (IC50 ≤ 100 µg/mL) against G. duodenalis trophozoites, with IC50 ± SD values of 45.67 ± 0.51 and 96.00 ± 0.46 µg/mL, respectively. In subsequent experiments, IC50 ± SD values of LW-P and FP essential oils were 35.00 ± 0.50 and 89.33 ± 0.41 µg/mL, respectively. TEM revealed the degeneration of flagella and ventral discs of G. duodenalis trophozoites following exposure to crude extracts. CONCLUSION: Crude LW-P and FP extracts of A. conyzoides showed the highest activity against G. duodenalis. Exposure to crude extract induced changes in the flagella and ventral discs of G. duodenalis trophozoites, which play important roles in attachment to the surface of mucosal cells. Our results suggest that the tested extracts warrant further research in terms of their efficacy and safety as giardiasis treatment.


Subject(s)
Ageratum/chemistry , Giardia lamblia/drug effects , Giardiasis/drug therapy , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Trophozoites/drug effects , Chromatography, Gas , Giardia lamblia/ultrastructure , Mass Spectrometry , Microscopy, Electron, Transmission , Thailand , Trophozoites/ultrastructure
19.
Malar J ; 18(1): 248, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31340814

ABSTRACT

Following publication of the original article [1], the authors advised of two errors present in the article: one concerning two author names and the other missing funding details.

20.
Malar J ; 18(1): 221, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31262309

ABSTRACT

BACKGROUND: A mixed methods study was conducted to look at the magnitude of residual malaria transmission (RMT) and factors contributing to low (< 1% prevalence), but sustained transmission in rural communities on the Thai-Myanmar border. METHODS: A cross-sectional behaviour and net survey, observational surveys and entomological collections in both villages and forested farm huts frequented by community members for subsistence farming practices were conducted. RESULTS: Community members frequently stayed overnight at subsistence farm huts or in the forest. Entomological collections showed higher biting rates of primary vectors in forested farm hut sites and in a more forested village setting compared to a village with clustered housing and better infrastructure. Despite high levels of outdoor biting, biting exposure occurred predominantly indoors, particularly for non-users of long-lasting insecticidal nets (LLINs). Risk of biting exposure was exacerbated by sub-optimal coverage of LLINs, particularly in subsistence farm huts and in the forest. Furthermore, early waking hours when people had left the safety of their nets coincided with peaks in biting in later morning hours. CONCLUSIONS: Entomological and epidemiological findings suggest drivers and modulators of sustained infection prevalence in the area to be: higher mosquito abundance in forested areas where LLINs were used less frequently or could not be used; late sleeping and waking times coinciding with peak biting hours; feeding preferences of Anopheles taking them away from contact with LLIN and indoor residual spraying (IRS), e.g. exophagy and zoophagy; non-use of LLIN and use of damaged/torn LLIN; high population movement across the border and into forested areas thereby increasing risk of exposure, decreasing use of protection and limiting access to healthcare; and, Plasmodium vivax predominance resulting in relapse(s) of previous infection. The findings highlight gaps in current intervention coverage beyond the village setting.


Subject(s)
Anopheles/physiology , Malaria, Vivax/transmission , Plasmodium vivax/physiology , Adult , Aged , Aged, 80 and over , Animals , Cross-Sectional Studies , Female , Humans , Incidence , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Male , Middle Aged , Myanmar/ethnology , Prevalence , Thailand/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...