Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.939
Filter
1.
Braz J Med Biol Res ; 57: e13257, 2024.
Article in English | MEDLINE | ID: mdl-38958362

ABSTRACT

Rivaroxaban is a direct factor Xa inhibitor. Its interindividual variability is large and may be connected to the occurrence of adverse drug reactions or drug inefficacy. Pharmacogenetics studies concentrating on the reasons underlying rivaroxaban's inadequate response could help explain the differences in treatment results and medication safety profiles. Against this background, this study evaluated whether polymorphisms in the gene encoding the ABCG2 transporter modify the pharmacokinetic characteristics of rivaroxaban. A total of 117 healthy volunteers participated in two bioequivalence experiments with a single oral dose of 20 mg rivaroxaban, with one group fasting and the other being fed. Ultra-high-performance liquid chromatography coupled with mass spectrometry was employed to determine the plasma concentrations of rivaroxaban, and the WinNonlin program was used to calculate the pharmacokinetics parameters. In the fasting group, the rivaroxaban pharmacokinetic parameters of Vd (508.27 vs 334.45 vs 275.59 L) and t1/2 (41.04 vs 16.43 vs 15.47 h) were significantly higher in ABCG2 421 A/A genotype carriers than in ABCG2 421 C/C and 421 C/A genotype carriers (P<0.05). The mean values of Cmax (145.81 vs 176.27 vs 190.19 ng/mL), AUC0-t (1193.81 vs 1374.69 vs 1570.77 ng/mL·h), and Cl (11.82 vs 14.50 vs 13.01 mL/h) for these groups were lower, but this difference was not statistically significant (P>0.05). These findings suggested that the ABCG2 421 A/A genotype may impact rivaroxaban parameters after a single dose in healthy subjects. This finding must be validated before it is applied in clinical practice.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Factor Xa Inhibitors , Genotype , Healthy Volunteers , Neoplasm Proteins , Rivaroxaban , Humans , Rivaroxaban/pharmacokinetics , Rivaroxaban/administration & dosage , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Male , Factor Xa Inhibitors/pharmacokinetics , Factor Xa Inhibitors/administration & dosage , Factor Xa Inhibitors/blood , Adult , Female , Young Adult , Neoplasm Proteins/genetics , Chromatography, High Pressure Liquid , Polymorphism, Genetic , Therapeutic Equivalency , Area Under Curve
2.
J Cancer Res Clin Oncol ; 150(6): 328, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914845

ABSTRACT

PURPOSE: The global increase in breast cancer cases necessitates ongoing exploration of advanced therapies. Taxol (Tx), an initial breast cancer treatment, induces mitotic arrest but faces limitations due to side effects and the development of resistance. Addressing Tx resistance involves understanding the complex molecular mechanisms, including alterations in tubulin dynamics, NF-κB signaling, and overexpression of ABC transporters (ABCB1 and ABCG2), leading to multidrug resistance (MDR). METHODS: Real-time PCR and ELISA kits were used to analyze ABCB1, ABCG2 and NF-κB gene and protein expression levels, respectively. An MDR test assessed the resistance cell phenotype. RESULTS: MCF-7/Tx cells exhibited a 24-fold higher resistance to Tx. Real-time PCR and ELISA analysis revealed the upregulation of ABCB1, ABCG2, and NF-κB. U-359 significantly downregulated both ABCB1 and ABCG2 gene and protein levels. Co-incubation with Tx and U-359 further decreased the mRNA and protein expression of these transporters. The MDR test indicated that U-359 increased MDR dye retention, suggesting its potential as an MDR inhibitor. U-359 and Tx, either individually or combined, modulated NF-κBp65 protein levels. CONCLUSION: The development of a Taxol-resistant MCF-7 cell line provided valuable insights. U-359 demonstrated effectiveness in reducing the expression of ABC transporters and NF-κB, suggesting a potential solution for overcoming multidrug resistance in breast cancer cells. The study recommends a strategy to enhance the sensitivity of cancer cells to chemotherapy by integrating U-359 with traditional drugs.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Breast Neoplasms , Drug Resistance, Neoplasm , NF-kappa B , Paclitaxel , Humans , Paclitaxel/pharmacology , Drug Resistance, Neoplasm/drug effects , NF-kappa B/metabolism , MCF-7 Cells , Female , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Drug Resistance, Multiple/drug effects , Gene Expression Regulation, Neoplastic/drug effects
3.
Biomed Pharmacother ; 176: 116861, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850649

ABSTRACT

Mitoxantrone resistant variant of SW620 line was developed, characterized and subsequently used as a model system to determine oncostatin M ability to modulate MDR phenomenon. The selection regimen allowed for overexpression of ABCG2 and ABCB1 both at the RNA and protein level, which was further confirmed by functional assays. Oncostatin M supplementation resulted in partial reversal of MDR phenotype by decreasing overexpression of ABCG2 demonstrating for the first time the ability of this cytokine for selective down-regulation of one of MDR proteins.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Drug Resistance, Neoplasm , Mitoxantrone , Neoplasm Proteins , Oncostatin M , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Mitoxantrone/pharmacology , Drug Resistance, Neoplasm/drug effects , Humans , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Oncostatin M/metabolism , Cell Line, Tumor , Drug Resistance, Multiple/drug effects , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics
4.
Chem Biol Interact ; 398: 111117, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38906501

ABSTRACT

Breast cancer resistance protein/ATP-binding cassette subfamily G2 (BCRP/ABCG2) is an ATP-binding cassette efflux (ABC) transporter expressed in the apical membrane of cells in tissues, such as the liver, intestine, kidney, testis, brain, and mammary gland. It is involved in xenobiotic pharmacokinetics, potentially affecting the efficacy and toxicity of many drugs. In this study, the role of ABCG2 in parasiticide monepantel (MNP) and its primary metabolite, monepantel sulfone (MNPSO2)'s systemic distribution and excretion in milk, was tested using female and male wild-type and Abcg2-/- mice. Liquid chromatography coupled with a tandem mass spectrometer (LC-MS/MS) was used for the analysis in a 10-min run time using positive-mode atmospheric pressure electrospray ionization (ESI+) and multiple reaction monitoring (MRM) scanning. For the primary metabolite tested, milk concentrations were 1.8-fold higher in wild-type mice than Abcg2-/- female lactating mice (P = 0.042) after intravenous administration of MNP. Finally, despite the lack of a difference between groups, we investigated potential differences in MNP and MNPSO2's plasma and tissue accumulation levels between wild-type and Abcg2-/- male mice. In this study, we demonstrated that MNPSO2 milk levels were affected by Abcg2, with potential pharmacological and toxicological consequences, contributing to the undesirable xenobiotic residues in milk.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Anthelmintics , Milk , Animals , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Female , Mice , Male , Milk/chemistry , Milk/metabolism , Anthelmintics/pharmacokinetics , Anthelmintics/metabolism , Anthelmintics/blood , Mice, Knockout , Tissue Distribution , Tandem Mass Spectrometry
5.
Cell Death Dis ; 15(6): 417, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879509

ABSTRACT

Chemotherapy is a crucial treatment for colorectal tumors. However, its efficacy is restricted by chemoresistance. Recently, Golgi dispersal has been suggested to be a potential response to chemotherapy, particularly to drugs that induce DNA damage. However, the underlying mechanisms by which Golgi dispersal enhances the capacity to resist DNA-damaging agents remain unclear. Here, we demonstrated that DNA-damaging agents triggered Golgi dispersal in colorectal cancer (CRC), and cancer stem cells (CSCs) possessed a greater degree of Golgi dispersal compared with differentiated cancer cells (non-CSCs). We further revealed that Golgi dispersal conferred resistance against the lethal effects of DNA-damaging agents. Momentously, Golgi dispersal activated the Golgi stress response via the PKCα/GSK3α/TFE3 axis, resulting in enhanced protein and vesicle trafficking, which facilitated drug efflux through ABCG2. Identification of Golgi dispersal indicated an unexpected pathway regulating chemoresistance in CRC.


Subject(s)
Colorectal Neoplasms , Drug Resistance, Neoplasm , Golgi Apparatus , Neoplastic Stem Cells , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Humans , Golgi Apparatus/metabolism , Golgi Apparatus/drug effects , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Drug Resistance, Neoplasm/drug effects , Animals , Cell Line, Tumor , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , DNA Damage , Mice , Mice, Nude , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
6.
Yakugaku Zasshi ; 144(6): 659-674, 2024.
Article in Japanese | MEDLINE | ID: mdl-38825475

ABSTRACT

Serum urate levels are determined by the balance between uric acid production and uric acid excretion capacity from the kidneys and intestinal tract. Dysuricemia, including hyperuricemia and hypouricemia, develops when the balance shifts towards an increase or a decrease in the uric acid pool. Hyperuricemia is mostly a multifactorial genetic disorder involving several disease susceptibility genes and environmental factors. Hypouricemia, on the other hand, is caused by genetic abnormalities. The main genes involved in dysuricemia are xanthine oxidoreductase, an enzyme that produces uric acid, and the urate transporters urate transporter 1/solute carrier family 22 member 12 (URAT1/SLC22A12), glucose transporter 9/solute carrier family 2 member 9 (GLUT9/SLC2A9) and ATP binding cassette subfamily G member 2 (ABCG2). Deficiency of xanthine oxidoreductase results in xanthinuria, a rare disease with marked hypouricemia. Xanthinuria can be due to a single deficiency of xanthine oxidoreductase or in combination with aldehyde oxidase deficiency as well. The latter is caused by a deficiency in molybdenum cofactor sulfurase, which is responsible for adding sulphur atoms to the molybdenum cofactor required for xanthine oxidoreductase and aldehyde oxidase to exert their action. URAT1/SLC22A12 and GLUT9/SLC2A9 are involved in urate reabsorption and their deficiency leads to renal hypouricemia, a condition that is common in Japanese due to URAT1/SLC22A12 deficiency. On the other hand, ABCG2 is involved in the secretion of urate, and many Japanese have single nucleotide polymorphisms that result in its reduced function, leading to hyperuricemia. In particular, severe dysfunction of ABCG2 leads to hyperuricemia with reduced extrarenal excretion.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Glucose Transport Proteins, Facilitative , Hyperuricemia , Neoplasm Proteins , Organic Anion Transporters , Uric Acid , Xanthine Dehydrogenase , Humans , Hyperuricemia/etiology , Hyperuricemia/metabolism , Hyperuricemia/genetics , Uric Acid/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transport Proteins, Facilitative/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Xanthine Dehydrogenase/metabolism , Xanthine Dehydrogenase/genetics , Xanthine Dehydrogenase/deficiency , Animals , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Renal Tubular Transport, Inborn Errors/genetics , Renal Tubular Transport, Inborn Errors/etiology , Renal Tubular Transport, Inborn Errors/metabolism , Urinary Calculi/etiology , Urinary Calculi/metabolism , Urinary Calculi/genetics , Metabolism, Inborn Errors
7.
J Pharm Biomed Anal ; 247: 116268, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823222

ABSTRACT

Methotrexate (MTX) is commonly prescribed as the initial treatment for gestational trophoblastic neoplasia (GTN), but MTX monotherapy may not be effective for high-risk GTN and choriocarcinoma. The cellular uptake of MTX is essential for its pharmacological activity. Thus, our study aimed to investigate the cellular pharmacokinetics and transport mechanisms of MTX in choriocarcinoma cells. For the quantification of MTX concentrations in cellular matrix, a liquid chromatography-tandem mass spectrometry method was created and confirmed initially. MTX accumulation in BeWo, JEG-3, and JAR cells was minimal. Additionally, the mRNA levels of folate receptor α (FRα) and breast cancer resistance protein (BCRP) were relatively high in the three choriocarcinoma cell lines, whereas proton-coupled folate transporter (PCFT), reduced folate carrier (RFC), and organic anion transporter (OAT) 4 were low. Furthermore, the expression of other transporters was either very low or undetectable. Notably, the application of inhibitors and small interfering RNAs (siRNAs) targeting FRα, RFC, and PCFT led to a notable decrease in the accumulation of MTX in BeWo cells. Conversely, the co-administration of multidrug resistance protein 1 (MDR1) and BCRP inhibitors increased MTX accumulation. In addition, inhibitors of OATs and organic-anion transporting polypeptides (OATPs) reduced MTX accumulation, while peptide transporter inhibitors had no effect. Results from siRNA knockdown experiments and transporter overexpression cell models indicated that MTX was not a substrate of nucleoside transporters. In conclusion, the results indicate that FRα and multiple transporters such as PCFT, RFC, OAT4, and OATPs are likely involved in the uptake of MTX, whereas MDR1 and BCRP are implicated in the efflux of MTX from choriocarcinoma cells. These results have implications for predicting transporter-mediated drug interactions and offer potential directions for further research on enhancing MTX sensitivity.


Subject(s)
Choriocarcinoma , Methotrexate , Tandem Mass Spectrometry , Methotrexate/pharmacology , Humans , Choriocarcinoma/metabolism , Choriocarcinoma/drug therapy , Tandem Mass Spectrometry/methods , Cell Line, Tumor , Biological Transport , Chromatography, Liquid/methods , Female , Neoplasm Proteins/metabolism , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Uterine Neoplasms/drug therapy , Uterine Neoplasms/metabolism , Pregnancy , Folate Receptor 1/metabolism , Folate Receptor 1/genetics , RNA, Small Interfering , Reduced Folate Carrier Protein/metabolism , Reduced Folate Carrier Protein/genetics , Liquid Chromatography-Mass Spectrometry
8.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893358

ABSTRACT

Pseudoginsenoside DQ (PDQ), an ocotillol-type ginsenoside, is synthesized with protopanaxadiol through oxidative cyclization. PDQ exhibits good anti-arrhythmia activity. However, the inhibitory effect of PDQ on the cytochrome 450 (CYP450) enzymes and major drug transporters is still unclear. Inhibition of CYP450 and drug transporters may affect the efficacy of the drugs being used together with PDQ. These potential drug-drug interactions (DDIs) are essential for the clinical usage of drugs. In this study, we investigated the inhibitory effect of PDQ on seven CYP450 enzymes and seven drug transporters with in vitro models. PDQ has a significant inhibitory effect on CYP2C19 and P-glycoprotein (P-gp) with a half-inhibitory concentration (IC50) of 0.698 and 0.41 µM, respectively. The inhibition of CYP3A4 and breast cancer-resistant protein (BCRP) is less potent, with IC50 equal to 2.02-6.79 and 1.08 µM, respectively.


Subject(s)
Cytochrome P-450 Enzyme System , Drug Interactions , Ginsenosides , Humans , Ginsenosides/pharmacology , Ginsenosides/chemistry , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme Inhibitors/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP2C19/metabolism , Neoplasm Proteins/metabolism , Neoplasm Proteins/antagonists & inhibitors
9.
Clin Pharmacol Drug Dev ; 13(7): 755-769, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38752475

ABSTRACT

Pritelivir is a novel viral helicase-primase inhibitor active against herpes simplex virus. In vitro drug-drug interaction studies indicated that pritelivir has the potential for clinically relevant interactions on the cytochrome P450 (CYP) enzymes 2C8, 2C9, 3A4, and 2B6, and intestinal uptake transporter organic anion transporting polypeptide (OATP) 2B1 and efflux transporter breast cancer resistance protein (BCRP). This was evaluated in 2 clinical trials. In 1 trial the substrates flurbiprofen (CYP2C9), bupropion (CYP2B6), and midazolam (CYP3A4) were administered simultaneously as part of the Geneva cocktail, while the substrate celiprolol (OAPT2B1) was administered separately. In another trial, the substrates repaglinide (CYP2C8) and rosuvastatin (BCRP) were administered separately. Exposure parameters of the substrates and their metabolites (flurbiprofen and bupropion only) were compared after administration with or without pritelivir under therapeutic concentrations. The results of these trials indicated that pritelivir has no clinically relevant effect on the exposure of substrates for the intestinal uptake transporter OATP2B1 and the CYP enzymes 3A4, 2B6, 2C9, and 2C8, and has a weak inhibitory effect on the intestinal efflux transporter BCRP. In summary, the results suggest that pritelivir has a low drug-drug interaction potential.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Cytochrome P-450 Enzyme System , Drug Interactions , Humans , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/drug effects , Female , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Male , Adult , Bupropion/pharmacology , Bupropion/pharmacokinetics , Sulfonamides/pharmacology , Middle Aged , Rosuvastatin Calcium/pharmacology , Rosuvastatin Calcium/pharmacokinetics , Flurbiprofen/pharmacology , Flurbiprofen/pharmacokinetics , Neoplasm Proteins/metabolism , Neoplasm Proteins/antagonists & inhibitors , Organic Anion Transporters/metabolism , Organic Anion Transporters/antagonists & inhibitors , Carbamates/pharmacology , Midazolam/pharmacokinetics , Midazolam/pharmacology , Young Adult , Piperidines/pharmacology , Piperidines/pharmacokinetics
10.
Biomed Pharmacother ; 175: 116644, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692057

ABSTRACT

Transmembrane drug transporters can be important determinants of the pharmacokinetics, efficacy, and safety profiles of drugs. To investigate the potential cooperative and/or counteracting interplay of OATP1A/1B/2B1 uptake transporters and ABCB1 and ABCG2 efflux transporters in physiology and pharmacology, we generated a new mouse model (Bab12), deficient for Slco1a/1b, Slco2b1, Abcb1a/1b and Abcg2. Bab12 mice were viable and fertile. We compared wild-type, Slco1a/1b/2b1-/-, Abcb1a/1b;Abcg2-/- and Bab12 strains. Endogenous plasma conjugated bilirubin levels ranked as follows: wild-type = Abcb1a/1b;Abcg2-/- << Slco1a/1b/2b1-/- < Bab12 mice. Plasma levels of rosuvastatin and fexofenadine were elevated in Slco1a/1b/2b1-/- and Abcb1a/1b;Abcg2-/- mice compared to wild-type, and dramatically increased in Bab12 mice. Although systemic exposure of larotrectinib and repotrectinib was substantially increased in the separate multidrug transporter knockout strains, no additive effects were observed in the combination Bab12 mice. Significantly higher plasma exposure of fluvastatin and pravastatin was only found in Slco1a/1b/2b1-deficient mice. However, noticeable transport by Slco1a/1b/2b1 and Abcb1a/1b and Abcg2 across the BBB was observed for fluvastatin and pravastatin, respectively, by comparing Bab12 mice with Abcb1a/1b;Abcg2-/- or Slco1a/1b/2b1-/- mice. Quite varying behavior in plasma exposure of erlotinib and its metabolites was observed among these strains. Bab12 mice revealed that Abcb1a/1b and/or Abcg2 can contribute to conjugated bilirubin elimination when Slco1a/1b/2b1 are absent. Our results suggest that the interplay of Slco1a/1b/2b1, Abcb1a/1b, and Abcg2 could markedly affect the pharmacokinetics of some, but not all drugs and metabolites. The Bab12 mouse model will represent a useful tool for optimizing drug development and clinical application, including efficacy and safety.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Bilirubin , Mice, Knockout , Organic Anion Transporters , Animals , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Bilirubin/blood , Bilirubin/metabolism , Mice , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Liver-Specific Organic Anion Transporter 1/metabolism , Liver-Specific Organic Anion Transporter 1/genetics , Terfenadine/pharmacokinetics , Terfenadine/analogs & derivatives , Male , Biological Transport , Rosuvastatin Calcium/pharmacokinetics , Rosuvastatin Calcium/pharmacology , Mice, Inbred C57BL
11.
Genes (Basel) ; 15(5)2024 05 07.
Article in English | MEDLINE | ID: mdl-38790220

ABSTRACT

This systematic review and meta-analysis aimed to verify the association between the genetic variants of adenosine triphosphate (ATP)-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily G member 2 (ABCG2) genes and the presence and severity of gefitinib-associated adverse reactions. We systematically searched PubMed, Virtual Health Library/Bireme, Scopus, Embase, and Web of Science databases for relevant studies published up to February 2024. In total, five studies were included in the review. Additionally, eight genetic variants related to ABCB1 (rs1045642, rs1128503, rs2032582, and rs1025836) and ABCG2 (rs2231142, rs2231137, rs2622604, and 15622C>T) genes were analyzed. Meta-analysis showed a significant association between the ABCB1 gene rs1045642 TT genotype and presence of diarrhea (OR = 5.41, 95% CI: 1.38-21.14, I2 = 0%), the ABCB1 gene rs1128503 TT genotype and CT + TT group and the presence of skin rash (OR = 4.37, 95% CI: 1.51-12.61, I2 = 0% and OR = 6.99, 95%CI: 1.61-30.30, I2= 0%, respectively), and the ABCG2 gene rs2231142 CC genotype and presence of diarrhea (OR = 3.87, 95% CI: 1.53-9.84, I2 = 39%). No ABCB1 or ABCG2 genes were positively associated with the severity of adverse reactions associated with gefitinib. In conclusion, this study showed that ABCB1 and ABCG2 variants are likely to exhibit clinical implications in predicting the presence of adverse reactions to gefitinib.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Gefitinib , Neoplasm Proteins , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Humans , ATP Binding Cassette Transporter, Subfamily B/genetics , Gefitinib/adverse effects , Neoplasm Proteins/genetics , Polymorphism, Single Nucleotide , Antineoplastic Agents/adverse effects , Drug-Related Side Effects and Adverse Reactions/genetics , Genotype
12.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732233

ABSTRACT

Donepezil (DNPZ) is a cholinesterase inhibitor used for the management of Alzheimer's disease (AD) and is dependent on membrane transporters such as ABCG2 to actively cross brain barriers and reach its target site of action in the brain. Located in the brain ventricles, the choroid plexus (CP) forms an interface between the cerebrospinal fluid (CSF) and the bloodstream, known as the blood-CSF barrier (BCSFB). Historically, the BCSFB has received little attention as a potential pathway for drug delivery to the central nervous system (CNS). Nonetheless, this barrier is presently viewed as a dynamic transport interface that limits the traffic of molecules into and out of the CNS through the presence of membrane transporters, with parallel activity with the BBB. The localization and expression of drug transporters in brain barriers represent a huge obstacle for drug delivery to the brain and a major challenge for the development of therapeutic approaches to CNS disorders. The widespread interest in understanding how circadian clocks modulate many processes that define drug delivery in order to predict the variability in drug safety and efficacy is the next bridge to improve effective treatment. In this context, this study aims at characterizing the circadian expression of ABCG2 and DNPZ circadian transport profile using an in vitro model of the BCSFB. We found that ABCG2 displays a circadian pattern and DNPZ is transported in a circadian way across this barrier. This study will strongly impact on the capacity to modulate the BCSFB in order to control the penetration of DNPZ into the brain and improve therapeutic strategies for the treatment of AD according to the time of the day.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Blood-Brain Barrier , Donepezil , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Blood-Brain Barrier/metabolism , Animals , Humans , Brain/metabolism , Cholinesterase Inhibitors/pharmacokinetics , Cholinesterase Inhibitors/pharmacology , Biological Transport , Choroid Plexus/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Mice , Circadian Rhythm , Neoplasm Proteins
13.
Biomed Pharmacother ; 175: 116720, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733773

ABSTRACT

Opnurasib (JDQ443) is a newly developed oral KRASG12C inhibitor, with a binding mechanism distinct from the registered KRASG12C inhibitors sotorasib and adagrasib. Phase I and II clinical trials for opnurasib in NSCLC are ongoing. We evaluated the pharmacokinetic roles of the ABCB1 (P-gp/MDR1) and ABCG2 (BCRP) efflux and OATP1 influx transporters, and of the metabolizing enzymes CYP3A and CES1 in plasma and tissue disposition of oral opnurasib, using genetically modified cell lines and mouse models. In vitro, opnurasib was potently transported by human (h)ABCB1 and slightly by mouse (m)Abcg2. In Abcb1a/b- and Abcb1a/b;Abcg2-deficient mice, a significant ∼100-fold increase in brain-to-plasma ratios was observed. Brain penetration was unchanged in Abcg2-/- mice. ABCB1 activity in the blood-brain barrier may therefore potentially limit the efficacy of opnurasib against brain metastases. The Abcb1a/b transporter activity could be almost completely reversed by co-administration of elacridar, a dual ABCB1/ABCG2 inhibitor, increasing the brain penetration without any behavioral or postural signs of acute CNS-related toxicity. No significant pharmacokinetic roles of the OATP1 transporters were observed. Transgenic human CYP3A4 did not substantially affect the plasma exposure of opnurasib, indicating that opnurasib is likely not a sensitive CYP3A4 substrate. Interestingly, Ces1-/- mice showed a 4-fold lower opnurasib plasma exposure compared to wild-type mice, whereas no strong effect was seen on the tissue distribution. Plasma Ces1c therefore likely binds opnurasib, increasing its retention in plasma. The obtained pharmacokinetic insights may be useful for further optimization of the clinical efficacy and safety of opnurasib, and might reveal potential drug-drug interaction risks.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Brain , Animals , Humans , Mice , Brain/metabolism , Brain/drug effects , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Mice, Knockout , Carboxylesterase/metabolism , Carboxylesterase/genetics , Madin Darby Canine Kidney Cells , HEK293 Cells , Protein Binding , Male , Mice, Inbred C57BL , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics
14.
Eur J Drug Metab Pharmacokinet ; 49(4): 437-447, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38709450

ABSTRACT

BACKGROUND AND OBJECTIVES: A substantial inter-individual variability has been observed in the pharmacokinetics of lamotrigine. The aim of the study was to investigate the impact of genetic polymorphism of the metabolizing enzymes (UGT2B7, UGT1A4) and transporter (ABCG2) on the pharmacokinetics and therapeutic efficacy of lamotrigine in patients with epilepsy. METHODS: The genetic analysis of single-nucleotide polymorphisms was conducted using polymerase chain reaction sequence. High-performance liquid chromatography/tandem mass spectrometry was employed to measure the plasma concentrations of lamotrigine. The efficacy of lamotrigine was assessed by evaluating the reduction rate of epileptic seizure frequency. RESULTS: This study included a cohort of 331 patients who were treated with lamotrigine as monotherapy. A linear correlation was observed between the lamotrigine concentration and daily dose taken (r = 0.58, p < 2.2e-16). Statistically significant differences were found in both the median plasma concentration and dose-adjusted concentration (C/D ratio) when comparing the ineffective to the effective group (p < 0.05). Multivariate analysis showed that UGT1A4 rs2011425, ABCG2 rs2231142 polymorphisms and age had a significant relationship with the lamotrigine concentrations (p < 0.05). Age was a predictive factor for C/D ratio (p < 0.001). Lamotrigine concentration and weight were good predictive factors for effective seizure outcomes (odds ratio [OR] = 0.715, 95% CI 0.658-0.776, p < 0.001; OR = 0.926, 95% CI 0.901-0.951, p < 0.001, respectively). The cut-off values of lamotrigine trough concentrations for clinical outcomes in the age-related groups were determined as 2.49 µg/ml (area under the receiver-operating characteristic curve [AUC]: 0.828, 95% CI 0.690-0.966), 2.70 µg/ml (AUC: 0.805, 95% CI 0.745-0.866) and 3.25 µg/ml (AUC: 0.807, 95% CI 0.686-0.928) for the adult group, adolescent group, and toddler and school-age group, respectively. CONCLUSIONS: UGT1A4 rs2011425 and ABCG2 rs2231142 were correlated with lamotrigine concentrations. Lower lamotrigine trough concentration was found in the ineffective group and the troughs were associated with seizure outcomes.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Anticonvulsants , Epilepsy , Glucuronosyltransferase , Lamotrigine , Neoplasm Proteins , Polymorphism, Single Nucleotide , Humans , Lamotrigine/pharmacokinetics , Lamotrigine/therapeutic use , Lamotrigine/administration & dosage , Glucuronosyltransferase/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Epilepsy/drug therapy , Epilepsy/genetics , Male , Female , Anticonvulsants/pharmacokinetics , Anticonvulsants/administration & dosage , Anticonvulsants/therapeutic use , Adult , Middle Aged , Young Adult , Neoplasm Proteins/genetics , Adolescent , Aged , Child , Treatment Outcome , Cohort Studies
15.
Cell Death Dis ; 15(5): 306, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693105

ABSTRACT

Colorectal cancers (CRCs) are highly heterogeneous and show a hierarchical organization, with cancer stem cells (CSCs) responsible for tumor development, maintenance, and drug resistance. Our previous studies showed the importance of thyroid hormone-dependent signaling on intestinal tumor development and progression through action on stem cells. These results have a translational value, given that the thyroid hormone nuclear receptor TRα1 is upregulated in human CRCs, including in the molecular subtypes associated with CSC features. We used an established spheroid model generated from the human colon adenocarcinoma cell line Caco2 to study the effects of T3 and TRα1 on spheroid formation, growth, and response to conventional chemotherapies. Our results show that T3 treatment and/or increased TRα1 expression in spheroids impaired the response to FOLFIRI and conferred a survival advantage. This was achieved by stimulating drug detoxification pathways and increasing ALDH1A1-expressing cells, including CSCs, within spheroids. These results suggest that clinical evaluation of the thyroid axis and assessing TRα1 levels in CRCs could help to select optimal therapeutic regimens for patients with CRC. Proposed mechanism of action of T3/TRα1 in colon cancer spheroids. In the control condition, TRα1 participates in maintaining homeostatic cell conditions. The presence of T3 in the culture medium activates TRα1 action on target genes, including the drug efflux pumps ABCG2 and ABCB1. In the case of chemotherapy FOLFIRI, the increased expression of ABC transcripts and proteins induced by T3 treatment is responsible for the augmented efflux of 5-FU and Irinotecan from the cancer cells. Taken together, these mechanisms contribute to the decreased efficacy of the chemotherapy and allow cells to escape the treatment. Created with BioRender.com .


Subject(s)
Camptothecin/analogs & derivatives , Colonic Neoplasms , Fluorouracil , Neoplastic Stem Cells , Spheroids, Cellular , Thyroid Hormone Receptors alpha , Triiodothyronine , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormone Receptors alpha/genetics , Caco-2 Cells , Colonic Neoplasms/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Triiodothyronine/pharmacology , Leucovorin/pharmacology , Leucovorin/therapeutic use , Camptothecin/pharmacology , Camptothecin/therapeutic use , Phenotype , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Retinal Dehydrogenase/metabolism , Retinal Dehydrogenase/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics
16.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791198

ABSTRACT

MTX-211 is a first-in-class dual inhibitor of epidermal growth factor receptor (EGFR) and phosphoinositide-3 kinase (PI3K) signaling pathways with a compelling pharmaceutical profile and could enhance the effectiveness of mitogen-activated protein kinase kinase (MEK) inhibitor therapy in colorectal tumors with KRAS mutations. However, the specific mechanisms contributing to the acquired resistance to MTX-211 in human cancers remain elusive. Here, we discovered that the overexpression of the ATP-binding cassette (ABC) drug transporter ABCG2, a prevalent mechanism associated with multidrug resistance (MDR), could diminish the effectiveness of MTX-211 in human cancer cells. We showed that the drug efflux activity of ABCG2 substantially decreased the intracellular accumulation of MTX-211 in cancer cells. As a result, the cytotoxicity and effectiveness of MTX-211 in suppressing the activation of the EGFR and PI3K pathways were significantly attenuated in cancer cells overexpressing ABCG2. Moreover, the enhancement of the MTX-211-stimulated ATPase activity of ABCG2 and the computational molecular docking analysis illustrating the binding of MTX-211 to the substrate-binding sites of ABCG2 offered a further indication for the interaction between MTX-211 and ABCG2. In summary, our findings indicate that MTX-211 acts as a substrate for ABCG2, underscoring the involvement of ABCG2 in the emergence of resistance to MTX-211. This finding carries clinical implications and merits further exploration.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Drug Resistance, Neoplasm , ErbB Receptors , Neoplasm Proteins , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/antagonists & inhibitors , Cell Line, Tumor , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Signal Transduction/drug effects , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology
17.
Curr Radiopharm ; 17(1): 55-67, 2024.
Article in English | MEDLINE | ID: mdl-38817005

ABSTRACT

BACKGROUND: Exposure to physical contamination during chemotherapy, including non-ionizing electromagnetic fields, raises concerns about the widespread sources of exposure to this type of radiation. Glioblastoma multiforme (GBM) is an aggressive central nervous system tumor that is hard to treat due to resistance to drugs such as temozolomide (TMZ). OBJECTIVE: Electromagnetic fields (EMF) and haloperidol (HLP) may have anticancer effects. In this study, we investigated the effects of TMZ, HLP, and EMF on GBM cell lines and analyzed the association between non-ionizing radiation and the risk of change in drug performance. METHODS: Cell viability and reactive oxygen species (ROS) generation were measured by MTT and NBT assay, respectively. Then, the expression levels of breast cancer-resistant protein (BCRP), Bax, Bcl2, Nestin, vascular endothelial growth factor (VEGF) genes, and P53, Bax, and Bcl2 Proteins were evaluated by real-time PCR and western blot. RESULTS: Co-treatment of GBM cells by HLP and TMZ enhanced apoptosis in T-98G and A172 cells by increasing the expression of P53 and Bax and decreasing Bcl-2. Interestingly, exposure of GBM cells to EMF decreased apoptosis in the TMZ+HLP group. CONCLUSION: In conclusion, EMF reduced the synergistic effect of TMZ and HLP. This hypothesis that patients who are treated for brain tumors and suffer from depression should not be exposed to EMF is proposed in the present study. There appears to be an urgent need to reconsider exposure limits for low-frequency magnetic fields, based on experimental and epidemiological research, the relationship between exposure to non-ionizing radiation and adverse human health effects.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Apoptosis , Cell Survival , Electromagnetic Fields , Haloperidol , Neoplasm Proteins , Nestin , Temozolomide , Vascular Endothelial Growth Factor A , Humans , Apoptosis/drug effects , Apoptosis/radiation effects , Nestin/metabolism , Temozolomide/pharmacology , Haloperidol/pharmacology , Vascular Endothelial Growth Factor A/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Neoplasm Proteins/metabolism , Neoplasm Proteins/biosynthesis , Glioblastoma/radiotherapy , Glioblastoma/metabolism , Reactive Oxygen Species/metabolism , Brain Neoplasms/radiotherapy , Brain Neoplasms/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Glioma/radiotherapy , Glioma/metabolism , Glioma/pathology
18.
Stem Cell Res ; 77: 103434, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703667

ABSTRACT

The Jra antigen, the only antigen within the JR blood group system, is a high-prevalence red blood cell (RBC) antigen found in over 99 % of the global population. An induced pluripotent stem cell line (YUCMi020-A) was generated from peripheral blood drawn from a Jr(a-) phenotype individual, who was homozygous for a null mutation of ABCG2*01N.01 (rs72552713, c.376C>T; p.Gln126*). The generated line exhibited pluripotent characteristics and no chromosomal aberrations. This cell line will serve as a cell source, enabling us to produce RBCs with the Jr(a-) phenotype in vitro, which can be used for transfusing individuals with anti-Jra antibodies.


Subject(s)
Induced Pluripotent Stem Cells , Leukocytes, Mononuclear , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Female , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Blood Group Antigens/metabolism , Cell Line , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Cell Differentiation
19.
Expert Opin Drug Metab Toxicol ; 20(6): 519-528, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38809523

ABSTRACT

INTRODUCTION: In addition to the well-established understanding of the pharmacogenetics of drug-metabolizing enzymes, there is growing data on the effects of genetic variation in drug transporters, particularly ATP-binding cassette (ABC) transporters. However, the evidence that these genetic variants can be used to predict drug effects and to adjust individual dosing to avoid adverse events is still limited. AREAS COVERED: This review presents a summary of the current literature from the PubMed database as of February 2024 regarding the impact of genetic variants on ABCG2 function and their relevance to the clinical use of the HMG-CoA reductase inhibitor rosuvastatin and the xanthine oxidase inhibitor allopurinol. EXPERT OPINION: Although there are pharmacogenetic guidelines for the ABCG2 missense variant Q141K, there is still some conflicting data regarding the clinical benefits of these recommendations. Some caution appears to be warranted in homozygous ABCG2 Q141K carriers when rosuvastatin is administered at higher doses and such information is already included in the drug label. The benefit of dose adaption to lower possible side effects needs to be evaluated in prospective clinical studies.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Allopurinol , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Neoplasm Proteins , Pharmacogenetics , Rosuvastatin Calcium , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Rosuvastatin Calcium/pharmacokinetics , Rosuvastatin Calcium/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Allopurinol/pharmacokinetics , Allopurinol/administration & dosage , Allopurinol/pharmacology , Polymorphism, Genetic , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/adverse effects , Animals , Mutation, Missense
20.
BMC Cardiovasc Disord ; 24(1): 202, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589776

ABSTRACT

BACKGROUND: The latest evidence indicates that ATP-binding cassette superfamily G member 2 (ABCG2) is critical in regulating lipid metabolism and mediating statin or cholesterol efflux. This study investigates whether the function variant loss within ABCG2 (rs2231142) impacts lipid levels and statin efficiency. METHODS: PubMed, Cochrane Library, Central, CINAHL, and ClinicalTrials.gov were searched until November 18, 2023. RESULTS: Fifteen studies (34,150 individuals) were included in the analysis. The A allele [Glu141Lys amino acid substitution was formed by a transversion from cytosine (C) to adenine (A)] of rs2231142 was linked to lower levels of high-density lipoprotein cholesterol (HDL-C), and higher levels of low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC). In addition, the A allele of rs2231142 substantially increased the lipid-lowering efficiency of rosuvastatin in Asian individuals with dyslipidemia. Subgroup analysis indicated that the impacts of rs2231142 on lipid levels and statin response were primarily in Asian individuals. CONCLUSIONS: The ABCG2 rs2231142 loss of function variant significantly impacts lipid levels and statin efficiency. Preventive use of rosuvastatin may prevent the onset of coronary artery disease (CAD) in Asian individuals with dyslipidemia.


Subject(s)
Dyslipidemias , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Rosuvastatin Calcium , Genetic Predisposition to Disease , Cholesterol, LDL/metabolism , Dyslipidemias/diagnosis , Dyslipidemias/drug therapy , Dyslipidemias/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...