Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.776
Filter
1.
J Drugs Dermatol ; 23(7): 551-556, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954627

ABSTRACT

BACKGROUND: Calcium hydroxylapatite (CaHA) dermal filler is used for a variety of aesthetic treatments; however, the safety and effectiveness of diluted CaHA for the treatment of décolleté wrinkles have not been established. OBJECTIVE: To demonstrate the effectiveness and safety of diluted CaHA (Radiesse; 1:2 CaHA:saline) injection for the improvement of décolleté wrinkles in females. METHODS: Eligible females with moderate or severe ratings on the Merz Aesthetic Scale (MAS) Decollete Wrinkles - At Rest received up to 3 injection cycles of diluted CaHA either 8 weeks apart (3 injection cycles) or 16 weeks apart (2 injection cycles). Effectiveness was evaluated by improvement on the MAS. Adverse events were recorded over a 52 week period. RESULTS: Sixteen weeks after the last treatment, the response rate (1-point improvement or greater) on the MAS Decollete Wrinkles - At Rest was 73.5% (P<0.0001; pooled sample) for all patients. The use of diluted CaHA in the decollete also demonstrated a favorable safety profile. CONCLUSIONS: Diluted CaHA is a safe and effective treatment for the improvement of decollete wrinkles in females.J Drugs Dermatol. 2024;23(7):551-556.  doi:10.36849/JDD.8261.


Subject(s)
Dermal Fillers , Durapatite , Skin Aging , Humans , Female , Skin Aging/drug effects , Durapatite/administration & dosage , Durapatite/adverse effects , Prospective Studies , Middle Aged , Dermal Fillers/administration & dosage , Dermal Fillers/adverse effects , Treatment Outcome , Cosmetic Techniques , Adult , Single-Blind Method , Aged
2.
J Gene Med ; 26(7): e3716, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961849

ABSTRACT

BACKGROUND: Differentiation of pluripotent stem cells into desired lineages is the key aspect of regenerative medicine and cell-based therapy. Although RNA interference (RNAi) technology is exploited extensively for this, methods for long term silencing of the target genes leading to differentiation remain a challenge. Sustained knockdown of the target gene by RNAi is often inefficient as a result of low delivery efficiencies, protocol induced toxicity and safety concerns related to viral vectors. Earlier, we established octa-arginine functionalized hydroxyapatite nano vehicles (R8HNPs) for delivery of small interfering RNA (siRNA) against a pluripotency marker gene in mouse embryonic stem cells. Although we demonstrated excellent knockdown efficiency of the target gene, sustained gene silencing leading to differentiation was yet to be achieved. METHODS: To establish a sustained non-viral gene silencing protocol using R8HNP, we investigated various methods of siRNA delivery: double delivery of adherent cells (Adh-D), suspension delivery followed by adherent delivery (Susp + Adh), single delivery in suspension (Susp-S) and multiple deliveries in suspension (Susp-R). Sustained knockdown of a pluripotent marker gene followed by differentiation was analysed by reverse transcriptase-PCR, fluoresence-activated cell sorting and immunofluorescence techniques. Impact on cell viability as a result of repeated exposure of the R8HNP was also tested. RESULTS: Amongst the protocols tested, the most efficient knockdown of the target gene for a prolonged period of time was obtained by repeated suspension delivery of the R8HNP-siRNA conjugate. The long-term silencing of a pluripotency marker gene resulted in differentiation of R1 ESCs predominantly towards the extra embryonic and ectodermal lineages. Cells displayed excellent tolerance to repeated exposures of R8HNPs. CONCLUSIONS: The results demonstrate that R8HNPs are promising, biocompatible, non-viral alternatives for prolonged gene silencing and obtaining differentiated cells for therapeutics.


Subject(s)
Cell Differentiation , Durapatite , Mouse Embryonic Stem Cells , RNA, Small Interfering , Animals , Mice , Durapatite/chemistry , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/drug effects , RNA, Small Interfering/genetics , Gene Silencing , Biocompatible Materials/chemistry , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Nanoparticles/chemistry , Transduction, Genetic , RNA Interference , Gene Knockdown Techniques
4.
Int J Nanomedicine ; 19: 6359-6376, 2024.
Article in English | MEDLINE | ID: mdl-38946885

ABSTRACT

Background: Bone tissue engineering (BTE) is a promising alternative to autologous bone grafting for the clinical treatment of bone defects, and inorganic/organic composite hydrogels as BTE scaffolds are a hot spot in current research. The construction of nano-hydroxyapatite/gelatin methacrylate/oxidized sodium alginate (nHAP/GelMA/OSA), abbreviated as HGO, composite hydrogels loaded with bone morphogenetic protein 7 (BMP7) will provide a suitable 3D microenvironment to promote cell aggregation, proliferation, and differentiation, thus facilitating bone repair and regeneration. Methods: Dually-crosslinked hydrogels were fabricated by combining GelMA and OSA, while HGO hydrogels were formulated by incorporating varying amounts of nHAP. The hydrogels were physically and chemically characterized followed by the assessment of their biocompatibility. BMP7-HGO (BHGO) hydrogels were fabricated by incorporating suitable concentrations of BMP7 into HGO hydrogels. The osteogenic potential of BHGO hydrogels was then validated through in vitro experiments and using rat femoral defect models. Results: The addition of nHAP significantly improved the physical properties of the hydrogel, and the composite hydrogel with 10% nHAP demonstrated the best overall performance among all groups. The selected concentration of HGO hydrogel served as a carrier for BMP7 loading and was evaluated for its osteogenic potential both in vivo and in vitro. The BHGO hydrogel demonstrated superior in vitro osteogenic induction and in vivo potential for repairing bone tissue compared to the outcomes observed in the blank control, BMP7, and HGO groups. Conclusion: Using hydrogel containing 10% HGO appears promising for bone tissue engineering scaffolds, especially when loaded with BMP7 to boost its osteogenic potential. However, further investigation is needed to optimize the GelMA, OSA, and nHAP ratios, along with the BMP7 concentration, to maximize the osteogenic potential.


Subject(s)
Alginates , Bone Morphogenetic Protein 7 , Bone Regeneration , Durapatite , Gelatin , Hydrogels , Osteogenesis , Tissue Engineering , Tissue Scaffolds , Alginates/chemistry , Alginates/pharmacology , Animals , Bone Morphogenetic Protein 7/chemistry , Bone Morphogenetic Protein 7/pharmacology , Gelatin/chemistry , Tissue Engineering/methods , Hydrogels/chemistry , Hydrogels/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Osteogenesis/drug effects , Rats , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Rats, Sprague-Dawley , Methacrylates/chemistry , Male , Humans , Bone and Bones/drug effects
5.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928145

ABSTRACT

Polyurethane (PU) is a promising material for addressing challenges in bone grafting. This study was designed to enhance the bone grafting capabilities of PU by integrating hydroxyapatite (HAp), which is known for its osteoconductive and osteoinductive potential. Moreover, a uniform distribution of HAp in the porous structure of PU increased the effectiveness of bone grafts. PEG/APTES-modified scaffolds were prepared through self-foaming reactions. A uniform pore structure was generated during the spontaneous foaming reaction, and HAp was uniformly distributed in the PU structure (PU15HAp and PU30HAp) during foaming. Compared with the PU scaffolds, the HAp-modified PU scaffolds exhibited significantly greater protein absorption. Importantly, the effect of the HAp-modified PU scaffold on bone repair was tested in a rat calvarial defect model. The microstructure of the newly formed bone was analyzed with microcomputed tomography (µ-CT). Bone regeneration at the defect site was significantly greater in the HAp-modified PU scaffold group than in the PU group. This innovative HAp-modified PU scaffold improves current bone graft materials, providing a promising avenue for improved bone regeneration.


Subject(s)
Bone Regeneration , Durapatite , Polyurethanes , Skull , Tissue Scaffolds , Polyurethanes/chemistry , Animals , Durapatite/chemistry , Tissue Scaffolds/chemistry , Rats , Bone Regeneration/drug effects , Skull/drug effects , Skull/injuries , Skull/pathology , Skull/metabolism , Rats, Sprague-Dawley , X-Ray Microtomography , Male , Porosity , Bone Transplantation/methods
6.
J Mater Sci Mater Med ; 35(1): 37, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916635

ABSTRACT

The current clinical application of glaucoma drainage devices is made of non-degradable materials. These non-degradable drainage devices often trigger inflammatory responses and scar proliferation, possibly leading to surgical failure. We developed a biodegradable material hydroxyapatite-coated magnesium (HA-Mg) as a glaucoma drainage device. Twelve New Zealand white rabbits were randomly assigned to three groups: HA-Mg drainage plate group (6 right eyes), trabeculectomy group (6 right eyes), and control group (12 left eyes). Results showed that all HA-Mg drainage plates were completely degraded ~4 months postoperatively. At the 5th month postoperatively, there was no statistical difference in the corneal endothelium density between the HA-Mg drainage plate group and the control group (p = 0.857). The intraocular pressure (IOP) level in the HA-Mg drainage plate implantation group was lower than in the other two groups. The trypan blue dye still drained from the anterior chamber to the subconjunctiva 5 months after HA-Mg drainage plate implantation. HE staining revealed the scleral linear aqueous humor drainage channel and anterior synechia were observed after drainage plate completely degraded, with no obvious infiltration with the inflammatory cells. This study showed the safety and efficacy of HA-Mg glaucoma drainage plate in controlling IOP after implantation into the anterior chamber of rabbit eyes.


Subject(s)
Anterior Chamber , Glaucoma Drainage Implants , Glaucoma , Intraocular Pressure , Magnesium , Animals , Rabbits , Anterior Chamber/surgery , Glaucoma/surgery , Magnesium/chemistry , Durapatite/chemistry , Trabeculectomy/methods
7.
J Mater Chem B ; 12(25): 6117-6127, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38841904

ABSTRACT

Typically occurring after trauma or neurosurgery treatments, dura mater defect and the ensuing cerebrospinal fluid (CSF) leakage could lead to a number of serious complications and even patient's death. Although numerous natural and synthetic dura mater substitutes have been reported, none of them have been able to fulfill the essential properties, such as anti-adhesion, leakage blockage, and pro-dura rebuilding. In this study, we devised and prepared a series of robust and biodegradable hydroxyapatite/poly(lactide-co-ε-caprolactone) (nHA/PLCL) membranes for dura repair via an electrospinning technique. In particular, PLLA/PCL (80/20) was selected for electrospinning due to its mechanical properties that most closely resembled natural dural tissue. Studies by SEM, XRD, water contact angle and in vitro degradation showed that the introduction of nHA would destroy PLCL's crystalline structure, which would further affect the mechanical properties of the nHA/PLCL membranes. When the amount of nHA added increased, so did the wettability and in vitro degradation rate, which accelerated the release of nHA. In addition, the high biocompatibility of nHA/PLCL membranes was demonstrated by in vitro cytotoxicity data. The in vivo rabbit dura repair model results showed that nHA/PLCL membranes provided a strong physical barrier to stop tissue adhesion at dura defects. Meanwhile, the nHA/PLCL and commercial group's CSF had a significantly lower number of inflammatory cells than the control groups, validating the nHA/PLCL's ability to effectively lower the risk of intracranial infection. Findings from H&E and Masson-trichrome staining verified that the nHA/PLCL electrospun membrane was more favorable for fostering dural defect repair and skull regeneration. Moreover, the relative molecular weight of PLCL declined dramatically after 3 months of implantation, according to the results of the in vivo degradation test, but it retained the fiber network structure and promoted tissue growth, demonstrating the good stability of the nHA/PLCL membranes. Collectively, the nHA/PLCL electrospun membrane presents itself as a viable option for dura repair.


Subject(s)
Biocompatible Materials , Dura Mater , Durapatite , Polyesters , Dura Mater/surgery , Dura Mater/drug effects , Polyesters/chemistry , Polyesters/pharmacology , Animals , Durapatite/chemistry , Durapatite/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Rabbits , Membranes, Artificial , Materials Testing
8.
ACS Appl Mater Interfaces ; 16(25): 32566-32577, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38867413

ABSTRACT

In this work, the hydroxyapatite (HA) microspheres are utilized as carriers for 8-hydroxyquinoline (8-HQ) inhibitors with a sodium alginate-silver nitrate layer (Ag-SA) added to confer chloride-responsive properties. These 8-HQ@Ag-SA-HA microspheres are subsequently integrated into poly(lactic acid) (PLA) coatings to produce biocompatible coatings. The resulting 8-HQ@Ag-SA-HA microsphere exhibits a spherical structure with a diameter of 3.16 µm. Thermogravimetric analysis indicates that the encapsulated 8-HQ inhibitors are approximately 11.83 wt %. Furthermore, the incorporation of these microspheres fills the micropores within the PLA coating, leading to a denser coating surface, enhanced wettability (contact angle value = 88°), and improved adhesion strength, thereby reinforcing the physical barrier effect. Corrosion tests reveal that the coatings exhibit increased resistance to corrosion in simulated body fluid (SBF) solutions. The released 8-HQ inhibitors in response to chloride ions form a protective layer of Mg(HQ)2, providing the coatings with self-healing properties and ensuring their durability in the SBF environment. Additionally, the cell test demonstrates a significant presence of MG-63 cells, accompanied by a low hemolysis rate of 3.81%, confirming the exceptional biocompatibility of the coatings. These findings offer valuable insights into the development of stimuli-responsive biocompatible coatings for effectively protecting Mg alloys.


Subject(s)
Alloys , Chlorides , Coated Materials, Biocompatible , Magnesium , Alloys/chemistry , Alloys/pharmacology , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Magnesium/chemistry , Magnesium/pharmacology , Chlorides/chemistry , Durapatite/chemistry , Durapatite/pharmacology , Corrosion , Microspheres , Alginates/chemistry , Polyesters/chemistry
9.
Environ Sci Pollut Res Int ; 31(29): 41990-42011, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38858286

ABSTRACT

Hydroxyapatite (HAp) stands as an inorganic compound, recognized as a non-toxic, bioactive ceramic, and its composition closely resembles that of bone material. In this study, nHAp was prepared from waste oyster shells, which are biowaste rich in calcium carbonate. nHAp with its unique catalytic property can be used as an adsorbent in various fields, including wastewater treatment. nHAp with an exceptional surface adsorbent with excellent chemical stability, enabling its catalytic function. Nano hydroxyapatite doped with Zinc oxide (ZnO) by wet chemical precipitation and made into a composite with Graphene oxide (GO) by modified hummers method followed by grinding, which was taken as 9:1 ratio (nHAp/ZnO and GO) of weight, enhances its tensile and mechanical strength. The energy band gap of nHAp photocatalyst was evaluated as 3.39 eV and that of the in nHAp/ZnO/GO photocatalyst was narrowed to 1.77 eV. The ternary nanocomposites are very efficient in generating the photogenerated electrons and holes, thereby improving the degradation potential of dye effluents to by-products such as CO2 and H2O. The nanocomposites photocatalyst were characterized by FTIR, XRD, SEM, TEM, EDS, XPS, DRS, and BET techniques. The UV-visible study shows the complete dye degradation efficiency of the prepared nanocomposites photocatalyst. In this study, the prepared nanocomposites nHAp/ZnO/GO have studied their efficiency for the removal of MB dye in a batch process by varying the dosage from 0.1 to 0.5 g, and the effects of dosage variations, pH, kinetic, scavenger study were evaluated at a time interval of 30 min. The removal of dye was found to be 99% at 150 min of 0.3 g dosage and pH = 12 is most favorable as it reached the same percentage at 90 min. The as-prepared nanocomposite nHAp/ZnO/GO fits the kinetic rate constant equation and shows a pseudo-first-order reaction model. This study indicates the suitability for dye removal due to the synergistic effect and electrostatic interaction of the synthesized ternary nanocomposite, which shows the potential, socially active, low-cost-effective, eco-friendly, and safe for photocatalytic degradation of MB from wastewater.


Subject(s)
Durapatite , Graphite , Methylene Blue , Ostreidae , Zinc Oxide , Zinc Oxide/chemistry , Animals , Durapatite/chemistry , Methylene Blue/chemistry , Catalysis , Graphite/chemistry , Water Pollutants, Chemical/chemistry , Nanocomposites/chemistry , Adsorption , Animal Shells/chemistry
10.
Environ Sci Pollut Res Int ; 31(30): 43262-43280, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38902440

ABSTRACT

This study investigated the elaboration of novel porous absorbent granules by mixing powdered hydroxyapatite, metakaolin, sodium metasilicate, polyethylene glycol, and sodium dodecyl sulfate (SDS), an anionic surfactant. The effect of sodium dodecyl sulfate (SDS) was then studied by introducing it as a powder to the powdered mixture or dissolved into the granulation fluid. Characterization of the granules indicated that the incorporation of SDS dissolved in the granulation fluid into the G-PEG granules improved their specific surface area (97.9 m2/g) and porosity, resulting in a synergistic increase in the adsorption of crystal violet and methylene blue dyes compared to G-PEG granules and hydroxyapatite or metakaolin geopolymer alone. Moreover, the granules exhibited satisfactory compressive strength of 0.81 MPa, making them suitable for large-scale adsorption columns. Finally, the regeneratiοn prοcess οf the granules was modeled and optimized by using surface response methodology based on Box-Behnken design. The granules cοuld be regenerated fοr eight cycles under οptimum cοnditiοns οf acetic acid cοncentratiοn οf 0.72 mοl/L, a temperature οf 323 K, and a cοntact time οf 173.22 min, withοut a significant lοss in the adsοrptiοn capacity οr degradatiοn οf the granules. These results suggest that the pοrοus granules prepared in this study have pοtential tο be used in industrial wastewater treatment.


Subject(s)
Sodium Dodecyl Sulfate , Surface-Active Agents , Surface-Active Agents/chemistry , Sodium Dodecyl Sulfate/chemistry , Adsorption , Durapatite/chemistry
11.
ACS Biomater Sci Eng ; 10(7): 4463-4479, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38848471

ABSTRACT

Scaffold-free bone microtissues differentiated from mesenchymal stem cell (MSC) spheroids offer great potential for bottom-up bone tissue engineering as a direct supply of cells and osteogenic signals. Many biomaterials or biomolecules have been incorporated into bone microtissues to enhance their osteogenic abilities, but these materials are far from clinical approval. Here, we aimed to incorporate hydroxyapatite (HAP) nanoparticles, an essential component of bone matrix, into MSC spheroids to instruct their osteogenic differentiation into bone microtissues and further self-organization into bone organoids with a trabecular structure. Furthermore, the biological interaction between HAP nanoparticles and MSCs and the potential molecular mechanisms in the bone development of MSC spheroids were investigated by both in vitro and in vivo studies. As a result, improved cell viability and osteogenic abilities were observed for the MSC spheroids incorporated with HAP nanoparticles at a concentration of 30 µg/mL. HAP nanoparticles could promote the sequential expression of osteogenic markers (Runx2, Osterix, Sclerostin), promote the expression of bone matrix proteins (OPN, OCN, and Collagen I), promote the mineralization of the bone matrix, and thus promote the bone development of MSC spheroids. The differentiated bone microtissues could further self-organize into linear, lamellar, and spatial bone organoids with trabecular structures. More importantly, adding FAK or Akt inhibitors could decrease the level of HAP-induced osteogenic differentiation of bone microtissues. Finally, excellent new bone regeneration was achieved after injecting bone microtissues into cranial bone defect models, which could also be eliminated by the Akt inhibitor. In conclusion, HAP nanoparticles could promote the development of bone microtissues by promoting the osteogenic differentiation of MSCs and the formation and mineralization of the bone matrix via the FAK/Akt pathway. The bone microtissues could act as individual ossification centers and self-organize into macroscale bone organoids, and in this meaning, the bone microtissues could be called microscale bone organoids. Furthermore, the bone microtissues revealed excellent clinical perspectives for injectable cellular therapies for bone defects.


Subject(s)
Bone Regeneration , Cell Differentiation , Durapatite , Mesenchymal Stem Cells , Nanoparticles , Osteogenesis , Proto-Oncogene Proteins c-akt , Durapatite/chemistry , Durapatite/pharmacology , Bone Regeneration/drug effects , Nanoparticles/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Animals , Osteogenesis/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Cell Differentiation/drug effects , Humans , Signal Transduction/drug effects , Tissue Engineering/methods , Focal Adhesion Kinase 1/metabolism , Bone and Bones/drug effects , Mice , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism
12.
Int J Biol Macromol ; 273(Pt 1): 133064, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866288

ABSTRACT

Bone tissue regeneration strategies have incorporated the use of natural polymers, such as hydroxyapatite (nHA), chitosan (CH), gelatin (GEL), or alginate (ALG). Additionally, platelet concentrates, such as platelet-rich fibrin (PRF) have been suggested to improve scaffold biocompatibility. This study aimed to develop scaffolds composed of nHA, GEL, and CH, with or without ALG and lyophilized PRF, to evaluate the scaffold's properties, growth factor release, and dental pulp stem cells (DPSC), and osteoblast (OB) derived from DPSC viability. Four scaffold variations were synthesized and lyophilized. Then, degradation, swelling profiles, and morphological analysis were performed. Furthermore, PDGF-BB and FGF-B growth factors release were quantified by ELISA, and cytotoxicity and cell viability were evaluated. The swelling and degradation profiles were similar in all scaffolds, with pore sizes ranging between 100 and 250 µm. FGF-B and PDGF-BB release was evidenced after 24 h of scaffold immersion in cell culture medium. DPSC and OB-DPSC viability was notably increased in PRF-supplemented scaffolds. The nHA-CH-GEL-PRF scaffold demonstrated optimal physical-biological characteristics for stimulating DPSC and OB-DPSC cell viability. These results suggest lyophilized PRF improves scaffold biocompatibility for bone tissue regeneration purposes.


Subject(s)
Alginates , Cell Survival , Chitosan , Dental Pulp , Durapatite , Gelatin , Osteoblasts , Platelet-Rich Fibrin , Stem Cells , Tissue Scaffolds , Humans , Dental Pulp/cytology , Chitosan/chemistry , Chitosan/pharmacology , Gelatin/chemistry , Platelet-Rich Fibrin/chemistry , Platelet-Rich Fibrin/metabolism , Tissue Scaffolds/chemistry , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Cell Survival/drug effects , Durapatite/chemistry , Durapatite/pharmacology , Alginates/chemistry , Alginates/pharmacology , Osteoblasts/drug effects , Osteoblasts/cytology , Cell Adhesion/drug effects , Tissue Engineering/methods , Cells, Cultured
13.
Curr Protoc ; 4(6): e1068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837274

ABSTRACT

Adeno-associated virus (AAV) vectors can efficiently transduce exogenous genes into various tissues in vivo. Owing to their convenience, high efficiency, long-term stable gene expression, and minimal side effects, AAV vectors have become one of the gold standards for investigating gene functions in vivo, especially in non-clinical studies. However, challenges persist in efficiently preparing a substantial quantity of high-quality AAV vectors. Commercial AAV vectors are typically associated with high costs. Further, in-laboratory production is hindered by the lack of specific laboratory equipment, such as ultracentrifuges. Therefore, a simple, quick, and scalable preparation method for AAV vectors is needed for proof-of-concept experiments. Herein, we present an optimized method for producing and purifying high-quality AAV serotype 9 (AAV9) vectors using standard laboratory equipment and chromatography. Using ceramic hydroxyapatite as a mixed-mode chromatography medium can markedly increase the quality of purified AAV vectors. Basic Protocols and optional methods for evaluating purified AAV vectors are also described. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of AAV9 vectors in 293EB cells Basic Protocol 2: Concentration and buffer exchange of AAV9 vectors from 293EB cell culture supernatants using tangential flow filtration Basic Protocol 3: Purification of AAV9 vectors from TFF samples using ceramic hydroxyapatite chromatography Basic Protocol 4: Analysis of the purified AAV9 vectors.


Subject(s)
Ceramics , Dependovirus , Durapatite , Genetic Vectors , Serogroup , Dependovirus/genetics , Dependovirus/isolation & purification , Genetic Vectors/isolation & purification , Genetic Vectors/genetics , Humans , Ceramics/chemistry , Durapatite/chemistry , Chromatography/methods , HEK293 Cells
14.
BMC Oral Health ; 24(1): 691, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877464

ABSTRACT

BACKGROUND: This study evaluated the clinical benefits of adding NanoBone® with split-crest technique and simultaneous implant placement covered with platelet-rich fibrin membrane in horizontally deficient maxillary ridges in terms of crestal and horizontal bone changes and patient morbidity. METHODS: Forty patients indicated for maxillary ridge splitting and simultaneous implant placement were assigned randomly to the study groups: control group (Platelet Rich Fibrin membrane) and test group (Platelet Rich Fibrin membrane + Nanobone®). The Cone Beam Computed Tomography Fusion technique was utilized to assess crestal and horizontal bone changes after five months of the surgical procedure. Patient morbidity was recorded for one week post-surgical. RESULTS: Five months post-surgical, buccal crestal bone resorption was 1.26 ± 0.58 mm for the control group and 1.14 ± 0.63 mm for the test group. Lingual crestal bone resorption was 1.40 ± 0.66 mm for the control group and 1.47 ± 0.68 mm for the test group. Horizontal bone width gain was 1.46 ± 0.44 mm for the control group and 1.29 ± 0.73 mm for the test group. There was no significant statistical difference between study groups regarding crestal and horizontal bone changes and patient morbidity. CONCLUSIONS: The tomographic assessment of NanoBone® addition in this study resulted in no statistically significant difference between study groups regarding crestal and horizontal bone changes and patient morbidity. More randomized controlled clinical trials on gap fill comparing different bone grafting materials versus no grafting should be conducted. GOV REGISTRATION NUMBER: NCT02836678, 13th January 2017.


Subject(s)
Alveolar Bone Loss , Cone-Beam Computed Tomography , Maxilla , Platelet-Rich Fibrin , Humans , Male , Female , Maxilla/diagnostic imaging , Maxilla/surgery , Middle Aged , Alveolar Bone Loss/diagnostic imaging , Dental Implants , Adult , Alveolar Ridge Augmentation/methods , Dental Implantation, Endosseous/methods , Aged , Minerals/therapeutic use , Follow-Up Studies , Drug Combinations , Silicon Dioxide , Durapatite
15.
Molecules ; 29(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38893374

ABSTRACT

Bone tissue engineering (BTE) is the most promising strategy to repair bones injuries and defects. It relies on the utilization of a temporary support to host the cells and promote nutrient exchange (i.e., the scaffold). Supercritical CO2 assisted drying can preserve scaffold nanostructure, crucial for cell attachment and proliferation. In this work, agarose aerogels, loaded with hydroxyapatite were produced in view of BTE applications. Different combinations of agarose concentration and hydroxyapatite loadings were tested. FESEM and EDX analyses showed that scaffold structure suffered from partial closure when increasing filler concentration; hydroxyapatite distribution was homogenous, and Young's modulus improved. Looking at BTE applications, the optimal combination of agarose and hydroxyapatite resulted to be 1% w/w and 10% w/v, respectively. Mechanical properties showed that the produced composites could be eligible as starting scaffold for BTE, with a Young's Modulus larger than 100 kPa for every blend.


Subject(s)
Bone and Bones , Durapatite , Elastic Modulus , Sepharose , Tissue Engineering , Tissue Scaffolds , Sepharose/chemistry , Tissue Engineering/methods , Durapatite/chemistry , Tissue Scaffolds/chemistry , Gels/chemistry , Humans , Materials Testing , Biocompatible Materials/chemistry
16.
Nanoscale ; 16(24): 11762-11773, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38869001

ABSTRACT

Nanohydroxyapatite (nHAp) has attracted significant attention for its tumor suppression and tumor microenvironment modulation capabilities. However, a strong tendency to aggregate greatly affects its anti-tumor efficiency. To address this issue, a hydrogel platform consisting of thiolated hyaluronic acid (HA-SH) modified nanohydroxyapatite (nHAp-HA) and HA-SH was developed for sustained delivery of nHAp for melanoma therapy. The hydrophilic and negatively charged HA-SH significantly improved the size dispersion and stability of nHAp in aqueous media while conferring nHAp targeting effects. Covalent sulfhydryl self-cross-linking between HA-SH and nHAp-HA groups ensured homogeneous dispersion of nHAp in the matrix material. Meanwhile, the modification of HA-SH conferred the targeting properties of nHAp and enhanced cellular uptake through the HA/CD44 receptor. The hydrogel platform could effectively reduce the aggregation of nHAp and release nHAp in a sustained and orderly manner. Antitumor experiments showed that the modified nHAp-HA retained the tumor cytotoxicity of nHAp in vitro and inhibited the growth of highly malignant melanomas up to 78.6% while being able to induce the differentiation of macrophages to the M1 pro-inflammatory and antitumor phenotype. This study will broaden the application of nanohydroxyapatite in tumor therapy.


Subject(s)
Durapatite , Hyaluronic Acid , Hydrogels , Melanoma , Durapatite/chemistry , Durapatite/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Mice , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Cell Line, Tumor , Humans , Hyaluronan Receptors/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Nanoparticles/chemistry , RAW 264.7 Cells
17.
BMC Musculoskelet Disord ; 25(1): 455, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851675

ABSTRACT

BACKGROUND: Masquelet membrane induction technology is one of the treatment strategies for large bone defect (LBD). However, the angiogenesis ability of induced membrane decreases with time and autologous bone grafting is associated with donor site morbidity. This study investigates if the PRP-FG-nHA/PA66 scaffold can be used as a spacer instead of PMMA to improve the angiogenesis ability of induced membrane and reduce the amount of autologous bone graft. METHODS: Platelet rich plasma (PRP) was prepared and PRP-FG-nHA/PA66 scaffold was synthesized and observed. The sustained release of VEGFA and porosity of the scaffold were analyzed. We established a femur LBD model in male SD rats. 55 rats were randomly divided into four groups depending on the spacer filled in the defect area. "Defect only" group (n = 10), "PMMA" group (n = 15), "PRP-nHA/PA66" group (n = 15) and "PRP-FG-nHA/PA66" group (n = 15 ). At 6 weeks, the spacers were removed and the defects were grafted. The induced membrane and bone were collected and stained. The bone formation was detected by micro-CT and the callus union was scored on a three point system. RESULTS: The PRP-FG-nHA/PA66 scaffold was porosity and could maintain a high concentration of VEGFA after 30 days of preparation. The induced membrane in PRP-FG-nHA/PA66 group was thinner than PMMA, but the vessel density was higher.The weight of autogenous bone grafted in PRP-FG-nHA/PA66 group was significantly smaller than that of PMMA group. In PRP-FG-nHA/PA66 group, the bone defect was morphologically repaired. CONCLUSION: The study showed that PRP-FG-nHA/PA66 scaffold can significantly reduce the amount of autologous bone graft, and can achieve similar bone defect repair effect as PMMA. Our findings provide some reference and theoretical support for the treatment of large segmental bone defects in humans.


Subject(s)
Femur , Platelet-Rich Plasma , Rats, Sprague-Dawley , Tissue Scaffolds , Animals , Male , Rats , Femur/surgery , Femur/pathology , Vascular Endothelial Growth Factor A , Bone Regeneration/physiology , Neovascularization, Physiologic , Bone Transplantation/methods , Durapatite/chemistry , Disease Models, Animal , Osteogenesis/physiology
18.
Skin Res Technol ; 30(6): e13764, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38853456

ABSTRACT

Injectable fillers, pivotal in aesthetic medicine, have evolved significantly with recent trends favoring biostimulators like calcium hydroxylapatite (CaHA-CMC; Radiesse, Merz Aesthetics, Raleigh, NC) and poly-l-lactic acid (PLLA; Sculptra Aesthetics, Galderma, Dallas, TX). This study aims to compare the particle morphology of these two injectables and examine its potential clinical implications. Utilizing advanced light and scanning electron microscopy techniques, the physical characteristics of CaHA-CMC and PLLA particles were analyzed, including shape, size, circularity, roundness, aspect ratio, and quantity of phagocytosable particles. The findings reveal several morphological contrasts: CaHA-CMC particles exhibited a smooth, homogenous, spherical morphology with diameters predominantly ranging between 20 and 45 µm, while PLLA particles varied considerably in shape and size, appearing as micro flakes ranging from 2 to 150 µm in major axis length. The circularity and roundness of CaHA-CMC particles were significantly higher compared to PLLA, indicating a more uniform shape. Aspect ratio analysis further underscored these differences, with CaHA-CMC particles showing a closer resemblance to circles, unlike the more oblong PLLA particles. Quantification of the phagocytosable content of both injectables revealed a higher percentage of phagocytosable particles in PLLA. These morphological distinctions may influence the tissue response to each treatment. CaHA-CMC's uniform, spherical particles may result in reduced inflammatory cell recruitment, whereas PLLA's heterogeneous particle morphology may evoke a more pronounced inflammatory response.


Subject(s)
Dermal Fillers , Durapatite , Polyesters , Durapatite/chemistry , Polyesters/chemistry , Dermal Fillers/chemistry , Dermal Fillers/administration & dosage , Humans , Cosmetic Techniques , Particle Size , Biocompatible Materials/chemistry , Microscopy, Electron, Scanning
19.
Int J Implant Dent ; 10(1): 29, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839621

ABSTRACT

PURPOSE: This study evaluated the implant stability, volumetric changes, and patient-reported outcome measures (PROMs) of hydroxyapatite (HA) nano-coated sandblasted/acid-etched (SLA) implants compared to uncoated SLA implants. METHODS: Forty patients were recruited and randomly allocated to HA nano-coated SLA group (test, n = 20) and uncoated SLA group (control, n = 20) using single-blinded/block randomization. Implants were immediately placed in maxillary posterior region using a digital surgical guide. Insertion torque and implant stability quotient (ISQ) were measured at implant surgery and 1, 2, 3, and 4 months postoperatively. Intraoral scans, PROMs and soft tissue inflammation data were collected, and multivariable linear regression analysis of ISQ was performed. RESULTS: In total, 48 implants (test; n = 24, control; n = 24) in 37 patients (test; n = 19, control; n = 18) were analyzed. Despite no significant between-group difference at surgery, the test group showed higher ISQ values than the control group at 2 (76.53 ± 4.17 vs. 71.32 ± 4.79, p < 0.01), 3 (77.45 ± 4.41 vs. 73.85 ± 4.69, p < 0.05), and 4 months (79.08 ± 2.96 vs. 73.43 ± 3.52, p < 0.0001) postoperatively. There were no significant differences in linear and volumetric changes, PROMs, and soft tissue inflammation analysis between two groups. The ISQ at implant surgery was influenced by age and diabetes mellitus (DM) at the implant level and DM and predicted total bone-to-implant contact area at the patient level. CONCLUSION: HA nano-coated SLA implants promoted favorable immediate implants stability during early osseointegration phase compared to uncoated SLA implants, but displayed similar dimensional changes, PROMs, and soft tissue inflammation outcomes. TRIAL REGISTRATION: Clinical Research Information Service (CRIS), KCT0006364. Registered 21 July 2021, https://cris.nih.go.kr/cris/search/detailSearch.do?seq=24221&search_page=L .


Subject(s)
Durapatite , Humans , Male , Female , Middle Aged , Single-Blind Method , Dental Implants , Immediate Dental Implant Loading/methods , Adult , Coated Materials, Biocompatible/chemistry , Acid Etching, Dental , Aged , Patient Reported Outcome Measures , Osseointegration , Surface Properties
20.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 135-141, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836669

ABSTRACT

Epigenetic change has been found to play an important role in cell differentiation and regulation and the dental pulp stem cell in tissue engineering is gaining attention due to the ability of cells to differentiate into odontoblast and other cells. This study evaluated the influence of poly L- lactic acid with hydroxyapatite-coated with polyaniline scaffold (PLLA/HA/PANI) on dental pulp stem cell (DPSC) proliferation and differentiation. After scaffold preparation and DPSCs seeding, the cells proliferation and differentiation were evaluated by immunocytochemistry assay and cell viability was measured by cytotoxicity / MTT assay. The results showed (PLLA/HA/PANI) scaffold facilitates DPSC proliferation and differentiation with gene expression. This finding underscores the promise of this biomaterial combination as a scaffold for dental tissue regeneration and application.


Subject(s)
Biocompatible Materials , Cell Differentiation , Cell Proliferation , Dental Pulp , Durapatite , Odontoblasts , Osteoblasts , Stem Cells , Tissue Scaffolds , Dental Pulp/cytology , Humans , Cell Differentiation/drug effects , Odontoblasts/cytology , Odontoblasts/drug effects , Odontoblasts/metabolism , Tissue Scaffolds/chemistry , Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/drug effects , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Cell Proliferation/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Aniline Compounds/pharmacology , Aniline Compounds/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Cell Survival/drug effects , Cells, Cultured , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...