Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.157
Filter
1.
J Cancer Res Clin Oncol ; 150(7): 341, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976030

ABSTRACT

PURPOSE: To investigate whether prognosis of patients with hepatocellular carcinoma (HCC) is affected by the abundance and subgroups of myeloid-derived suppressor cells (MDSCs) as well as subtypes and expression of apolipoprotein E (apoE). METHODS: 31 HCC patients were divided into three groups according to blood total apoE level for detecting the abundance of immunoregulatory cells by flow cytometry. Tumour tissue microarrays from 360 HCC patients were evaluated about the abundance and subgroups of MDSCs and the expression of apoE2, apoE3, apoE4 by immunofluorescence staining and immunohistochemistry staining. Survival analysis by means of univariate, multivariate COX regression and Kaplan-Meier methods of the 360 patients was performed based on clinical and pathological examinations along with 10 years' follow-up data. RESULTS: The lower apoE group presented higher abundance of MDSCs in the peripheral blood of HCC patients than higher apoE group. The abundance of monocyte-like MDSCs (M-MDSCs) was higher in the apoE low level group than high level group (p = 0.0399). Lower H-score of apoE2 (HR = 6.140, p = 0.00005) and higher H-score of apoE4 (HR = 7.001, p = 0.009) in tumour tissue were significantly associated with shorter overall survival (OS). The higher infiltration of polymorphonuclear granulocyte-like MDSCs (PMN-MDSCs, HR = 3.762, p = 0.000009) and smaller proportion of M-MDSCs of total cells (HR = 0.454, p = 0.006) in tumour tissue were independent risk factors for shorter recurrence-free survival (RFS). CONCLUSION: The abundance of MDSCs in HCC patients' plasma negatively correlates with the level of apoE. The expression of apoE4 in HCC tissue indicated a poor prognosis while apoE2 might be a potential protective factor.


Subject(s)
Apolipoproteins E , Carcinoma, Hepatocellular , Liver Neoplasms , Myeloid-Derived Suppressor Cells , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Liver Neoplasms/metabolism , Male , Prognosis , Female , Middle Aged , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Apolipoproteins E/genetics , Aged , Adult
2.
Cells ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38920685

ABSTRACT

Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma worldwide, constituting around 30-40% of all cases. Almost 60% of patients develop relapse of refractory DLBCL. Among the reasons for the therapy failure, tumour microenvironment (TME) components could be involved, including tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (TANs), cancer-associated fibroblasts (CAFs), and different subtypes of cytotoxic CD8+ cells and T regulatory cells, which show complex interactions with tumour cells. Understanding of the TME can provide new therapeutic options for patients with DLBCL and improve their prognosis and overall survival. This review provides essentials of the latest understanding of tumour microenvironment elements and discusses their role in tumour progression and immune suppression mechanisms which result in poor prognosis for patients with DLBCL. In addition, we point out important markers for the diagnostic purposes and highlight novel therapeutic targets.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/immunology , Animals , Myeloid-Derived Suppressor Cells/pathology , Myeloid-Derived Suppressor Cells/immunology
3.
Front Immunol ; 15: 1367230, 2024.
Article in English | MEDLINE | ID: mdl-38919617

ABSTRACT

The transitory emergence of myeloid-derived suppressor cells (MDSCs) in infants is important for the homeostasis of the immune system in early life. The composition and functional heterogeneity of MDSCs in newborns remain elusive, hampering the understanding of the importance of MDSCs in neonates. In this study, we unraveled the maturation trajectory of polymorphonuclear (PMN)-MDSCs from the peripheral blood of human newborns by performing single-cell RNA sequencing. Results indicated that neonatal PMN-MDSCs differentiated from self-renewal progenitors, antimicrobial PMN-MDSCs, and immunosuppressive PMN-MDSCs to late PMN-MDSCs with reduced antimicrobial capacity. We also established a simple framework to distinguish these distinct stages by CD177 and CXCR2. Importantly, preterm newborns displayed a reduced abundance of classical PMN-MDSCs but increased late PMN-MDSCs, consistent with their higher susceptibility to infections and inflammation. Furthermore, newborn PMN-MDSCs were distinct from those from cancer patients, which displayed minimum expression of genes about antimicrobial capacity. This study indicates that the heterogeneity of PMN-MDSCs is associated with the maturity of human newborns.


Subject(s)
Gene Expression Profiling , Myeloid-Derived Suppressor Cells , Receptors, Interleukin-8B , Single-Cell Analysis , Transcriptome , Humans , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Infant, Newborn , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Neutrophils/immunology , Neutrophils/metabolism , GPI-Linked Proteins/genetics , Cell Differentiation , Female , Male , Isoantigens , Receptors, Cell Surface
4.
J Exp Clin Cancer Res ; 43(1): 157, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824552

ABSTRACT

Phosphoinositide-3-kinase γ (PI3Kγ) plays a critical role in pancreatic ductal adenocarcinoma (PDA) by driving the recruitment of myeloid-derived suppressor cells (MDSC) into tumor tissues, leading to tumor growth and metastasis. MDSC also impair the efficacy of immunotherapy. In this study we verify the hypothesis that MDSC targeting, via PI3Kγ inhibition, synergizes with α-enolase (ENO1) DNA vaccination in counteracting tumor growth.Mice that received ENO1 vaccination followed by PI3Kγ inhibition had significantly smaller tumors compared to those treated with ENO1 alone or the control group, and correlated with i) increased circulating anti-ENO1 specific IgG and IFNγ secretion by T cells, ii) increased tumor infiltration of CD8+ T cells and M1-like macrophages, as well as up-modulation of T cell activation and M1-like related transcripts, iii) decreased infiltration of Treg FoxP3+ T cells, endothelial cells and pericytes, and down-modulation of the stromal compartment and T cell exhaustion gene transcription, iv) reduction of mature and neo-formed vessels, v) increased follicular helper T cell activation and vi) increased "antigen spreading", as many other tumor-associated antigens were recognized by IgG2c "cytotoxic" antibodies. PDA mouse models genetically devoid of PI3Kγ showed an increased survival and a pattern of transcripts in the tumor area similar to that of pharmacologically-inhibited PI3Kγ-proficient mice. Notably, tumor reduction was abrogated in ENO1 + PI3Kγ inhibition-treated mice in which B cells were depleted.These data highlight a novel role of PI3Kγ in B cell-dependent immunity, suggesting that PI3Kγ depletion strengthens the anti-tumor response elicited by the ENO1 DNA vaccine.


Subject(s)
Vaccines, DNA , Animals , Mice , Vaccines, DNA/pharmacology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Humans , Cell Line, Tumor , Cancer Vaccines/immunology , Cancer Vaccines/pharmacology , Disease Models, Animal , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism
5.
Aging (Albany NY) ; 16(12): 10435-10445, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38885059

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) represents a highly immunogenic malignancy. Immunologic tolerance facilitated by myeloid-derived suppressor cells (MDSCs) is implicated in primary or secondary resistance mechanisms in NSCLC. The potential role of APE1 in regulating NSCLC metastasis by targeting MDSCs remains uncertain. METHODS: This study utilized a plasmid, Plxpsp-mGM-CSF, to induce elevated granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in A549 cells. Tumor transplantation experiments involved A549, A549+GM-CSF, and A549+GM-CSF-siAPE1 cell lines. Evaluation encompassed MDSCs, Treg cells, IgG, CD3, and CD8 levels. RESULTS: Notably, lung cancer tissues and cells displayed markedly reduced APE1 expression. siAPE1 transfection significantly curtailed tumor growth compared to the A549+GM-CSF group. APE1 knockdown orchestrated immune system modulation in lung tumor mice, characterized by diminished MDSCs but augmented Treg cells, IgG, CD3, and CD8. Additionally, APE1 knockdown led to reduced levels of pro-MDSC cytokines (HGF, CCL5, IL-6, CCL12) and a concurrent upregulation of the anti-MDSC cytokine IL-1ra. Furthermore, APE1 knockdown impeded cell viability in both A549 and H1650 cells. CONCLUSIONS: Transplantation of A549-GM-CSF amplified MDSC levels, fostering accelerated tumor growth, while mitigating MDSC levels through APE1 knockdown hindered tumor progression and alleviated inflammatory infiltration in lung cancer tissues. Strategies targeting the APE1/MDSC axis offer a promising approach for lung cancer prevention and treatment, presenting novel insights for NSCLC management.


Subject(s)
Carcinoma, Non-Small-Cell Lung , DNA-(Apurinic or Apyrimidinic Site) Lyase , Granulocyte-Macrophage Colony-Stimulating Factor , Lung Neoplasms , Myeloid-Derived Suppressor Cells , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Animals , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Humans , Mice , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , A549 Cells , Gene Knockdown Techniques , Neoplasm Metastasis , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Male , Female
6.
Molecules ; 29(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893313

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are recognized as major immune suppressor cells in the tumor microenvironment that may inhibit immune checkpoint blockade (ICB) therapy. Here, we developed a Stattic-loaded mesoporous silica nanoparticle (PEG-MSN-Stattic) delivery system to tumor sites to reduce the number of MDSCs in tumors. This approach is able to significantly deplete intratumoral MSDCs and thereby increase the infiltration of T lymphocytes in tumors to enhance ICB therapy. Our approach may provide a drug delivery strategy for regulating the tumor microenvironment and enhancing cancer immunotherapy efficacy.


Subject(s)
Immunotherapy , Myeloid-Derived Suppressor Cells , Nanoparticles , Silicon Dioxide , Tumor Microenvironment , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/drug effects , Immunotherapy/methods , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Animals , Mice , Porosity , Humans , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Cell Line, Tumor , Drug Carriers/chemistry , Drug Delivery Systems , Polyethylene Glycols/chemistry
7.
Front Immunol ; 15: 1372771, 2024.
Article in English | MEDLINE | ID: mdl-38887300

ABSTRACT

Introduction: Myeloid-derived suppressor cell (MDSC) exhibits immunosuppressive functions and affects cancer progression, but its relationship with prostate cancer remains unclear. We elucidated the association of polymorphonuclear MDSC (PMN-MDSC) and monocytic MDSC (M-MDSC) levels of the total peripheral blood mononuclear cells (PBMCs) with prostate cancer progression and evaluated their roles as prognostic indicators. Methods: We enrolled 115 patients with non-metastatic hormone-sensitive prostate cancer (nmHSPC, n = 62), metastatic hormone-sensitive prostate cancer (mHSPC, n = 23), and metastatic castration-resistant prostate cancer (mCRPC, n = 30). Subsequently, the proportions of MDSCs in each disease progression were compared. Log-rank tests and multivariate Cox regression analyses were performed to ascertain the associations of overall survival. Results: The patients with mCRPC had significantly higher PMN-MDSC percentage than those with nmHSPC and mHSPC (P = 7.73 × 10-5 and 0.0014). Significantly elevated M-MDSC levels were observed in mCRPC patients aged <70 years (P = 0.016) and with a body mass index (BMI) <25 kg/m2 (P = 0.043). The high PMN-MDSC group had notably shorter median survival duration (159 days) than the low PMN-MDSC group (768 days, log-rank P = 0.018). In the multivariate analysis including age, BMI, and MDSC subset, PMN-MDSC was significantly associated with prognosis (hazard ratios, 3.48; 95% confidence interval: 1.05-11.56, P = 0.042). Discussion: PMN-MDSC levels are significantly associated with mCRPC prognosis. Additionally, we highlight the remarkable associations of age and BMI with M-MDSC levels in mCRPC, offering novel insights into MDSC dynamics in prostate cancer progression.


Subject(s)
Myeloid-Derived Suppressor Cells , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Prostatic Neoplasms, Castration-Resistant/immunology , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/mortality , Prostatic Neoplasms, Castration-Resistant/blood , Aged , Prognosis , Middle Aged , Neutrophils/immunology , Disease Progression , Aged, 80 and over , Neoplasm Metastasis
8.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892058

ABSTRACT

Metformin, a medication known for its anti-glycemic properties, also demonstrates potent immune system activation. In our study, using a 4T1 breast cancer model in BALB/C WT mice, we examined metformin's impact on the functional phenotype of multiple immune cells, with a specific emphasis on natural killer T (NKT) cells due to their understudied role in this context. Metformin administration delayed the appearance and growth of carcinoma. Furthermore, metformin increased the percentage of IFN-γ+ NKT cells, and enhanced CD107a expression, as measured by MFI, while decreasing PD-1+, FoxP3+, and IL-10+ NKT cells in spleens of metformin-treated mice. In primary tumors, metformin increased the percentage of NKp46+ NKT cells and increased FasL expression, while lowering the percentages of FoxP3+, PD-1+, and IL-10-producing NKT cells and KLRG1 expression. Activation markers increased, and immunosuppressive markers declined in T cells from both the spleen and tumors. Furthermore, metformin decreased IL-10+ and FoxP3+ Tregs, along with Gr-1+ myeloid-derived suppressor cells (MDSCs) in spleens, and in tumor tissue, it decreased IL-10+ and FoxP3+ Tregs, Gr-1+, NF-κB+, and iNOS+ MDSCs, and iNOS+ dendritic cells (DCs), while increasing the DCs quantity. Additionally, increased expression levels of MIP1a, STAT4, and NFAT in splenocytes were found. These comprehensive findings illustrate metformin's broad immunomodulatory impact across a variety of immune cells, including stimulating NKT cells and T cells, while inhibiting Tregs and MDSCs. This dynamic modulation may potentiate its use in cancer immunotherapy, highlighting its potential to modulate the tumor microenvironment across a spectrum of immune cell types.


Subject(s)
Breast Neoplasms , Metformin , Mice, Inbred BALB C , Metformin/pharmacology , Metformin/therapeutic use , Animals , Female , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Natural Killer T-Cells/immunology , Natural Killer T-Cells/drug effects , Natural Killer T-Cells/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Immunomodulating Agents/pharmacology
9.
Front Immunol ; 15: 1403771, 2024.
Article in English | MEDLINE | ID: mdl-38855104

ABSTRACT

Background: Immunotherapeutic approaches, including immune checkpoint inhibitor (ICI) therapy, are increasingly recognized for their potential. Despite notable successes, patient responses to these treatments vary significantly. The absence of reliable predictive and prognostic biomarkers hampers the ability to foresee outcomes. This meta-analysis aims to evaluate the predictive significance of circulating myeloid-derived suppressor cells (MDSC) in patients with solid tumors undergoing ICI therapy, focusing on progression-free survival (PFS) and overall survival (OS). Methods: A comprehensive literature search was performed across PubMed and EMBASE from January 2007 to November 2023, utilizing keywords related to MDSC and ICI. We extracted hazard ratios (HRs) and 95% confidence intervals (CIs) directly from the publications or calculated them based on the reported data. A hazard ratio greater than 1 indicated a beneficial effect of low MDSC levels. We assessed heterogeneity and effect size through subgroup analyses. Results: Our search yielded 4,023 articles, of which 17 studies involving 1,035 patients were included. The analysis revealed that patients with lower levels of circulating MDSC experienced significantly improved OS (HR=2.13 [95% CI 1.51-2.99]) and PFS (HR=1.87 [95% CI 1.29-2.72]) in response to ICI therapy. Notably, heterogeneity across these outcomes was primarily attributed to differences in polymorphonuclear MDSC (PMN-MDSC) subpopulations and varying cutoff methodologies used in the studies. The monocytic MDSC (M-MDSC) subpopulation emerged as a consistent and significant prognostic marker across various subgroup analyses, including ethnicity, tumor type, ICI target, sample size, and cutoff methodology. Conclusions: Our findings suggest that standardized assessment of MDSC, particularly M-MDSC, should be integral to ICI therapy strategies. These cells hold the promise of identifying patients at risk of poor response to ICI therapy, enabling tailored treatment approaches. Further research focusing on the standardization of markers and validation of cutoff methods is crucial for integrating MDSC into clinical practice. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023420095, identifier CRD42023420095.


Subject(s)
Biomarkers, Tumor , Immune Checkpoint Inhibitors , Myeloid-Derived Suppressor Cells , Neoplasms , Humans , Myeloid-Derived Suppressor Cells/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/blood , Immune Checkpoint Inhibitors/therapeutic use , Biomarkers, Tumor/blood , Prognosis
11.
Int J Oncol ; 65(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38940351

ABSTRACT

Obesity is a chronic disease caused by the accumulation of excessive adipose tissue. This disorder is characterized by chronic low­grade inflammation, which promotes the release of proinflammatory mediators, including cytokines, chemokines and leptin. Simultaneously, chronic inflammation can predispose to cancer development, progression and metastasis. Proinflammatory molecules are involved in the recruitment of specific cell populations in the tumor microenvironment. These cell populations include myeloid­derived suppressor cells (MDSCs), a heterogeneous, immature myeloid population with immunosuppressive abilities. Obesity­associated MDSCs have been linked with tumor dissemination, progression and poor clinical outcomes. A comprehensive literature review was conducted to assess the impact of obesity­associated MDSCs on cancer in both preclinical models and oncological patients with obesity. A secondary objective was to examine the key role that leptin, the most important proinflammatory mediator released by adipocytes, plays in MDSC­driven immunosuppression Finally, an overview is provided of the different therapeutic approaches available to target MDSCs in the context of obesity­related cancer.


Subject(s)
Disease Progression , Myeloid-Derived Suppressor Cells , Neoplasms , Obesity , Tumor Microenvironment , Humans , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Obesity/complications , Obesity/immunology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/etiology , Tumor Microenvironment/immunology , Animals , Leptin/metabolism , Inflammation/immunology , Inflammation/pathology
12.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928332

ABSTRACT

CD147 is upregulated in cancers, including aggressive T-ALL. Traditional treatments for T-ALL often entail severe side effects and the risk of relapse, highlighting the need for more efficacious therapies. ADCP contributes to the antitumor response by enhancing the ability of phagocytic cells to engulf cancer cells upon antibody binding. We aimed to engineer CD147KO THP-1 cells and evaluated their differentiation properties compared to the wild type. A humanized anti-CD147 antibody, HuM6-1B9, was also constructed for investing the phagocytic function of CD147KO THP-1 cells mediated by HuM6-1B9 in the phagocytosis of Jurkat T cells. The CD147KO THP-1 was generated by CRISPR/Cas9 and maintained polarization profiles. HuM6-1B9 was produced in CHO-K1 cells and effectively bound to CD147 with high binding affinity (KD: 2.05 ± 0.30 × 10-9 M). Additionally, HuM6-1B9 enhanced the phagocytosis of Jurkat T cells by CD147KO THP-1-derived LPS-activated macrophages (M-LPS), without self-ADCP. The formation of THP-1-derived mMDSC was limited in CD147KO THP-1 cells, highlighting the significant impact of CD147 deletion. Maintaining expression markers and phagocytic function in CD147KO THP-1 macrophages supports future engineering and the application of induced pluripotent stem cell-derived macrophages. The combination of HuM6-1B9 and CD147KO monocyte-derived macrophages holds promise as an alternative strategy for T-ALL.


Subject(s)
Basigin , Cell Differentiation , Phagocytosis , Humans , Jurkat Cells , Basigin/metabolism , Basigin/genetics , THP-1 Cells , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Animals , CHO Cells , Cricetulus , Monocytes/metabolism , Monocytes/immunology , Macrophages/metabolism , Macrophages/immunology , CRISPR-Cas Systems
13.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892411

ABSTRACT

Breast cancers (BCs) are solid tumors composed of heterogeneous tissues consisting of cancer cells and an ever-changing tumor microenvironment (TME). The TME includes, among other non-cancer cell types, immune cells influencing the immune context of cancer tissues. In particular, the cross talk of immune cells and their interactions with cancer cells dramatically influence BC dissemination, immunoediting, and the outcomes of cancer therapies. Tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) represent prominent immune cell populations of breast TMEs, and they have important roles in cancer immunoescape and dissemination. Therefore, in this article we review the features of TILs, TAMs, and MDSCs in BCs. Moreover, we highlight the mechanisms by which these immune cells remodel the immune TME and lead to breast cancer metastasis.


Subject(s)
Breast Neoplasms , Lymphocytes, Tumor-Infiltrating , Myeloid-Derived Suppressor Cells , Neoplasm Metastasis , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Tumor Microenvironment/immunology , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology , Female , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , T-Lymphocytes/immunology , Animals
14.
J Cancer Res Clin Oncol ; 150(5): 243, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717677

ABSTRACT

Colitis-associated colorectal cancer has been a hot topic in public health issues worldwide. Numerous studies have demonstrated the significance of myeloid-derived suppressor cells (MDSCs) in the progression of this ailment, but the specific mechanism of their role in the transformation of inflammation to cancer is unclear, and potential therapies targeting MDSC are also unclear. This paper outlines the possible involvement of MDSC to the development of colitis-associated colorectal cancer. It also explores the immune and other relevant roles played by MDSC, and collates relevant targeted therapies against MDSC. In addition, current targeted therapies for colorectal cancer are analyzed and summarized.


Subject(s)
Colitis-Associated Neoplasms , Colorectal Neoplasms , Myeloid-Derived Suppressor Cells , Humans , Myeloid-Derived Suppressor Cells/immunology , Colitis-Associated Neoplasms/pathology , Colitis-Associated Neoplasms/etiology , Colitis-Associated Neoplasms/immunology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/etiology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Animals , Colitis/complications , Colitis/immunology
15.
Cancer Commun (Lond) ; 44(6): 601-636, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38715348

ABSTRACT

Significant developments in cancer treatment have been made since the advent of immune therapies. However, there are still some patients with malignant tumors who do not benefit from immunotherapy. Tumors without immunogenicity are called "cold" tumors which are unresponsive to immunotherapy, and the opposite are "hot" tumors. Immune suppressive cells (ISCs) refer to cells which can inhibit the immune response such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells and so on. The more ISCs infiltrated, the weaker the immunogenicity of the tumor, showing the characteristics of "cold" tumor. The dysfunction of ISCs in the tumor microenvironment (TME) may play essential roles in insensitive therapeutic reaction. Previous studies have found that epigenetic mechanisms play an important role in the regulation of ISCs. Regulating ISCs may be a new approach to transforming "cold" tumors into "hot" tumors. Here, we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs. In addition, we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in "cold" tumor.


Subject(s)
Epigenesis, Genetic , Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Tumor Microenvironment/immunology , Animals , Myeloid-Derived Suppressor Cells/immunology , Tumor-Associated Macrophages/immunology , T-Lymphocytes, Regulatory/immunology
16.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791188

ABSTRACT

In our previous studies, a novel cryothermal therapy (CTT) was developed to induce systemic long-term anti-tumor immunity. Natural killer (NK) cells were found to play an important role in CTT-induced long-term immune-mediated tumor control at the late stage after CTT, but the underlying mechanism is unclear. Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that have potent immunosuppressive effects on T cells and weaken the long-term benefits of immunotherapy. Consequently, overcoming MDSC immunosuppression is essential for maintaining the long-term efficacy of immunotherapy. In this study, we revealed that NK cells considerably diminish MDSC accumulation at the late stage after CTT, boost T cell production, increase T cell activation, and promote MDSC maturation, culminating in Th1-dominant CD4+ T cell differentiation and enhancing NK and CD8+ T cell cytotoxicity. Additionally, NK cells activate ERK signaling in MDSCs through NKG2D-ligand interaction to increase the activity of tumor necrosis factor (TNF)-α converting enzyme (TACE)-cleaved membrane TNF-α. Furthermore, Increased TACE activity releases more soluble TNF-α from MDSCs to promote MDSC maturation. In our studies, we propose a novel mechanism by which NK cells can overcome MDSC-induced immunosuppression and maintain CTT-induced persistent anti-tumor immunity, providing a prospective therapeutic option to improve the performance of cancer immunotherapy.


Subject(s)
Killer Cells, Natural , Myeloid-Derived Suppressor Cells , NK Cell Lectin-Like Receptor Subfamily K , Tumor Necrosis Factor-alpha , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Mice , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Lymphocyte Activation/immunology , Cell Differentiation , Ligands , ADAM17 Protein/metabolism
17.
Nat Immunol ; 25(7): 1257-1269, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806707

ABSTRACT

The circadian clock is a critical regulator of immunity, and this circadian control of immune modulation has an essential function in host defense and tumor immunosurveillance. Here we use a single-cell RNA sequencing approach and a genetic model of colorectal cancer to identify clock-dependent changes to the immune landscape that control the abundance of immunosuppressive cells and consequent suppression of cytotoxic CD8+ T cells. Of these immunosuppressive cell types, PD-L1-expressing myeloid-derived suppressor cells (MDSCs) peak in abundance in a rhythmic manner. Disruption of the epithelial cell clock regulates the secretion of cytokines that promote heightened inflammation, recruitment of neutrophils and the subsequent development of MDSCs. We also show that time-of-day anti-PD-L1 delivery is most effective when synchronized with the abundance of immunosuppressive MDSCs. Collectively, these data indicate that circadian gating of tumor immunosuppression informs the timing and efficacy of immune checkpoint inhibitors.


Subject(s)
B7-H1 Antigen , Circadian Clocks , Immune Checkpoint Inhibitors , Myeloid-Derived Suppressor Cells , Animals , Mice , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Circadian Clocks/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Mice, Inbred C57BL , Circadian Rhythm/immunology , CD8-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy , Colorectal Neoplasms/drug therapy , Tumor Microenvironment/immunology , Immune Tolerance , Humans , Female , Cell Line, Tumor , Single-Cell Analysis , Immunosuppression Therapy , Cytokines/metabolism , Male
18.
Cancer Rep (Hoboken) ; 7(5): e2066, 2024 May.
Article in English | MEDLINE | ID: mdl-38703051

ABSTRACT

BACKGROUND: The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS: In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION: Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Myeloid-Derived Suppressor Cells , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Myeloid-Derived Suppressor Cells/immunology , Intraepithelial Lymphocytes/immunology , Neoplasms, Glandular and Epithelial/immunology , Neoplasms, Glandular and Epithelial/pathology , Immune Tolerance , Animals , Tumor-Associated Macrophages/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Myeloid Cells/immunology
19.
J Immunol Res ; 2024: 2765001, 2024.
Article in English | MEDLINE | ID: mdl-38774603

ABSTRACT

ß-Glucan is the main component of the cell wall of pathogen-associated molecular patterns (PAMPs) including various yeast, fungi, or certain bacteria. Previous reports demonstrated that ß-glucan was widely investigated as a potent immunomodulators to stimulate innate and adaptive immune responses, which indicated that it could be recommended as an effective adjuvant in immunotherapy. However, the detailed effects of ß-glucan on neonatal immunity are still largely unknown. Here, we found that ß-glucan did not affect the frequencies and numbers of myeloid cells in the spleen and bone marrow from neonates. Functional assay revealed that ß-glucan from neonates compromised the immunosuppressive function of immature myeloid cells, which were myeloid-derived suppressor cells (MDSCs). Flow cytometry or gene expression analysis revealed that ß-glucan-derived polymorphonuclear (PMN)-MDSCs produced lower level of reactive oxygen species (ROS) and arginase-1 (Arg1) in neonatal mice. Furthermore, ß-glucan administration significantly decreased the frequency and ROS level of PMN-MDSCs in vitro. These observations suggest that ß-glucan facilitates the maturation of myeloid cells in early life, which may contribute to its beneficial effects against immune disorders later in life.


Subject(s)
Animals, Newborn , Arginase , Myeloid-Derived Suppressor Cells , Reactive Oxygen Species , beta-Glucans , Animals , Mice , Arginase/metabolism , beta-Glucans/pharmacology , Mice, Inbred C57BL , Myeloid Cells/metabolism , Myeloid Cells/immunology , Myeloid Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/drug effects , Reactive Oxygen Species/metabolism , Spleen/immunology , Spleen/metabolism , Spleen/cytology
20.
Commun Biol ; 7(1): 669, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822095

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) play a crucial role in maintaining maternal-fetal tolerance by expressing some immune-suppressive molecules, such as indoleamine 2,3-dioxygenase (IDO). Toxoplasma gondii (T. gondii) infection can break the immune microenvironment of maternal-fetal interface, resulting in adverse pregnancy outcomes. However, whether T. gondii affects IDO expression in dMDSCs and the molecular mechanism of its effect are still unclear. Here we show, the mRNA level of IDO is increased but the protein level decreased in infected dMDSCs. Mechanistically, the upregulation of transcriptional levels of IDO in dMDSCs is regulated through STAT3/p52-RelB pathway and the decrease of IDO expression is due to its degradation caused by increased SOCS3 after T. gondii infection. In vivo, the adverse pregnancy outcomes of IDO-/- infected mice are more severe than those of wide-type infected mice and obviously improved after exogenous kynurenine treatment. Also, the reduction of IDO in dMDSCs induced by T. gondii infection results in the downregulation of TGF-ß and IL-10 expression in dNK cells regulated through Kyn/AhR/SP1 signal pathway, eventually leading to the dysfunction of dNK cells and contributing the occurrence of adverse pregnancy outcomes. This study reveals a novel molecular mechanism in adverse pregnancy outcome induced by T. gondii infection.


Subject(s)
Down-Regulation , Indoleamine-Pyrrole 2,3,-Dioxygenase , Killer Cells, Natural , Toxoplasmosis , Animals , Female , Humans , Mice , Pregnancy , Decidua/immunology , Decidua/metabolism , Decidua/parasitology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Toxoplasma/physiology , Toxoplasmosis/immunology , Toxoplasmosis/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...