Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
1.
J Cancer Res Ther ; 13(6): 994-999, 2017.
Article de Anglais | MEDLINE | ID: mdl-29237965

RÉSUMÉ

PURPOSE: The aim of this work was to evaluate the various computed tomography (CT) techniques such as fast CT, slow CT, breath-hold (BH) CT, full-fan cone beam CT (FF-CBCT), half-fan CBCT (HF-CBCT), and average CT for delineation of internal target volume (ITV). In addition, these ITVs were compared against four-dimensional CT (4DCT) ITVs. MATERIALS AND METHODS: Three-dimensional target motion was simulated using dynamic thorax phantom with target insert of diameter 3 cm for ten respiration data. CT images were acquired using a commercially available multislice CT scanner, and the CBCT images were acquired using On-Board-Imager. Average CT was generated by averaging 10 phases of 4DCT. ITVs were delineated for each CT by contouring the volume of the target ball; 4DCT ITVs were generated by merging all 10 phases target volumes. Incase of BH-CT, ITV was derived by boolean of CT phases 0%, 50%, and fast CT target volumes. RESULTS: ITVs determined by all CT and CBCT scans were significantly smaller (P < 0.05) than the 4DCT ITV, whereas there was no significant difference between average CT and 4DCT ITVs (P = 0.17). Fast CT had the maximum deviation (-46.1% ± 20.9%) followed by slow CT (-34.3% ± 11.0%) and FF-CBCT scans (-26.3% ± 8.7%). However, HF-CBCT scans (-12.9% ± 4.4%) and BH-CT scans (-11.1% ± 8.5%) resulted in almost similar deviation. On the contrary, average CT had the least deviation (-4.7% ± 9.8%). CONCLUSIONS: When comparing with 4DCT, all the CT techniques underestimated ITV. In the absence of 4DCT, the HF-CBCT target volumes with appropriate margin may be a reasonable approach for defining the ITV.


Sujet(s)
Tomodensitométrie à faisceau conique/méthodes , Tomodensitométrie 4D/méthodes , Tumeurs du poumon/imagerie diagnostique , Humains , Tumeurs du poumon/diagnostic , Tumeurs du poumon/physiopathologie , Déplacement , Fantômes en imagerie , Planification de radiothérapie assistée par ordinateur/méthodes , Respiration
2.
J Med Phys ; 42(3): 101-115, 2017.
Article de Anglais | MEDLINE | ID: mdl-28974854

RÉSUMÉ

Tumors in thoracic and upper abdomen regions such as lungs, liver, pancreas, esophagus, and breast move due to respiration. Respiration-induced motion introduces uncertainties in radiotherapy treatments of these sites and is regarded as a significant bottleneck in achieving highly conformal dose distributions. Recent developments in radiation therapy have resulted in (i) motion-encompassing, (ii) respiratory gating, and (iii) tracking methods for adapting the radiation beam aperture to account for the respiration-induced target motion. The purpose of this review is to discuss the magnitude, impact, and management of respiration-induced tumor motion.

3.
J Med Phys ; 42(2): 59-64, 2017.
Article de Anglais | MEDLINE | ID: mdl-28706350

RÉSUMÉ

PURPOSE: With the advent of state-of-the-art treatment technologies, the use of small fields has increased, and dosimetry in small fields is highly challenging. In this study, the potential use of Varian electronic portal imaging device (EPID) for small field measurements was explored for 6 and 15 MV photon beams. MATERIALS AND METHODS: The output factors and profiles were measured for a range of jaw-collimated square field sizes starting from 0.8 cm × 0.8 cm to 10 cm × 10 cm using EPID. For evaluation purpose, reference data were acquired using Exradin A16 microionization chamber (0.007 cc) for output factors and stereotactic field diode for profile measurements in a radiation field analyzer. RESULTS: The output factors of EPID were in agreement with the reference data for field sizes down to 2 cm × 2 cm and for 2 cm × 2 cm; the difference in output factors was +2.06% for 6 MV and +1.56% for 15 MV. For the lowest field size studied (0.8 cm × 0.8 cm), the differences were maximum; +16% for 6 MV and +23% for 15 MV photon beam. EPID profiles of both energies were closely matching with reference profiles for field sizes down to 2 cm × 2 cm; however, penumbra and measured field size of EPID profiles were slightly lower compared to its counterpart. CONCLUSIONS: EPID is a viable option for profile and output factor measurements for field sizes down to 2 cm × 2 cm in the absence of appropriate small field dosimeters.

4.
Br J Radiol ; 89(1060): 20150870, 2016.
Article de Anglais | MEDLINE | ID: mdl-26916281

RÉSUMÉ

OBJECTIVE: The purpose of this work was to evaluate the four-dimensional cone beam CT (4DCBCT) imaging with different gantry rotation speed. METHODS: All the 4DCBCT image acquisitions were carried out in Elekta XVI Symmetry™ system (Elekta AB, Stockholm, Sweden). A dynamic thorax phantom with tumour mimicking inserts of diameter 1, 2 and 3 cm was programmed to simulate the respiratory motion (4 s) of the target. 4DCBCT images were acquired with different gantry rotation speeds (36°, 50°, 75°, 100°, 150° and 200° min(-1)). Owing to the technical limitation of 4DCBCT system, average cone beam CT (CBCT) images derived from the 10 phases of 4DCBCT were used for the internal target volume (ITV) contouring. ITVs obtained from average CBCT were compared with the four-dimensional CT (4DCT). In addition, the image quality of 4DCBCT was also evaluated for various gantry rotation speeds using Catphan(®) 600 (The Phantom Laboratory Inc., Salem, NY). RESULTS: Compared to 4DCT, the average CBCT underestimated the ITV. The ITV deviation increased with increasing gantry speed (-10.8% vs -17.8% for 36° and 200° min(-1) in 3-cm target) and decreasing target size (-17.8% vs -26.8% for target diameter 3 and 1 cm in 200° min(-1)). Similarly, the image quality indicators such as spatial resolution, contrast-to-noise ratio and uniformity also degraded with increasing gantry rotation speed. CONCLUSION: The impact of gantry rotation speed has to be considered when using 4DCBCT for ITV definition. The phantom study demonstrated that 4DCBCT with slow gantry rotation showed better image quality and less ITV deviation. ADVANCES IN KNOWLEDGE: Usually, the gantry rotation period of Elekta 4DCBCT system is kept constant at 4 min (50° min(-1)) for acquisition, and any attempt of decreasing/increasing the acquisition duration requires careful investigation. In this study, the 4DCBCT images with different gantry rotation speed were evaluated.


Sujet(s)
Tomodensitométrie à faisceau conique/méthodes , Tomodensitométrie 4D/méthodes , Humains , Fantômes en imagerie , Respiration , Rotation , Thorax
5.
Br J Radiol ; 88(1054): 20150425, 2015 Oct.
Article de Anglais | MEDLINE | ID: mdl-26226396

RÉSUMÉ

OBJECTIVE: The aim of this work was to evaluate the quality of kilovoltage (kV) cone beam CT (CBCT) images acquired during arc delivery. METHODS: Arc plans were delivered on a Catphan(®) 600 phantom (The Phantom Laboratory Inc., Salem, NY), and kV CBCT images were acquired during the treatment. The megavoltage (MV) scatter effect on kV CBCT image quality was evaluated using parameters such as Hounsfield unit (HU) accuracy, spatial resolution, contrast-to-noise ratio (CNR) and spatial non-uniformity (SNU). These CBCT images were compared with reference scans acquired with the same acquisition parameters without MV "beam on". This evaluation was carried out for different photon beams (6 and 15 MV), arc types (half vs full arc), static field sizes (10 × 10 and 25 × 25 cm(2)) and source-to-imager distances (SID) (150 and 170 cm). RESULTS AND CONCLUSION: HU accuracy, CNR and SNU were considerably affected by MV scatter, and this effect was increased with increasing field size and decreasing photon energy, whereas the spatial resolution was almost unchanged. The MV scatter effect was observed to be more for full-rotation arc delivery than for half-arc delivery. In addition, increasing the SID resulted in decreased MV scatter effect and improved the image quality. ADVANCES IN KNOWLEDGE: Nowadays, volumetric modulated arc therapy (VMAT) is increasingly used in clinics, and this arc therapy enables us to acquire CBCT imaging simultaneously. But, the main issue of concurrent imaging is the "MV scatter" effect on CBCT imaging. This study aims to experimentally quantify the effect of MV scatter on CBCT image quality.


Sujet(s)
Tomodensitométrie à faisceau conique/méthodes , Fantômes en imagerie , Interprétation d'images radiographiques assistée par ordinateur/méthodes , Algorithmes , Humains
6.
J Appl Clin Med Phys ; 14(3): 4103, 2013 May 06.
Article de Anglais | MEDLINE | ID: mdl-23652244

RÉSUMÉ

The purpose of this study was to evaluate the capabilities of DMLC to deliver the respiratory motion-synchronized dynamic IMRT (MS-IMRT) treatments under various dose rates. In order to create MS-IMRT plans, the DMLC leaf motions in dynamic IMRT plans of eight lung patients were synchronized with the respiratory motion of breathing period 4 sec and amplitude 2 cm (peak to peak) using an in-house developed leaf position modification program. The MS-IMRT plans were generated for the dose rates of 100 MU/min, 400 MU/min, and 600 MU/min. All the MS-IMRT plans were delivered in a medical linear accelerator, and the fluences were measured using a 2D ion chamber array, placed over a moving platform. The accuracy of MS-IMRT deliveries was evaluated with respect to static deliveries (no compensation for target motion) using gamma test. In addition, the fluences of gated delivery of 30% duty cycle and non- MS-IMRT deliveries were also measured and compared with static deliveries. The MS-IMRT was better in terms of dosimetric accuracy, compared to gated and non-MS-IMRT deliveries. The dosimetric accuracy was observed to be significantly better for 100 MU/min MS-IMRT. However, the use of high-dose rate in a MS-IMRT delivery introduced dose-rate modulation/beam hold-offs that affected the synchronization between the DMLC leaf motion and target motion. This resulted in more dose deviations in MS-IMRT deliveries at the dose rate of 600 MU/min.


Sujet(s)
Mouvement , Tumeurs/radiothérapie , Planification de radiothérapie assistée par ordinateur , Radiothérapie conformationnelle avec modulation d'intensité , Respiration , Humains , Fantômes en imagerie , Dosimétrie en radiothérapie
7.
Australas Phys Eng Sci Med ; 35(1): 81-4, 2012 Mar.
Article de Anglais | MEDLINE | ID: mdl-22302462

RÉSUMÉ

The purpose of this study is to analyze the effect of various dose rates (DR) and maximum allowable MLC leaf velocities (MLV) in dynamic Intensity Modulated Radiotherapy (IMRT) planning and delivery of head and neck patients. Five head and neck patients were retrospectively included in this study. The initial dynamic IMRT 'reference plans' were created for all these patients, using a DR of 400 MU/min and MLV of 2.5 cm/s. Additional plans were generated by varying the DR and MLV values. The DR value was varied from 100 to 600 MU/min, in increments of 100 MU/min, for a MLV of 2.5 cm/s. Also the MLV was varied from 0.5 to 3 cm/s, in increments of 0.5 cm, for a DR of 400 MU/min. In order to maintain the prescribed dose to the PTV, the DR was allowed to vary ('beam hold or DR modulation' during delivery) when the MLV was changed and the MLV was allowed to vary when the DR was changed. The mean doses to the PTV as well as parotids, maximum dose of spinal cord and total MU were recorded for analysis. The effect of DR and MLV on treatment delivery was analyzed using the portal dosimetry for all the above plans. The predicted portal dose fluences of the TPS were compared with the measured EPID fluences using gamma evaluation criteria of 2% dose difference and 2 mm distance to agreement. A small proportional increase in OAR doses with DR was observed. Increases to MLV value resulted in decreases of the OAR doses and this effect was considerable for values below 1.5 cm/s. DR and MLV both resulted in no appreciable dose variation to the target. The total MU to deliver the plan increases with increasing DR and decreasing MLV. When comparing portal images derived from the treatment plans with portal images obtained by delivering the treatments, it was observed that the treatments was most reliably delivered when the DRs were set to lower values and when the MLVs were set to higher values.


Sujet(s)
Tumeurs de la tête et du cou/radiothérapie , Dosimétrie en radiothérapie , Planification de radiothérapie assistée par ordinateur/méthodes , Radiothérapie conformationnelle avec modulation d'intensité/méthodes , Humains , Études rétrospectives
8.
J Med Phys ; 36(2): 72-7, 2011 Apr.
Article de Anglais | MEDLINE | ID: mdl-21731222

RÉSUMÉ

The purpose of this study was to evaluate the dosimetric effect of the leaf width of a multileaf collimator (MLC) in intensity-modulated radiotherapy (IMRT) delivery techniques for small- and large-volume targets. We retrospectively selected previously treated 5 intracranial and 5 head-neck patients for this study to represent small- (range, 18.37-72.75 cc; mean, 42.99 cc) and large-volume (range, 312.31-472.84 cc; mean, 361.14 cc) targets. A 6-MV photon beam data was configured for Brianlab m3 (3 mm), Varian Millennium 120 (5 mm) and Millennium 80 (10 mm) MLCs in the Eclipse treatment-planning system. Sliding window and step-shoot IMRT plans were generated for intracranial patients using all the above-mentioned MLCs; but due to the field size limitation of Brainlab MLC, we used only 5-mm and 10-mm MLCs in the head-and-neck patients. Target conformity, dose to the critical organs and dose to normal tissues were recorded and evaluated. Although the 3-mm MLC resulted in better target conformity (mean difference of 7.7% over 5-mm MLC and 12.7% over 10-mm MLC) over other MLCs for small-volume targets, it increased the total monitor units of the plans. No appreciable differences in terms of target conformity, organ at risk and normal-tissue sparing were observed between the 5-mm and 10-mm MLCs for large-volume targets. The effect of MLC leaf width was not quantifiably different in sliding window and step and shoot techniques. In addition, we observed that there was no additional benefit to the sliding-window (SW) technique when compared to the step-shoot (SS) technique as a result of reduction of MLC leaf width.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE