Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Data Brief ; 54: 110526, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38799714

RÉSUMÉ

Onchidoris muricata is a widespread shell-less species of nudibranch molluscs, which has unique for Gastropoda skeletal elements - subepidermal calcite spicules. The general and fine morphology of the spicules, as well as their maturation process in ontogenesis, have been studied in detail by authors. The uniqueness of spicules lies in their intracellular formation and location under the ectodermal epithelium, which is more typical for deuterostomes. We present O. muricata as a potentially new model species for studying calcification of intracellular protein structure. A total of 96 individuals were collected in the Kandalaksha Bay of the White Sea, both manually and by scuba diving. All individuals were divided into three groups based on morphological characteristics such as specimens' size, spicule condition etc. This division suggests the existence of three stages in postembryonic ontogenesis of O. muricata reflecting the maturation of the spicule complex. Total RNA samples were isolated from three size groups of molluscs in three biological replicates. Libraries were prepared from the polyadenylated RNA fraction and sequenced at NovaSeq6000 (Illumina), yielding a total of 112.8 Gb of 150 bp paired-end reads, corresponding to almost 1,000-fold coverage of the transcriptome. Representative transcriptome assembled de novo with Trinity. In addition to obtaining the transcriptome sequences of O. muricata, differential expression analysis was also performed for these three size groups. This allows us to trace the dynamics of molecular and biological processes during the life of a mollusc. The obtained data can then be used as a reference transcriptome for closely related species, to study specific expressed genes, to identify various unique sequences, including protein-coding ones, to understand biological processes, including biomineralization and much more.

2.
Biol Rev Camb Philos Soc ; 99(1): 131-176, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37698089

RÉSUMÉ

Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.


Sujet(s)
Arthropodes , Écosystème , Animaux , Humains , Invertébrés
3.
Open Biol ; 12(2): 210336, 2022 02.
Article de Anglais | MEDLINE | ID: mdl-35193395

RÉSUMÉ

Sponges (phylum Porifera) are early-branching animals, whose outwardly simple body plan is underlain by a complex genetic repertoire. The transition from a mobile larva to an attached filter-feeding organism occurs by metamorphosis, a process accompanied by a radical change of the body plan and cell transdifferentiation. The continuity between larval cells and adult tissues is still obscure. In a previous study, we have produced polyclonal antibodies against the major protein of the flagellated cells covering the larva of the sponge Halisarca dujardini, used them to trace the fate of these cells and shown that the larval flagellated cells transdifferentiate into the choanocytes. In the present work, we identified the sequence of this novel protein, which we named ilborin. A search in the open databases showed that multiple orthologues of the newly identified protein are present in sponges, cnidarians, flatworms, ctenophores and echinoderms, but none of them has been described yet. Ilborin has two conserved domains: triosephosphate isomerase-barrel, which has enzymatic activity against macroergic compounds, and canonical EF-hand, which binds calcium. mRNA of ilborin is expressed in the larval flagellated cells. We suggest that the new protein is involved in the calcium-mediated regulation of energy metabolism, whose activation precedes metamorphosis.


Sujet(s)
Organismes aquatiques , Métabolisme énergétique , Invertébrés , Porifera/cytologie , Porifera/métabolisme , Animaux , Calcium , Flagelles , Larve , Métamorphose biologique
4.
Biol Rev Camb Philos Soc ; 97(1): 299-325, 2022 02.
Article de Anglais | MEDLINE | ID: mdl-34617397

RÉSUMÉ

Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.


Sujet(s)
Cellules souches adultes , Drosophila melanogaster , Animaux , Différenciation cellulaire , Phénotype
5.
Genes (Basel) ; 12(6)2021 06 20.
Article de Anglais | MEDLINE | ID: mdl-34203064

RÉSUMÉ

The phenomenon of whole-body regeneration means rebuilding of the whole body of an animal from a small fragment or even a group of cells. In this process, the old axial relationships are often lost, and new ones are established. An amazing model for studying this process is sponges, some of which are able to regenerate into a definitive organism after dissociation into cells. We hypothesized that during the development of cell aggregates, primmorphs, new axes are established due to the activation of the Wnt and TGF-beta signaling pathways. Using in silico analysis, RNA-seq, and whole-mount in situ hybridization, we identified the participants in these signaling pathways and determined the spatiotemporal changes in their expression in demosponge Halisarca dujardinii. It was shown that Wnt and TGF-beta ligands are differentially expressed during primmorph development, and transcripts of several genes are localized at the poles of primmorphs, in the form of a gradient. We suppose that the Wnt and TGF-beta signaling cascades are involved in the initial axial patterning of the sponge body, which develops from cells after dissociation.


Sujet(s)
Porifera/métabolisme , Régénération , Facteur de croissance transformant bêta/génétique , Protéines de type Wingless/génétique , Animaux , Porifera/physiologie , Facteur de croissance transformant bêta/métabolisme , Protéines de type Wingless/métabolisme , Voie de signalisation Wnt
6.
Genes (Basel) ; 12(4)2021 03 29.
Article de Anglais | MEDLINE | ID: mdl-33805549

RÉSUMÉ

While virtually all animals show certain abilities for regeneration after an injury, these abilities vary greatly among metazoans. Porifera (Sponges) is basal metazoans characterized by a wide variety of different regenerative processes, including whole-body regeneration (WBR). Considering phylogenetic position and unique body organization, sponges are highly promising models, as they can shed light on the origin and early evolution of regeneration in general and WBR in particular. The present review summarizes available data on the morphogenetic and cellular mechanisms accompanying different types of WBR in sponges. Sponges show a high diversity of WBR, which principally could be divided into (1) WBR from a body fragment and (2) WBR by aggregation of dissociated cells. Sponges belonging to different phylogenetic clades and even to different species and/or differing in the anatomical structure undergo different morphogeneses after similar operations. A common characteristic feature of WBR in sponges is the instability of the main body axis: a change of the organism polarity is described during all types of WBR. The cellular mechanisms of WBR are different across sponge classes, while cell dedifferentiations and transdifferentiations are involved in regeneration processes in all sponges. Data considering molecular regulation of WBR in sponges are extremely scarce. However, the possibility to achieve various types of WBR ensured by common morphogenetic and cellular basis in a single species makes sponges highly accessible for future comprehensive physiological, biochemical, and molecular studies of regeneration processes.


Sujet(s)
Morphogenèse , Porifera/physiologie , Régénération , Animaux , Porifera/croissance et développement , Transduction du signal
7.
PeerJ ; 8: e9179, 2020.
Article de Anglais | MEDLINE | ID: mdl-32523809

RÉSUMÉ

Bryozoans are small benthic colonial animals; their colonies consist of zooids which are composed of a cystid and polypide. According to morphological and molecular data, three classes of bryozoans are recognized: Phylactolaemata, Gymnolaemata and Stenolaemata. Bryozoans are active suspension feeders and their feeding apparatus, the lophophore, is fringed with a single row of ciliated tentacles. In gymnolaemates, the lophophore is bell-shaped and its tentacles may be equal in length (equitentacled lophophores) or some tentacles may be longer than others (obliquely truncated lophophores). In encrusting colonies, polypides with obliquely truncated lophophores usually border specific sites of excurrent water outlets (colony periphery and chimneys) where depleted water has to be removed. It is known that during colony astogeny, colony-wide water currents rearrange: new chimneys are formed and/or location of the chimneys within a given colony changes with time. Such rearrangement requires remodeling of the lophophore shape and lengthening of some tentacles in polypides surrounding water outlets. However, proliferating activity has not been described for bryozoans. Here, we compared the distribution of S-phase and mitotic cells in young and adult polypides in three species of Gymnolaemata. We tested the hypothesis that tentacle growth/elongation is intercalary and cell proliferation takes place somewhere at the lophophore base because such pattern does not interfere with the feeding process. We also present a detailed description of ultrastructure of two parts of the lophophore base: the oral region and ciliated pits, and uncover the possible function of the latter. The presence of stem cells within the ciliated pits and the oral region of polypides provide evidence that both sites participate in tentacle elongation. This confirms the suggested hypothesis about intercalary tentacle growth which provides a potential to alter a lophophore shape in adult polypides according to rearrangement of colony wide water currents during colony astogeny. For the first time deuterosome-like structures were revealed during kinetosome biogenesis in the prospective multiciliated epithelial cells in invertebrates. Tentacle regeneration experiments in Electra pilosa demonstrated that among all epidermal cell types, only non-ciliated cells at the abfrontal tentacle surface are responsible for wound healing. Ciliated cells on the frontal and lateral tentacle surfaces are specialized and unable to proliferate, not even under wound healing. Tentacle regeneration in E. pilosa is very slow and similar to the morphallaxis type. We suggest that damaged tentacles recover their length by a mechanism similar to normal growth, powered by proliferation of cells both within ciliated pits and the oral region.

8.
Adv Protein Chem Struct Biol ; 116: 421-449, 2019.
Article de Anglais | MEDLINE | ID: mdl-31036299

RÉSUMÉ

Cell-to-cell signaling is responsible for regulation of many developmental processes such as proliferation, cell migration, survival, cell fate specification and axis patterning. In this article we discussed the role of signaling in the metamorphosis of sponges with a focus on epithelial-mesenchymal transition (EMT) accompanying this event. Sponges (Porifera) are an ancient lineage of morphologically simple animals occupying a basal position on the tree of life. The study of these animals is necessary for understanding the origin of multicellularity and the evolution of developmental processes. Development of sponges is quite diverse. It finishes with the metamorphosis of a free-swimming larva into a young settled sponge. The outer surface of sponge larvae consists of a ciliated epithelial sheath, which ensures locomotion, while their internal structure varies from genus to genus. The fate of larval ciliated cells is the most intriguing aspect of metamorphosis. In this review we discuss the fate of larval ciliated cells, the processes going on in cells during metamorphosis at the molecular level and the regulation of this process. The review is based on information about several sponge species with a focus on Halisarca dujardini, Sycon ciliatum and Amphimedon queenslandica. In our model sponge, H. dujardini, ciliated cells leave the larval epithelium during metamorphosis and migrate to the internal cell mass as amoeboid cells to be differentiated into choanocytes of the juvenile sponge. Ciliated cells undergo EMT and internalize within minutes. As EMT involves the disappearance of adherens junctions and as cadherin, the main adherens junction protein, was identified in the transcriptome of several sponges, we suppose that EMT is regulated through cadherin-containing adherens junctions between ciliated cells. We failed to identify the master genes of EMT in the H. dujardini transcriptome, possibly because transcription was absent in the sequenced stages. They may be revealed by a search in the genome. The master genes themselves are controlled by various signaling pathways. Sponges have all the six signaling pathways conserved in Metazoa: Wnt, TGF-beta, Hedgehog, Notch, FGF and NO-dependent pathways. Summarizing the new data about intercellular communication in sponges, we can put forward two main questions regarding metamorphosis: (1) Which of the signaling pathways and in what hierarchical order are involved in metamorphosis? (2) How is the organization of a young sponge related to that of the larva or, in other words, is there a heredity of axes between the larva and the adult sponge?


Sujet(s)
Porifera/cytologie , Porifera/croissance et développement , Transduction du signal , Animaux , Transition épithélio-mésenchymateuse , Larve/cytologie , Larve/croissance et développement , Métamorphose biologique , Porifera/embryologie
9.
BMC Evol Biol ; 16(1): 123, 2016 06 10.
Article de Anglais | MEDLINE | ID: mdl-27287511

RÉSUMÉ

BACKGROUND: Wnt proteins are secreted signalling molecules found in all animal phyla. In bilaterian animals, including humans, Wnt proteins play key roles in development, maintenance of homeostasis and regeneration. While Wnt gene repertoires and roles are strongly conserved between cnidarians and bilaterians, Wnt genes from basal metazoans (sponges, ctenophores, placozoans) are difficult or impossible to assign to the bilaterian + cnidarian orthologous groups. Moreover, dramatic differences in Wnt numbers among basal metazoan exist, with only three present in the genome of Amphimedon queenslandica, a demosponge, and 21 in the genome of Sycon ciliatum, a calcisponge. To gain insight into the ancestral Wnt repertoire and function, we have chosen to investigate Wnt genes in Halisarca dujardini, a demosponge with relatively well described development and regeneration, and a very distant phylogenetic relationship to Amphimedon. RESULTS: Here we describe generation of a eukaryotic contamination-free transcriptome of Halisarca dujardini, and analysis of Wnt genes repertoire and expression in this species. We have identified ten Wnt genes, with only one orthologous to Amphimedon Wnt, and six appearing to be a result of a lineage specific expansion. Expression analysis carried out by in situ hybridization of adults and larvae revealed that two Halisarca Wnts are expressed in nested domains in the posterior half of the larvae, and six along the adult body axis, with two specific to the osculum. Strikingly, expression of one of the Wnt genes was elevated in the region undergoing regeneration. CONCLUSIONS: Our results demonstrated that the three Poriferan lineages (Demospongiae, Calcarea and Homoloscleromorpha) are characterized by highly diverse Wnt gene repertoires which do not display higher similarity to each other than they do to the non-sponge (i.e. ctenophore, cnidarian and bilaterian) repertoires. This is in striking contrast to the uniform Wnt repertoires in Cnidarians and Bilaterians, suggesting that the Wnt family composition became "fixed" only in the last common ancestor of Cnidarians and Bilaterians. In contrast, expression of Wnt genes in the apical region of sponge adults and the posterior region of sponge larvae suggests conservation of the Wnt role in axial patterning across the animal kingdom.


Sujet(s)
Porifera/génétique , Protéines de type Wingless/génétique , Animaux , Évolution moléculaire , Génome , Hybridation in situ , Phylogenèse , Transcriptome
10.
PeerJ ; 3: e1211, 2015.
Article de Anglais | MEDLINE | ID: mdl-26336645

RÉSUMÉ

The ability to regenerate is widespread in the animal kingdom, but the regenerative capacities and mechanisms vary widely. To understand the evolutionary history of the diverse regeneration mechanisms, the regeneration processes must be studied in early-evolved metazoans in addition to the traditional bilaterian and cnidarian models. For this purpose, we have combined several microscopy techniques to study mechanisms of regeneration in the demosponge Halisarca dujardini. The objectives of this work are to detect the cells and morphogenetic processes involved in Halisarca regeneration. We show that in Halisarca there are three main sources of the new exopinacoderm during regeneration: choanocytes, archaeocytes and (rarely) endopinacocytes. Here we show that epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) occur during Halisarca regeneration. EMT is the principal mechanism during the first stages of regeneration, soon after the injury. Epithelial cells from damaged and adjacent intact choanocyte chambers and aquiferous canals assume mesenchymal phenotype and migrate into the mesohyl. Together with archaeocytes, these cells form an undifferentiated cell mass beneath of wound, which we refer to as a blastema. After the blastema is formed, MET becomes the principal mechanism of regeneration. Altogether, we demonstrate that regeneration in demosponges involves a variety of processes utilized during regeneration in other animals (e.g., cell migration, dedifferentiation, blastema formation) and points to the particular importance of transdifferentiation in this process. Further studies will be needed to uncover the molecular mechanisms governing regeneration in sponges.

11.
PLoS One ; 10(8): e0134566, 2015.
Article de Anglais | MEDLINE | ID: mdl-26270639

RÉSUMÉ

Sponges are known to possess remarkable reconstitutive and regenerative abilities ranging from common wounding or body part regeneration to more impressive re-building of a functional body from dissociated cells. Among the four sponge classes, Homoscleromorpha is notably the only sponge group to possess morphologically distinct basement membrane and specialized cell-junctions, and is therefore considered to possess true epithelia. The consequence of this peculiar organization is the predominance of epithelial morphogenesis during ontogenesis of these sponges. In this work we reveal the underlying cellular mechanisms used during morphogenesis accompanying ectosome regeneration in the homoscleromorph sponge model: Oscarella lobularis. We identified three main sources of novel exopinacoderm during the processes of its regeneration and the restoration of functional peripheral parts of the aquiferous system in O. lobularis: (1) intact exopinacoderm surrounding the wound surface, (2) the endopinacoderm from peripheral exhalant and inhalant canals, and (3) the intact choanoderm found on the wound surface. The basic morphogenetic processes during regeneration are the spreading and fusion of epithelial sheets that merge into one continuous epithelium. Transdifferentiation of choanocytes into exopinacocytes is also present. Epithelial-mesenchymal transition is absent during regeneration. Moreover, we cannot reveal any other morphologically distinct pluripotent cells. In Oscarella, neither blastema formation nor local dedifferentiation and proliferation have been detected, which is probably due to the high morphogenetic plasticity of the tissue. Regeneration in O. lobularis goes through cell transdifferentiation and through the processes, when lost body parts are replaced by the remodeling of the remaining tissue. Morphogenesis during ectosome regeneration in O. lobularis is correlated with its true epithelial organization. Knowledge of the morphological basis of morphogenesis during Oscarella regeneration could have important implications for our understanding of the diversity and evolution of regeneration mechanisms in metazoans, and is a strong basis for future investigations with molecular-biological approaches.


Sujet(s)
Différenciation cellulaire/physiologie , Transition épithélio-mésenchymateuse/physiologie , Porifera/physiologie , Régénération/physiologie , Animaux , Porifera/cytologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...