Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Trends Cell Biol ; 31(12): 965-978, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34147298

RÉSUMÉ

REV7 is a small multifunctional protein that participates in multiple DNA repair pathways, most notably translesion DNA synthesis and double-strand break (DSB) repair. While the role of REV7 in translesion synthesis has been known for several decades, its function in DSB repair is a recent discovery. Investigations into the DSB repair function of REV7 have led to the discovery of a new DNA repair complex known as Shieldin. Recent studies have also highlighted the importance of REV7's HORMA domain, an ancient structural motif, in REV7 function and have identified the HORMA regulators, TRIP13 and p31, as novel DNA repair factors. In this review, we discuss these recent findings and their implications for repair pathway choice, at both DSBs and replication forks. We suggest that REV7, in particular the activation state of its HORMA domain, can act as a critical determinant of mutagenic versus error-free repair in multiple contexts.


Sujet(s)
Protéines du cycle cellulaire , Réparation de l'ADN , Protéines Mad2 , ATPases associated with diverse cellular activities/génétique , ATPases associated with diverse cellular activities/métabolisme , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Réplication de l'ADN , Protéines Mad2/génétique , Protéines Mad2/métabolisme
2.
Cancer Res ; 81(10): 2774-2787, 2021 05 15.
Article de Anglais | MEDLINE | ID: mdl-33514515

RÉSUMÉ

Homologous recombination (HR)-deficient cancers are sensitive to poly-ADP ribose polymerase inhibitors (PARPi), which have shown clinical efficacy in the treatment of high-grade serous cancers (HGSC). However, the majority of patients will relapse, and acquired PARPi resistance is emerging as a pressing clinical problem. Here we generated seven single-cell clones with acquired PARPi resistance derived from a PARPi-sensitive TP53 -/- and BRCA1 -/- epithelial cell line generated using CRISPR/Cas9. These clones showed diverse resistance mechanisms, and some clones presented with multiple mechanisms of resistance at the same time. Genomic analysis of the clones revealed unique transcriptional and mutational profiles and increased genomic instability in comparison with a PARPi-sensitive cell line. Clonal evolutionary analyses suggested that acquired PARPi resistance arose via clonal selection from an intrinsically unstable and heterogenous cell population in the sensitive cell line, which contained preexisting drug-tolerant cells. Similarly, clonal and spatial heterogeneity in tumor biopsies from a clinical patient with BRCA1-mutant HGSC with acquired PARPi resistance was observed. In an imaging-based drug screening, the clones showed heterogenous responses to targeted therapeutic agents, indicating that not all PARPi-resistant clones can be targeted with just one therapy. Furthermore, PARPi-resistant clones showed mechanism-dependent vulnerabilities to the selected agents, demonstrating that a deeper understanding on the mechanisms of resistance could lead to improved targeting and biomarkers for HGSC with acquired PARPi resistance. SIGNIFICANCE: This study shows that BRCA1-deficient cells can give rise to multiple genomically and functionally heterogenous PARPi-resistant clones, which are associated with various vulnerabilities that can be targeted in a mechanism-specific manner.


Sujet(s)
Protéine BRCA1/physiologie , Évolution clonale , Résistance aux médicaments antinéoplasiques , Régulation de l'expression des gènes tumoraux , Tumeurs de l'ovaire/traitement médicamenteux , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacologie , Protéine p53 suppresseur de tumeur/physiologie , Animaux , Apoptose , Prolifération cellulaire , Femelle , Instabilité du génome , Recombinaison homologue , Humains , Souris , Souris knockout , Tumeurs de l'ovaire/génétique , Tumeurs de l'ovaire/métabolisme , Tumeurs de l'ovaire/anatomopathologie , Transcriptome , Cellules cancéreuses en culture
3.
Proc Natl Acad Sci U S A ; 117(43): 26795-26803, 2020 10 27.
Article de Anglais | MEDLINE | ID: mdl-33051298

RÉSUMÉ

The repair of DNA double strand breaks (DSBs) that arise from external mutagenic agents and routine cellular processes is essential for life. DSBs are repaired by two major pathways, homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). DSB repair pathway choice is largely dictated at the step of 5'-3' DNA end resection, which is promoted during S phase, in part by BRCA1. Opposing end resection is the 53BP1 protein, which recruits the ssDNA-binding REV7-Shieldin complex to favor C-NHEJ repair. We recently identified TRIP13 as a proresection factor that remodels REV7, causing its dissociation from the Shieldin subunit SHLD3. Here, we identify p31comet, a negative regulator of MAD2 and the spindle assembly checkpoint, as an important mediator of the TRIP13-REV7 interaction. p31comet binds to the REV7-Shieldin complex in cells, promotes REV7 inactivation, and causes PARP inhibitor resistance. p31comet also participates in the extraction of REV7 from the chromatin. Furthermore, p31comet can counteract REV7 function in translesion synthesis (TLS) by releasing it from REV3 in the Pol ζ complex. Finally, p31comet, like TRIP13, is overexpressed in many cancers and this correlates with poor prognosis. Thus, we reveal a key player in the regulation of HR and TLS with significant clinical implications.


Sujet(s)
ATPases associated with diverse cellular activities/métabolisme , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines du cycle cellulaire/métabolisme , Protéines Mad2/métabolisme , Protéines nucléaires/métabolisme , Réparation de l'ADN par recombinaison , Lignée cellulaire tumorale , Cellules HEK293 , Humains , Tumeurs/génétique , Tumeurs/métabolisme , Tumeurs/mortalité
4.
Cell Cycle ; 19(13): 1565-1575, 2020 07.
Article de Anglais | MEDLINE | ID: mdl-32420796

RÉSUMÉ

In the past decade, the study of the major DNA double strand break (DSB) repair pathways, homologous recombination (HR) and classical non-homologous end joining (C-NHEJ), has revealed a vast and intricate network of regulation.  The choice between HR and C-NHEJ is largely controlled at the step of DNA end-resection. A pro-C-NHEJ cascade commencing with 53BP1 and culminating in the newly discovered REV7-Shieldin complex impedes end resection and therefore HR. Importantly, loss of any component of this pathway confers PARP inhibitor resistance in BRCA1-deficient cells; hence, their study is of great clinical importance. The newest entrant on the scene of end resection regulation is the ATPase TRIP13 that disables the pro-C-NHEJ cascade by promoting a novel conformational change of the HORMA protein REV7. Here, we tie these new findings and factors with previous research on the regulation of DSB repair and HORMA proteins, and suggest testable hypotheses for how TRIP13 could specifically inactivate REV7-Shieldin to promote HR. We also discuss these biological questions in the context of clinical therapeutics.


Sujet(s)
Protéines du cycle cellulaire/métabolisme , Complexes multiprotéiques/métabolisme , Séquence d'acides aminés , Animaux , Instabilité du génome , Humains , Modèles moléculaires , Complexes multiprotéiques/composition chimique , Liaison aux protéines
5.
Nat Cell Biol ; 22(1): 87-96, 2020 01.
Article de Anglais | MEDLINE | ID: mdl-31915374

RÉSUMÉ

DNA double-strand breaks (DSBs) are repaired through homology-directed repair (HDR) or non-homologous end joining (NHEJ). BRCA1/2-deficient cancer cells cannot perform HDR, conferring sensitivity to poly(ADP-ribose) polymerase inhibitors (PARPi). However, concomitant loss of the pro-NHEJ factors 53BP1, RIF1, REV7-Shieldin (SHLD1-3) or CST-DNA polymerase alpha (Pol-α) in BRCA1-deficient cells restores HDR and PARPi resistance. Here, we identify the TRIP13 ATPase as a negative regulator of REV7. We show that REV7 exists in active 'closed' and inactive 'open' conformations, and TRIP13 catalyses the inactivating conformational change, thereby dissociating REV7-Shieldin to promote HDR. TRIP13 similarly disassembles the REV7-REV3 translesion synthesis (TLS) complex, a component of the Fanconi anaemia pathway, inhibiting error-prone replicative lesion bypass and interstrand crosslink repair. Importantly, TRIP13 overexpression is common in BRCA1-deficient cancers, confers PARPi resistance and correlates with poor prognosis. Thus, TRIP13 emerges as an important regulator of DNA repair pathway choice-promoting HDR, while suppressing NHEJ and TLS.


Sujet(s)
ATPases associated with diverse cellular activities/génétique , Protéine BRCA1/déficit , Protéines du cycle cellulaire/génétique , Réparation de l'ADN/génétique , Réparation de l'ADN par recombinaison/génétique , ATPases associated with diverse cellular activities/effets des médicaments et des substances chimiques , Protéines du cycle cellulaire/effets des médicaments et des substances chimiques , Protéines du cycle cellulaire/métabolisme , Altération de l'ADN/effets des médicaments et des substances chimiques , Réparation de l'ADN par jonction d'extrémités/génétique , Réparation de l'ADN/effets des médicaments et des substances chimiques , Réplication de l'ADN/effets des médicaments et des substances chimiques , Réplication de l'ADN/génétique , Humains , Protéines Mad2/génétique , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacologie , Protéines télomériques/effets des médicaments et des substances chimiques , Protéines télomériques/génétique
6.
Proc Natl Acad Sci U S A ; 109(17): 6632-7, 2012 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-22493258

RÉSUMÉ

DNA is susceptible to damage by a wide variety of chemical agents that are generated either as byproducts of cellular metabolism or exposure to man-made and harmful environments. Therefore, to maintain genomic integrity, having reliable DNA repair systems is important. DNA polymerase ß is known to be a key player in the base excision repair pathway, and mice devoid of DNA polymerase beta do not live beyond a few hours after birth. In this study, we characterized mice harboring an impaired pol ß variant. This Y265C pol ß variant exhibits slow DNA polymerase activity but WT lyase activity and has been shown to be a mutator polymerase. Mice expressing Y265C pol ß are born at normal Mendelian ratios. However, they are small, and 60% die within a few hours after birth. Slow proliferation and significantly increased levels of cell death are observed in many organs of the E14 homozygous embryos compared with WT littermates. Mouse embryo fibroblasts prepared from the Y265C pol ß embryos proliferate at a rate slower than WT cells and exhibit a gap-filling deficiency during base excision repair. As a result of this, chromosomal aberrations and single- and double-strand breaks are present at significantly higher levels in the homozygous mutant versus WT mouse embryo fibroblasts. This is study in mice is unique in that two enzymatic activities of pol ß have been separated; the data clearly demonstrate that the DNA polymerase activity of pol ß is essential for survival and genome stability.


Sujet(s)
DNA polymerase beta/génétique , Réparation de l'ADN , Survie , Animaux , Apoptose/effets des médicaments et des substances chimiques , Séquence nucléotidique , Prolifération cellulaire , Cellules cultivées , Aberrations des chromosomes , Amorces ADN , Cytométrie en flux , Techniques de knock-in de gènes , Homozygote , Méthanesulfonate de méthyle/pharmacologie , Souris , Souris transgéniques , Réaction de polymérisation en chaîne
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...