Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 47
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
medRxiv ; 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-39006424

RÉSUMÉ

Diagnostic approaches that combine the high sensitivity and specificity of laboratory-based digital detection with the ease of use and affordability of point-of-care (POC) technologies could revolutionize disease diagnostics. This is especially true in infectious disease diagnostics, where rapid and accurate pathogen detection is critical to curbing the spread of disease. We have pioneered an innovative label-free digital detection platform that utilizes Interferometric Reflectance Imaging Sensor (IRIS) technology. IRIS leverages light interference from an optically transparent thin film, eliminating the need for complex optical resonances to enhance the signal by harnessing light interference and the power of signal averaging in shot-noise-limited operation to achieve virtually unlimited sensitivity. In our latest work, we have further improved our previous 'Single-Particle' IRIS (SP-IRIS) technology by allowing the construction of the optical signature of target nanoparticles (whole virus) from a single image. This new platform, 'Pixel-Diversity' IRIS (PD-IRIS), eliminated the need for z-scan acquisition, required in SP-IRIS, a time-consuming and expensive process, and made our technology more applicable to POC settings. Using PD-IRIS, we quantitatively detected the Monkeypox virus (MPXV), the etiological agent for Monkeypox (Mpox) infection. MPXV was captured by anti-A29 monoclonal antibody (mAb 69-126-3) on Protein G spots on the sensor chips and were detected at a limit-of-detection (LOD) - of 200 PFU/ml (∼3.3 attomolar). PD-IRIS was superior to the laboratory-based ELISA (LOD - 1800 PFU/mL) used as a comparator. The specificity of PD-IRIS in MPXV detection was demonstrated using Herpes simplex virus, type 1 (HSV-1), and Cowpox virus (CPXV). This work establishes the effectiveness of PD-IRIS and opens possibilities for its advancement in clinical diagnostics of Mpox at POC. Moreover, PD-IRIS is a modular technology that can be adapted for the multiplex detection of pathogens for which high-affinity ligands are available that can bind their surface antigens to capture them on the sensor surface.

2.
Viruses ; 16(5)2024 04 24.
Article de Anglais | MEDLINE | ID: mdl-38793544

RÉSUMÉ

The continuing mutability of the SARS-CoV-2 virus can result in failures of diagnostic assays. To address this, we describe a generalizable bioinformatics-to-biology pipeline developed for the calibration and quality assurance of inactivated SARS-CoV-2 variant panels provided to Radical Acceleration of Diagnostics programs (RADx)-radical program awardees. A heuristic genetic analysis based on variant-defining mutations demonstrated the lowest genetic variance in the Nucleocapsid protein (Np)-C-terminal domain (CTD) across all SARS-CoV-2 variants. We then employed the Shannon entropy method on (Np) sequences collected from the major variants, verifying the CTD with lower entropy (less prone to mutations) than other Np regions. Polyclonal and monoclonal antibodies were raised against this target CTD antigen and used to develop an Enzyme-linked immunoassay (ELISA) test for SARS-CoV-2. Blinded Viral Quality Assurance (VQA) panels comprised of UV-inactivated SARS-CoV-2 variants (XBB.1.5, BF.7, BA.1, B.1.617.2, and WA1) and distractor respiratory viruses (CoV 229E, CoV OC43, RSV A2, RSV B, IAV H1N1, and IBV) were assembled by the RADx-rad Diagnostics core and tested using the ELISA described here. The assay tested positive for all variants with high sensitivity (limit of detection: 1.72-8.78 ng/mL) and negative for the distractor virus panel. Epitope mapping for the monoclonal antibodies identified a 20 amino acid antigenic peptide on the Np-CTD that an in-silico program also predicted for the highest antigenicity. This work provides a template for a bioinformatics pipeline to select genetic regions with a low propensity for mutation (low Shannon entropy) to develop robust 'pan-variant' antigen-based assays for viruses prone to high mutational rates.


Sujet(s)
Antigènes viraux , COVID-19 , Protéines de la nucléocapside des coronavirus , Phosphoprotéines , SARS-CoV-2 , SARS-CoV-2/immunologie , SARS-CoV-2/génétique , Humains , Protéines de la nucléocapside des coronavirus/immunologie , Protéines de la nucléocapside des coronavirus/génétique , COVID-19/diagnostic , COVID-19/immunologie , COVID-19/virologie , Antigènes viraux/immunologie , Antigènes viraux/génétique , Phosphoprotéines/immunologie , Phosphoprotéines/génétique , Test ELISA/méthodes , Test ELISA/normes , Dépistage sérologique de la COVID-19/méthodes , Dépistage sérologique de la COVID-19/normes , Anticorps antiviraux/immunologie , Anticorps monoclonaux/immunologie , Biologie informatique/méthodes , Mutation , Animaux
3.
bioRxiv ; 2024 May 03.
Article de Anglais | MEDLINE | ID: mdl-38746287

RÉSUMÉ

Viral infection induces production of type I interferons and expression of interferon-stimulated genes (ISGs) that play key roles in inhibiting viral infection. Here, we show that the ISG guanylate-binding protein 5 (GBP5) inhibits N-linked glycosylation of key proteins in multiple viruses, including SARS-CoV-2 spike protein. GBP5 binds to accessory subunits of the host oligosaccharyltransferase (OST) complex and blocks its interaction with the spike protein, which results in misfolding and retention of spike protein in the endoplasmic reticulum likely due to decreased N-glycan transfer, and reduces the assembly and release of infectious virions. Consistent with these observations, pharmacological inhibition of the OST complex with NGI-1 potently inhibits glycosylation of other viral proteins, including MERS-CoV spike protein, HIV-1 gp160, and IAV hemagglutinin, and prevents the production of infectious virions. Our results identify a novel strategy by which ISGs restrict virus infection and provide a rationale for targeting glycosylation as a broad antiviral therapeutic strategy.

4.
Breastfeed Med ; 18(10): 785-789, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37733262

RÉSUMÉ

Objectives: Breastfeeding and human milk (HM) improve maternal and infant morbidities and mortality. Therefore, monitoring the safety of breastfeeding and access to HM is of critical importance. In this study, we assessed tools to monitor the presence of monkeypox virus (MPXV) in HM and whether standard Holder pasteurization inactivates MPXV. Materials and Methods: Heat-inactivated MPXV was added to HM or viral transport media (VTM) and analyzed using both research and clinical MPXV quantitative polymerase chain reaction (qPCR) tests. Infectious MPXV was added to HM and was exposed to 1 cycle of freeze-thaw, incubation for 1 hour at room temperature, or conditions of Holder pasteurization (62.5°C for 30 minutes) followed by infectious unit quantification by plaque assay. Results: Research and clinical nucleic acid tests detect MPXV that was added to HM but with reduced sensitivity compared with equivalent samples in VTM at low virus inoculum. MPXV added to HM to achieve a starting concentration of 225,000 plaque forming units (pfu)/mL remains infectious after freeze-thaw or 1 hour storage at room temperature. However, Holder pasteurization reduced infectious virus below the limit of detection, >2,000-fold reduction in viral titer. Conclusion: MPXV can be detected when added to HM using a clinical laboratory-developed qPCR test without modification, but the detection limit is reduced compared with equivalent samples in VTM. MPXV remains viable in HM should the virus ever gain access to HM, but Holder pasteurization reduces infectious MPXV to below detection limits and can be used to reduce the risk of MPXV transmission to infants who receive pasteurized (donor) HM.


Sujet(s)
Lait humain , Virus de la variole simienne , Femelle , Humains , Allaitement naturel , Pasteurisation , Température élevée
5.
Antiviral Res ; 219: 105718, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37758067

RÉSUMÉ

Broad spectrum oral antivirals are urgently needed for the early treatment of many RNA viruses of clinical concern. We previously described the synthesis of 1-O-octadecyl-2-O-benzyl-glycero-3-phospho-RVn (V2043), an orally bioavailable lipid prodrug of remdesivir nucleoside (RVn, GS-441524) with broad spectrum antiviral activity against viruses with pandemic potential. Here we compared the relative activity of V2043 with new RVn lipid prodrugs containing sn-1 alkyl ether or sn-2 glycerol modifications. We found that 3-F-4-MeO-Bn, 3-CN-Bn, and 4-CN-Bn sn-2 glycerol modifications improved antiviral activity compared to V2043 when tested in vitro against clinically important RNA viruses from 5 virus families. These results support the continued development of V2043 and sn-2 glycerol modified RVn lipid prodrugs for the treatment of a broad range of RNA viruses for which there are limited therapies.


Sujet(s)
Antiviraux , Promédicaments , Antiviraux/pharmacologie , Promédicaments/pharmacologie , Nucléosides/pharmacologie , Glycérol , Lipides/pharmacologie
6.
J Med Chem ; 66(8): 5802-5819, 2023 04 27.
Article de Anglais | MEDLINE | ID: mdl-37040439

RÉSUMÉ

Early antiviral treatments, including intravenous remdesivir (RDV), reduce hospitalization and severe disease caused by COVID-19. An orally bioavailable RDV analog may facilitate earlier treatment of non-hospitalized COVID-19 patients. Here we describe the synthesis and evaluation of alkyl glyceryl ether phosphodiesters of GS-441524 (RVn), lysophospholipid analogs which allow for oral bioavailability and stability in plasma. Oral treatment of SARS-CoV-2-infected BALB/c mice with 1-O-octadecyl-2-O-benzyl-sn-glyceryl-3-phospho-RVn (60 mg/kg orally, once daily for 5 days starting 12h after infection) reduced lung viral load by 1.5 log10 units versus vehicle at day 2 and to below the limit of detection at day 5. Structure/activity evaluation of additional analogs that have hydrophobic ethers at the sn-2 of glycerol revealed improved in vitro antiviral activity by introduction of a 3-fluoro-4-methoxy-substituted benzyl or a 3- or 4-cyano-substituted benzyl. Collectively, our data support the development of RVn phospholipid prodrugs as oral antiviral agents for prevention and treatment of SARS-CoV-2 infections.


Sujet(s)
Antiviraux , COVID-19 , Animaux , Souris , SARS-CoV-2 , Phospholipides
7.
Open Forum Infect Dis ; 10(4): ofad154, 2023 Apr.
Article de Anglais | MEDLINE | ID: mdl-37096144

RÉSUMÉ

The factors contributing to the rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) BA.4 and BA.5 subvariants in populations that experienced recent surges of BA.2 and BA.2.12.1 infections are not understood. Neutralizing antibodies (NAbs) are likely to protect against severe disease if present in sufficient quantity. We found that after BA.2 or BA.2.12.1 infection, NAb responses were largely cross-neutralizing but were much less effective against BA.5. In addition, individuals who were infected and treated early with nirmatrelvir/ritonavir (Paxlovid) had lower NAb levels than untreated individuals.

8.
bioRxiv ; 2023 Jan 27.
Article de Anglais | MEDLINE | ID: mdl-36747824

RÉSUMÉ

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) causes an acute respiratory distress syndrome (ARDS) that resembles surfactant deficient RDS. Using a novel multi-cell type, human induced pluripotent stem cell (hiPSC)-derived lung organoid (LO) system, validated against primary lung cells, we found that inflammatory cytokine/chemokine production and interferon (IFN) responses are dynamically regulated autonomously within the lung following SARS-CoV-2 infection, an intrinsic defense mechanism mediated by surfactant proteins (SP). Single cell RNA sequencing revealed broad infectability of most lung cell types through canonical (ACE2) and non-canonical (endocytotic) viral entry routes. SARS-CoV-2 triggers rapid apoptosis, impairing viral dissemination. In the absence of surfactant protein B (SP-B), resistance to infection was impaired and cytokine/chemokine production and IFN responses were modulated. Exogenous surfactant, recombinant SP-B, or genomic correction of the SP-B deletion restored resistance to SARS-CoV-2 and improved viability.

9.
Nat Commun ; 14(1): 948, 2023 02 20.
Article de Anglais | MEDLINE | ID: mdl-36804936

RÉSUMÉ

Small molecule inhibitors of glycosylation enzymes are valuable tools for dissecting glycan functions and potential drug candidates. Screening for inhibitors of glycosyltransferases are mainly performed by in vitro enzyme assays with difficulties moving candidates to cells and animals. Here, we circumvent this by employing a cell-based screening assay using glycoengineered cells expressing tailored reporter glycoproteins. We focused on GalNAc-type O-glycosylation and selected the GalNAc-T11 isoenzyme that selectively glycosylates endocytic low-density lipoprotein receptor (LDLR)-related proteins as targets. Our screen of a limited small molecule compound library did not identify selective inhibitors of GalNAc-T11, however, we identify two compounds that broadly inhibited Golgi-localized glycosylation processes. These compounds mediate the reversible fragmentation of the Golgi system without affecting secretion. We demonstrate how these inhibitors can be used to manipulate glycosylation in cells to induce expression of truncated O-glycans and augment binding of cancer-specific Tn-glycoprotein antibodies and to inhibit expression of heparan sulfate and binding and infection of SARS-CoV-2.


Sujet(s)
COVID-19 , SARS-CoV-2 , Animaux , Glycosylation , SARS-CoV-2/métabolisme , Glycoprotéines/métabolisme , Polyosides/métabolisme
10.
Anal Chem ; 95(7): 3789-3798, 2023 02 21.
Article de Anglais | MEDLINE | ID: mdl-36753444

RÉSUMÉ

Transmembrane protease serine 2 (TMPRSS2) is a plasma membrane protease that activates both spike protein of coronaviruses for cell entry and oncogenic signaling pathways for tumor progression. TMPRSS2 inhibition can reduce cancer invasion and metastasis and partially prevent the entry of SARS-CoV-2 into host cells. Thus, there is an urgent need for both TMPRSS2-selective imaging and precise screening of TMPRSS2 inhibitors. Here, we report a TMPRSS2-responsive surface-potential-tunable peptide-conjugated probe (EGTP) with aggregation-induced emission (AIE) features for TMPRSS2 selective imaging and accurate inhibitor screening. The amphiphilic EGTP was constructed with tunable surface potential and responsive efficiency with TMPRSS2 and its inhibitor. The rational construction of AIE luminogens (AIEgens) with modular peptides indicated that the cleavage of EGTP led to a gradual aggregation with bright fluorescence in high TMPRSS2-expressing cells. This strategy may have value for selective detection of cancer cells, SARS-CoV-2-target cells, and screening of protease inhibitors.


Sujet(s)
COVID-19 , Peptide hydrolases , Humains , SARS-CoV-2 , Membrane cellulaire , Inhibiteurs de protéases , Pénétration virale , Serine endopeptidases
11.
Proc Natl Acad Sci U S A ; 120(5): e2210361120, 2023 Jan 31.
Article de Anglais | MEDLINE | ID: mdl-36689652

RÉSUMÉ

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a major health problem worldwide. Due to the fast emergence of SARS-CoV-2 variants, understanding the molecular mechanisms of viral pathogenesis and developing novel inhibitors are essential and urgent. Here, we investigated the potential roles of N6,2'-O-dimethyladenosine (m6Am), one of the most abundant modifications of eukaryotic messenger ribonucleic acid (mRNAs), in SARS-CoV-2 infection of human cells. Using genome-wide m6Am-exo-seq, RNA sequencing analysis, and Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing, we demonstrate that phosphorylated C-terminal domain (CTD)-interacting factor 1 (PCIF1), a cap-specific adenine N6-methyltransferase, plays a major role in facilitating infection of primary human lung epithelial cells and cell lines by SARS-CoV-2, variants of concern, and other coronaviruses. We show that PCIF1 promotes infection by sustaining expression of the coronavirus receptors angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) via m6Am-dependent mRNA stabilization. In PCIF1-depleted cells, both ACE2/TMPRSS2 expression and viral infection are rescued by re-expression of wild-type, but not catalytically inactive, PCIF1. These findings suggest a role for PCIF1 and cap m6Am in regulating SARS-CoV-2 susceptibility and identify a potential therapeutic target for prevention of infection.


Sujet(s)
COVID-19 , Humains , SARS-CoV-2/génétique , Angiotensin-converting enzyme 2 , ARN messager/génétique , Protéines nucléaires/génétique , Protéines adaptatrices de la transduction du signal/génétique , Serine endopeptidases
12.
Clin Infect Dis ; 76(3): e530-e532, 2023 02 08.
Article de Anglais | MEDLINE | ID: mdl-35723411

RÉSUMÉ

We isolated a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) BA.2 variant from a person with coronavirus disease 2019 recrudescence after nirmatrelvir/ritonavir treatment. Antiviral sensitivity and neutralizing antibody testing were performed with both parental SARS-CoV-2 and multiple variants of concern. We found that neither nirmatrelvir resistance nor absence of neutralizing immunity was a likely cause of the recrudescence.


Sujet(s)
COVID-19 , Humains , SARS-CoV-2 , Ritonavir/usage thérapeutique , Traitements médicamenteux de la COVID-19
13.
Viruses ; 14(12)2022 12 18.
Article de Anglais | MEDLINE | ID: mdl-36560827

RÉSUMÉ

The recent development and mass administration of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) vaccines allowed for disease control, reducing hospitalizations and mortality. Most of these vaccines target the SARS-CoV-2 Spike (S) protein antigens, culminating with the production of neutralizing antibodies (NAbs) that disrupt the attachment of the virus to ACE2 receptors on the host cells. However, several studies demonstrated that the NAbs typically rise within a few weeks after vaccination but quickly reduce months later. Thus, multiple booster administration is recommended, leading to vaccination hesitancy in many populations. Detecting serum anti-SARS-CoV-2 NAbs can instruct patients and healthcare providers on correct booster strategies. Several in vitro diagnostics kits are available; however, their high cost impairs the mass NAbs diagnostic testing. Recently, we engineered an ACE2 mimetic that interacts with the Receptor Binding Domain (RBD) of the SARS-2 S protein. Here we present the use of this engineered mini-protein (p-deface2 mut) to develop a detection assay to measure NAbs in patient sera using a competitive ELISA assay. Serum samples from twenty-one patients were tested. Nine samples (42.8%) tested positive, and twelve (57.1%) tested negative for neutralizing sera. The data correlated with the result from the standard commercial assay that uses human ACE2 protein. This confirmed that p-deface2 mut could replace human ACE2 in ELISA assays. Using bacterially expressed p-deface2 mut protein is cost-effective and may allow mass SARS-CoV-2 NAbs detection, especially in low-income countries where economical diagnostic testing is crucial. Such information will help providers decide when a booster is required, reducing risks of reinfection and preventing the administration before it is medically necessary.


Sujet(s)
COVID-19 , SARS-CoV-2 , Humains , Angiotensin-converting enzyme 2 , COVID-19/diagnostic , Anticorps antiviraux , Anticorps neutralisants , Glycoprotéine de spicule des coronavirus
14.
J Chem Inf Model ; 62(24): 6825-6843, 2022 12 26.
Article de Anglais | MEDLINE | ID: mdl-36239304

RÉSUMÉ

The Zika virus (ZIKV) is a neurotropic arbovirus considered a global threat to public health. Although there have been several efforts in drug discovery projects for ZIKV in recent years, there are still no antiviral drugs approved to date. Here, we describe the results of a global collaborative crowdsourced open science project, the OpenZika project, from IBM's World Community Grid (WCG), which integrates different computational and experimental strategies for advancing a drug candidate for ZIKV. Initially, molecular docking protocols were developed to identify potential inhibitors of ZIKV NS5 RNA-dependent RNA polymerase (NS5 RdRp), NS3 protease (NS2B-NS3pro), and NS3 helicase (NS3hel). Then, a machine learning (ML) model was built to distinguish active vs inactive compounds for the cytoprotective effect against ZIKV infection. We performed three independent target-based virtual screening campaigns (NS5 RdRp, NS2B-NS3pro, and NS3hel), followed by predictions by the ML model and other filters, and prioritized a total of 61 compounds for further testing in enzymatic and phenotypic assays. This yielded five non-nucleoside compounds which showed inhibitory activity against ZIKV NS5 RdRp in enzymatic assays (IC50 range from 0.61 to 17 µM). Two compounds thermally destabilized NS3hel and showed binding affinity in the micromolar range (Kd range from 9 to 35 µM). Moreover, the compounds LabMol-301 inhibited both NS5 RdRp and NS2B-NS3pro (IC50 of 0.8 and 7.4 µM, respectively) and LabMol-212 thermally destabilized the ZIKV NS3hel (Kd of 35 µM). Both also protected cells from death induced by ZIKV infection in in vitro cell-based assays. However, while eight compounds (including LabMol-301 and LabMol-212) showed a cytoprotective effect and prevented ZIKV-induced cell death, agreeing with our ML model for prediction of this cytoprotective effect, no compound showed a direct antiviral effect against ZIKV. Thus, the new scaffolds discovered here are promising hits for future structural optimization and for advancing the discovery of further drug candidates for ZIKV. Furthermore, this work has demonstrated the importance of the integration of computational and experimental approaches, as well as the potential of large-scale collaborative networks to advance drug discovery projects for neglected diseases and emerging viruses, despite the lack of available direct antiviral activity and cytoprotective effect data, that reflects on the assertiveness of the computational predictions. The importance of these efforts rests with the need to be prepared for future viral epidemic and pandemic outbreaks.


Sujet(s)
Antiviraux , Inhibiteurs de protéases , Virus Zika , Humains , Antiviraux/pharmacologie , Antiviraux/composition chimique , Simulation de docking moléculaire , Peptide hydrolases , Inhibiteurs de protéases/pharmacologie , Inhibiteurs de protéases/composition chimique , RNA replicase/métabolisme , Protéines virales non structurales/composition chimique , Virus Zika/effets des médicaments et des substances chimiques , Virus Zika/enzymologie , Infection par le virus Zika/traitement médicamenteux
15.
Nat Commun ; 13(1): 5341, 2022 09 12.
Article de Anglais | MEDLINE | ID: mdl-36097162

RÉSUMÉ

The emergence of Zika virus (ZIKV) as a global health threat has highlighted the unmet need for ZIKV-specific vaccines and antiviral treatments. ZIKV infects dendritic cells (DC), which have pivotal functions in activating innate and adaptive antiviral responses; however, the mechanisms by which DC function is subverted to establish ZIKV infection are unclear. Here we develop a genomics profiling method that enables discrete analysis of ZIKV-infected versus neighboring, uninfected primary human DCs to increase the sensitivity and specificity with which ZIKV-modulated pathways can be identified. The results show that ZIKV infection specifically increases the expression of genes enriched for lipid metabolism-related functions. ZIKV infection also increases the recruitment of sterol regulatory element-binding protein (SREBP) transcription factors to lipid gene promoters, while pharmacologic inhibition or genetic silencing of SREBP2 suppresses ZIKV infection of DCs. Our data thus identify SREBP2-activated transcription as a mechanism for promoting ZIKV infection amenable to therapeutic targeting.


Sujet(s)
Infection par le virus Zika , Virus Zika , Antiviraux/pharmacologie , Cellules dendritiques , Humains , Lipides , Transcription génétique
16.
Commun Biol ; 5(1): 789, 2022 08 05.
Article de Anglais | MEDLINE | ID: mdl-35931732

RÉSUMÉ

As new variants of SARS-CoV-2 continue to emerge, it is important to assess the cross-neutralizing capabilities of antibodies naturally elicited during wild type SARS-CoV-2 infection. In the present study, we evaluate the activity of nine anti-SARS-CoV-2 monoclonal antibodies (mAbs), previously isolated from convalescent donors infected with the Wuhan-Hu-1 strain, against the SARS-CoV-2 variants of concern (VOC) Alpha, Beta, Gamma, Delta and Omicron. By testing an array of mutated spike receptor binding domain (RBD) proteins, cell-expressed spike proteins from VOCs, and neutralization of SARS-CoV-2 VOCs as pseudoviruses, or as the authentic viruses in culture, we show that mAbs directed against the ACE2 binding site (ACE2bs) are more sensitive to viral evolution compared to anti-RBD non-ACE2bs mAbs, two of which retain their potency against all VOCs tested. At the second part of our study, we reveal the neutralization mechanisms at high molecular resolution of two anti-SARS-CoV-2 neutralizing mAbs by structural characterization. We solve the structures of the Delta-neutralizing ACE2bs mAb TAU-2303 with the SARS-CoV-2 spike trimer and RBD at 4.5 Å and 2.42 Å resolutions, respectively, revealing a similar mode of binding to that between the RBD and ACE2. Furthermore, we provide five additional structures (at resolutions of 4.7 Å, 7.3 Å, 6.4 Å, 3.3 Å, and 6.1 Å) of a second antibody, TAU-2212, complexed with the SARS-CoV-2 spike trimer. TAU-2212 binds an exclusively quaternary epitope, and exhibits a unique, flexible mode of neutralization that involves transitioning between five different conformations, with both arms of the antibody recruited for cross linking intra- and inter-spike RBD subunits. Our study provides additional mechanistic understanding about how antibodies neutralize SARS-CoV-2 and its emerging variants and provides insights on the likelihood of reinfections.


Sujet(s)
COVID-19 , SARS-CoV-2 , Anticorps monoclonaux/composition chimique , Anticorps antiviraux , Humains , Tests de neutralisation , Glycoprotéine de spicule des coronavirus/composition chimique
17.
Anal Chem ; 94(34): 11728-11733, 2022 08 30.
Article de Anglais | MEDLINE | ID: mdl-35973073

RÉSUMÉ

Existing tools to detect and visualize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suffer from low selectivity, poor cell permeability, and high cytotoxicity. Here we report a novel self-immolative fluorescent probe (MP590) for the highly selective and sensitive detection of the SARS-CoV-2 main protease (Mpro). This fluorescent probe was prepared by connecting a Mpro-cleavable peptide (N-acetyl-Abu-Tle-Leu-Gln) with a fluorophore (i.e., resorufin) via a self-immolative aromatic linker. Fluorescent titration results show that MP590 can detect Mpro with a limit of detection (LoD) of 35 nM and is selective over interferents such as hemoglobin, bovine serum albumin (BSA), thrombin, amylase, SARS-CoV-2 papain-like protease (PLpro), and trypsin. The cell imaging data indicate that this probe can report Mpro in HEK 293T cells transfected with a Mpro expression plasmid as well as in TMPRSS2-VeroE6 cells infected with SARS-CoV-2. Our results suggest that MP590 can both measure and monitor Mpro activity and quantitatively evaluate Mpro inhibition in infected cells, making it an important tool for diagnostic and therapeutic research on SARS-CoV-2.


Sujet(s)
COVID-19 , Protéases 3C des coronavirus , Colorants fluorescents , COVID-19/diagnostic , Protéases 3C des coronavirus/analyse , Humains , SARS-CoV-2/enzymologie
18.
ACS Nano ; 16(8): 12305-12317, 2022 08 23.
Article de Anglais | MEDLINE | ID: mdl-35878004

RÉSUMÉ

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious threat to human health and lacks an effective treatment. There is an urgent need for both real-time tracking and precise treatment of the SARS-CoV-2-infected cells to mitigate and ultimately prevent viral transmission. However, selective triggering and tracking of the therapeutic process in the infected cells remains challenging. Here, we report a main protease (Mpro)-responsive, mitochondrial-targeting, and modular-peptide-conjugated probe (PSGMR) for selective imaging and inhibition of SARS-CoV-2-infected cells via enzyme-instructed self-assembly and aggregation-induced emission (AIE) effect. The amphiphilic PSGMR was constructed with tunable structure and responsive efficiency and validated with recombinant proteins, cells transfected with Mpro plasmid or infected by SARS-CoV-2, and a Mpro inhibitor. By rational construction of AIE luminogen (AIEgen) with modular peptides and Mpro, we verified that the cleavage of PSGMR yielded gradual aggregation with bright fluorescence and enhanced cytotoxicity to induce mitochondrial interference of the infected cells. This strategy may have value for selective detection and treatment of SARS-CoV-2-infected cells.


Sujet(s)
COVID-19 , SARS-CoV-2 , Humains , Antiviraux/pharmacologie , Antiviraux/composition chimique , Protéases 3C des coronavirus , Peptides/pharmacologie , Peptides/métabolisme
19.
PLoS Pathog ; 18(7): e1010686, 2022 07.
Article de Anglais | MEDLINE | ID: mdl-35862442

RÉSUMÉ

Successful control of the COVID-19 pandemic depends on vaccines that prevent transmission. The full-length Spike protein is highly immunogenic but the majority of antibodies do not target the virus: ACE2 interface. In an effort to affect the quality of the antibody response focusing it to the receptor-binding motif (RBM) we generated a series of conformationally-constrained immunogens by inserting solvent-exposed RBM amino acid residues into hypervariable loops of an immunoglobulin molecule. Priming C57BL/6 mice with plasmid (p)DNA encoding these constructs yielded a rapid memory response to booster immunization with recombinant Spike protein. Immune sera antibodies bound strongly to the purified receptor-binding domain (RBD) and Spike proteins. pDNA primed for a consistent response with antibodies efficient at neutralizing authentic WA1 virus and three variants of concern (VOC), B.1.351, B.1.617.2, and BA.1. We demonstrate that immunogens built on structure selection can be used to influence the quality of the antibody response by focusing it to a conserved site of vulnerability shared between wildtype virus and VOCs, resulting in neutralizing antibodies across variants.


Sujet(s)
Anticorps neutralisants , COVID-19 , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus , Animaux , Anticorps neutralisants/immunologie , Anticorps antiviraux , COVID-19/prévention et contrôle , Souris , Souris de lignée C57BL , Pandémies/prévention et contrôle , Glycoprotéine de spicule des coronavirus/immunologie
20.
Res Sq ; 2022 May 18.
Article de Anglais | MEDLINE | ID: mdl-35611335

RÉSUMÉ

We isolated a SARS-CoV-2 BA.2 variant from a person with COVID-19 recrudescence after nirmatrelvir/ritonavir treatment. Antiviral sensitivity and neutralizing antibody testing was performed and compared with parental SARS-CoV-2 and multiple variants of concern. We found that neither NM resistance nor absence of neutralizing immunity were likely causes of the recrudescence.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...