Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 27
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Phys Chem Chem Phys ; 25(27): 17923-17942, 2023 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-37376953

RÉSUMÉ

Narrow bandgap inorganic compounds are extremely important in many areas of physics. However, their basic parameter database for surface analysis is incomplete. Electron inelastic mean free paths (IMFPs) are important parameters in surface analysis methods, such as electron spectroscopy and electron microscopy. Our previous research has presented a machine learning (ML) method to describe and predict IMFPs from calculated IMFPs for 41 elemental solids. This paper extends the use of the same machine learning method to 42 inorganic compounds based on the experience in predicting elemental electron IMFPs. The in-depth discussion extends to including material dependence discussion and parameter value selections. After robust validation of the ML method, we have produced an extensive IMFP database for 12 039 narrow bandgap inorganic compounds. Our findings suggest that ML is very efficient and powerful for IMFP description and database completion for various materials and has many advantages, including stability and convenience, over traditional methods.

2.
Phys Rev E ; 107(1-1): 014204, 2023 Jan.
Article de Anglais | MEDLINE | ID: mdl-36797957

RÉSUMÉ

The well known nonlinear fluctuating hydrodynamics theory has grouped diffusions in anharmonic chains into two universality classes: one is the Kardar-Parisi-Zhang (KPZ) class for chains with either asymmetric potential or nonzero static pressure and the other is the Gaussian class for chains with symmetric potential at zero static pressure, such as Fermi-Pasta-Ulam-Tsingou (FPUT)-ß chains. However, little is known of the nonequilibrium transient diffusion in anharmonic chains. Here, we reveal that the KPZ class is the only universality class for nonequilibrium transient diffusion, manifested as the KPZ scaling of the side peaks of momentum correlation (corresponding to the sound modes correlation), which was completely unexpected in equilibrium FPUT-ß chains. The underlying mechanism is that the nonequilibrium soliton dynamics cause nonzero transient pressure so that the sound modes satisfy approximately the noisy Burgers equation, in which the collisions of solitons was proved to yield the KPZ dynamic exponent of the soliton dispersion. Therefore, the unexpected KPZ universality class is obtained in the nonequilibrium transient diffusion in FPUT-ß chains and the corresponding carriers of nonequilibrium transient diffusion are attributed to solitons.

3.
Int J Biol Macromol ; 228: 467-477, 2023 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-36572083

RÉSUMÉ

Nanocellulose, as the most abundant natural nanomaterial with sustainability, biodegradability, and excellent mechanical properties, has been widely applied in modern electronic systems, particularly, in the flexible electrochemical energy storage devices. Herein, a reduced graphene oxide (RGO)/cellulose nanocrystal/cellulose nanofiber (RCC) composite membrane was prepared by using a one-pot method. Compared to the pure RGO membranes, the RCC composite membranes exhibited better mechanical properties and hydrophilicity. Furthermore, due to the synergistic effect of nanocellulose and RGO sheets, the RCC composite membrane exhibited a specific capacitance as high as 171.3 F·cm-3. Consequently, a nanocellulose-based symmetric flexible all-solid-state supercapacitor (FASC) was constructed, in which two RCC composite membranes served as electrodes and a porous cellulose nanofiber membrane acted as separator. This fabricated FASC demonstrated a high volumetric specific capacitance of 164.3 F·cm-3 and a satisfactory energy density of 3.7 mW·h·cm-3, which exceeded that of many other FASCs ever reported. This work may open a new avenue in design of next-generation nanocellulose based, sustainable and flexible energy storage device.


Sujet(s)
Néphrocarcinome , Tumeurs du rein , Humains , Cellulose , Électrodes
4.
Int J Mol Sci ; 23(18)2022 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-36142690

RÉSUMÉ

Spherical cellulose nanocrystal (CNC), as a high value cellulose derivative, shows an excellent application potential in biomedicine, food packaging, energy storage, and many other fields due to its special structure. CNC is usually prepared by the mixed acid hydrolysis method from numerous cellulose raw materials. However, the pretreatment route in preparing spherical CNC from cellulose fiber is still used when choosing microcrystalline cellulose (MCC) as the raw material, which is not rigorous and economical. In this work, pretreatment effects on the properties of spherical CNC produced from MCC by mixed acid hydrolysis were systematically studied. Firstly, the necessity of the swelling process in pretreatment was examined. Secondly, the form effects of pretreated MCC (slurry or powder form) before acid hydrolysis in the preparation of spherical CNC were carefully investigated. The results show that the swelling process is not indispensable. Furthermore, the form of pretreated MCC also has a certain influence on the morphology, crystallinity, and thermal stability of spherical CNC. Thus, spherical CNC with different properties can be economically prepared from MCC by selecting different pretreatment routes through mixed acid hydrolysis.


Sujet(s)
Cellulose , Nanoparticules , Acides , Cellulose/composition chimique , Hydrolyse , Nanoparticules/composition chimique , Poudres
5.
Int J Biol Macromol ; 200: 574-582, 2022 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-35077747

RÉSUMÉ

Due to the environmental degradation and energy depletion, the strategy for fabricating high-performance supercapacitor electrode materials based on graphene and nanocellulose has received great attention. Herein, an environmentally friendly reduced graphene oxide (RGO)/cellulose nanocrystal (CNC) composite conductive film was prepared using L-ascorbic acid (L-AA) as the reductant of graphene oxide (GO). Based on chemical structure analysis, L-AA was proved to be an effective reductant to remove oxygen containing groups of GO. Through microstructure observation, a unique stacking structure of CNC and RGO was observed, which could be largely attributed to the hydrogen bond interaction. Furthermore, the effect of CNC amount on the performance of RGO/CNC composite films was also systematically investigated. Particularly, the addition of CNC was found to exert a positive effect on the tensile strength, which might be mainly due to a mass of hydrogen bonds between the CNCs. Meanwhile, the RGO/CNC composite conductive film featured ideal electrical double-layer capacitive (EDLC) behavior, exhibiting a gravity specific capacitance of 222.5 F/g and tensile strength of 32.17 MPa at 20 wt% CNC content. Therefore, the RGO/CNC composite conductive films may hold great promise for environmentally friendly electrode materials of supercapacitors and flexible electrical devices.


Sujet(s)
Graphite
6.
ACS Omega ; 6(48): 32930-32937, 2021 Dec 07.
Article de Anglais | MEDLINE | ID: mdl-34901644

RÉSUMÉ

In this work, Mn2+-doped ZnS nanorods were synthesized by a facile hydrothermal method. The morphology, structure, and composition of the as-prepared samples were investigated. The temperature-dependent photoluminescence of ZnS:Mn nanorods was analyzed, and the corresponding activation energies were calculated by using a simple two-step rate equation. Mn2+-related orange emission (4T1 → 6A1) demonstrates high stability and is comparatively less affected by the temperature variations than the defect-related emission. A metal-semiconductor-metal junction ultraviolet photodetector based on the nanorod networks has been fabricated by a cost-effective method. The device exhibits visible blindness, superior ultraviolet photodetection with a responsivity of 1.62 A/W, and significantly fast photodetection response with the rise and decay times of 12 and 25 ms, respectively.

7.
Small ; 16(12): e1901718, 2020 Mar.
Article de Anglais | MEDLINE | ID: mdl-31515944

RÉSUMÉ

2D transition metal dichalcogenides (TMDs) have received widespread interest by virtue of their excellent electrical, optical, and electrochemical characteristics. Recent studies on TMDs have revealed their versatile utilization as electrocatalysts, supercapacitors, battery materials, and sensors, etc. In this study, MoS2 nanosheets are successfully assembled on the porous VS2 (P-VS2 ) scaffold to form a MoS2 /VS2 heterostructure. Their gas-sensing features, such as sensitivity and selectivity, are investigated by using a quartz crystal microbalance (QCM) technique. The QCM results and density functional theory (DFT) calculations reveal the impressive affinity of the MoS2 /VS2 heterostructure sensor toward ammonia with a higher adsorption uptake than the pristine MoS2 or P-VS2 sensor. Furthermore, the adsorption kinetics of the MoS2 /VS2 heterostructure sensor toward ammonia follow the pseudo-first-order kinetics model. The excellent sensing features of the MoS2 /VS2 heterostructure render it attractive for high-performance ammonia sensors in diverse applications.

8.
Sci Technol Adv Mater ; 20(1): 1090-1102, 2019.
Article de Anglais | MEDLINE | ID: mdl-31807220

RÉSUMÉ

The TPP-2M formula is the most popular empirical formula for the estimation of the electron inelastic mean free paths (IMFPs) in solids from several simple material parameters. The TPP-2M formula, however, poorly describes several materials because it relies heavily on the traditional least-squares analysis. Herein, we propose a new framework based on machine learning to overcome the weakness. This framework allows a selection from an enormous number of combined terms (descriptors) to build a new formula that describes the electron IMFPs. The resulting framework not only provides higher average accuracy and stability but also reveals the physics meanings of several newly found descriptors. Using the identified principle descriptors, a complete physics picture of electron IMFPs is obtained, including both single and collective electron behaviors of inelastic scattering. Our findings suggest that machine learning is robust and efficient to predict the IMFP and has great potential in building a regression framework for data-driven problems. Furthermore, this method could be applicable to find empirical formula for given experimental data using a series of parameters given a priori, holds potential to find a deeper connection between experimental data and a priori parameters.

9.
J Phys Chem Lett ; 10(19): 5770-5775, 2019 Oct 03.
Article de Anglais | MEDLINE | ID: mdl-31513403

RÉSUMÉ

Plasmon gain by core-level electrons or elastic electrons observed in past studies seems to be of no practical value in material characterization, mainly because of their ultralow signal intensities. Nevertheless, in the emission spectra of Au samples, we have observed plasmon gain in secondary electrons. The electrons gain energy from surface plasmons after escaping from the surface and thereby only carry surface-plasmon information in the vacuum above the surface. Because the intensity of the emitted SEs is strong, rivaling that of core-level or elastic electrons, the observed phenomenon has in practice the potential to image directly in space the surface plasmon near but exterior to the metal surface.

10.
RSC Adv ; 9(48): 28234-28240, 2019 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-35530473

RÉSUMÉ

The electronic structure and optical properties of group-VA (N, P, As, and Sb)-doped Cu2ZnSiSe4 alloys have been studied using a hybrid functional through density functional theory calculations. The minor lattice distortion and small formation energy indicate that synthesis of these alloys is highly possible in experiment. For each doped alloy, an isolated and partially filled intermediate band (IB) appears in its band structure. The doping-induced IB is mainly contributed by the s states of the doped group-VA atom and the p states of four neighboring Se atoms, and slightly by the d states of eight Cu atoms. The existence of an IB obviously enhances the absorption coefficient with two additional absorption peaks in the visible light range. For P, As and Sb-doped Cu2ZnSiSe4 alloys, not only the bandgap between the valence band maximum and the conduction band minimum but also the sub bandgap between the valence band maximum and the IB are very close to the optimal values for visible light absorption. Therefore, these alloys are recommended as good candidates for IB solar cell materials.

11.
Ultramicroscopy ; 194: 126-132, 2018 11.
Article de Anglais | MEDLINE | ID: mdl-30125753

RÉSUMÉ

Mapping the charge distribution in nano scale systems still is a difficult task, but is important to provide fundamental insights into the properties of materials. We demonstrate how in-line holography in transmission electron microscopy can be used to extract the charge distribution in the nanowire in a quantitative way. This technique can realize a fast acquisition of delicate charge variations. By taking advantage of the possibilities of in-situ electron microscopy, variations of the external field can be used to modulate the charge distribution. Because of the fast response to charge variations, this method provides an efficient probing tool for detecting dynamic charge redistribution.

12.
Phys Rev E ; 97(1-1): 012221, 2018 Jan.
Article de Anglais | MEDLINE | ID: mdl-29448422

RÉSUMÉ

Currently, effective phonons (renormalized or interacting phonons) rather than solitary waves (for short, solitons) are regarded as the energy carriers in nonlinear lattices. In this work, by using the approximate soliton solutions of the corresponding equations of motion and adopting the Boltzmann distribution for these solitons, the average velocities of solitons are obtained and are compared with the sound velocities of energy transfer. Excellent agreements with the numerical results and the predictions of other existing theories are shown in both the symmetric Fermi-Pasta-Ulam-ß lattices and the asymmetric Fermi-Pasta-Ulam-αß lattices. These clearly indicate that solitons are suitable candidates for energy carriers in Fermi-Pasta-Ulam lattices. In addition, the root-mean-square velocity of solitons can be obtained from the effective phonons theory.

13.
ACS Omega ; 3(12): 18227-18233, 2018 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-31458401

RÉSUMÉ

In situ Raman spectra of HoVO4 micro- and nanocrystals were obtained at high pressures up to 25.4 and 18.0 GPa at room temperature, respectively. The appearance of new peaks in the Raman spectra and the discontinuities of the Raman-mode shift provided powerful evidence for an irreversible zircon-to-scheelite structure transformation for HoVO4 microcrystals at 7.2 GPa and for HoVO4 nanocrystals at 8.7 GPa. The lattice contraction caused by the size effect was thought to be responsible for the different phase-transition pressures. Also, the higher stability of HoVO4 nanocrystals compared with the microcrystals was also confirmed using the Raman frequencies and pressure coefficients. The results of the phase transition of HoVO4 were compared with previously reported rare-earth orthovanadates, and the phase diagram of REVO4 with RE ionic radius at different pressures was presented.

14.
Chaos ; 27(6): 063106, 2017 Jun.
Article de Anglais | MEDLINE | ID: mdl-28679219

RÉSUMÉ

So far, only the energy thresholds of single discrete breathers in nonlinear Hamiltonian systems have been analytically obtained. In this work, the energy thresholds of discrete breathers in thermal equilibrium and the energy thresholds of long-lived discrete breathers which can remain after a long time relaxation are analytically estimated for nonlinear chains. These energy thresholds are size dependent. The energy thresholds of discrete breathers in thermal equilibrium are the same as the previous analytical results for single discrete breathers. The energy thresholds of long-lived discrete breathers in relaxation processes are different from the previous results for single discrete breathers but agree well with the published numerical results known to us. Because real systems are either in thermal equilibrium or in relaxation processes, the obtained results could be important for experimental detection of discrete breathers.

15.
Nat Commun ; 8: 15629, 2017 05 26.
Article de Anglais | MEDLINE | ID: mdl-28548114

RÉSUMÉ

Characterization techniques available for bulk or thin-film solid-state materials have been extended to substrate-supported nanomaterials, but generally non-quantitatively. This is because the nanomaterial signals are inevitably buried in the signals from the underlying substrate in common reflection-configuration techniques. Here, we propose a virtual substrate method, inspired by the four-point probe technique for resistance measurement as well as the chop-nod method in infrared astronomy, to characterize nanomaterials without the influence of underlying substrate signals from four interrelated measurements. By implementing this method in secondary electron (SE) microscopy, a SE spectrum (white electrons) associated with the reflectivity difference between two different substrates can be tracked and controlled. The SE spectrum is used to quantitatively investigate the covering nanomaterial based on subtle changes in the transmission of the nanomaterial with high efficiency rivalling that of conventional core-level electrons. The virtual substrate method represents a benchmark for surface analysis to provide 'free-standing' information about supported nanomaterials.

16.
Sci Rep ; 6: 23734, 2016 Mar 31.
Article de Anglais | MEDLINE | ID: mdl-27030071

RÉSUMÉ

We analyze the underlying structural order that transcends liquid, glass and crystalline states in metallic systems. A genetic algorithm is applied to search for the most common energetically favorable packing motifs in crystalline structures. These motifs are in turn compared to the observed packing motifs in the actual liquid or glass structures using a cluster-alignment method. Using this method, we have revealed the nature of the short-range order in Cu64Zr36 glasses. More importantly, we identified a novel structural order in the Al90Sm10 system. In addition, our approach brings new insight into understanding the origin of vitrification and describing mesoscopic order-disorder transitions in condensed matter systems.

17.
Phys Rev E ; 93(3): 032127, 2016 Mar.
Article de Anglais | MEDLINE | ID: mdl-27078312

RÉSUMÉ

Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011)]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.

18.
Phys Chem Chem Phys ; 17(45): 30744-50, 2015 Nov 11.
Article de Anglais | MEDLINE | ID: mdl-26528930

RÉSUMÉ

It is well known that the effect of Coulomb on-site repulsion can significantly alter the physical properties of the systems that contain localized d and/or f electrons. However, little attention has been paid to the Coulomb on-site repulsion between localized p electrons. In this study, we demonstrated that Coulomb on-site repulsion between localized pz electrons also plays an important role in graphene embedded with line defects. It is shown that the magnetism of the system largely depends on the choice of the effective Coulomb on-site parameter Ueff. Ueff at the edges of the defect enhances the exchange splitting, which increases the magnetic moment and stabilizes a ferromagnetic state of the system. In contrast, Ueff at the center of the defect weakens the spin polarization of the system. The behavior of the magnetism is explained with the Stoner criterion and the charge accumulation at the edges of the defect. Based on the linear response approach, we estimate reasonable values of Ueff to be 2.55 eV (2.3 eV) at the center (edges) of the defects. More importantly, using a DFT+U+J method, we find that exchange interactions between localized p electrons also play an important role in the spin polarization of the system. These results imply that Coulomb on-site repulsion is necessary to describe the strong interaction between localized pz electrons of carbon related materials.

19.
J Phys Condens Matter ; 27(20): 205701, 2015 May 27.
Article de Anglais | MEDLINE | ID: mdl-25950379

RÉSUMÉ

We have performed molecular dynamics simulations on a typical Al-based alloy Al90Sm10. The short-range and medium-range correlations of the system are reliably produced by ab initio calculations, whereas the long-range correlations are obtained with the assistance of a semi-empirical potential well-fitted to ab initio data. Our calculations show that a prepeak in the structure factor of this system emerges well above the melting temperature, and the intensity of the prepeak increases with increasing undercooling of the liquid. These results are in agreement with x-ray diffraction experiments. The interplay between the short-range order of the system originating from the large affinity between Al and Sm atoms, and the intrinsic repulsion between Sm atoms gives rise to a stronger correlation in the second peak than the first peak in the Sm-Sm partial pair correlation function (PPCF), which in turn produces the prepeak in the structure factor.

20.
Nanoscale ; 6(15): 8943-8, 2014 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-24965835

RÉSUMÉ

Natural graphite shows little optical response. Based on first-principles calculations, we demonstrate, for the first time, that an in-plane pressure-induced slip between atomic layers causes a strong anomalous enhancement and large red-shifts in the infrared and far infrared optical absorption by graphite. Specifically, a slip along the armchair direction induces an absorption feature that redshifts from ∼ 3 eV to ∼ 0.15 eV, while its intensity increases by an order of magnitude, due to an electron density delocalization effect with slip. Our results provide a way to detect and measure the magnitude of the in-plane slip of graphite under compression and also open up potential applications in electronics and photonics.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE