Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 133
Filtrer
1.
Sci Rep ; 14(1): 14416, 2024 06 22.
Article de Anglais | MEDLINE | ID: mdl-38909091

RÉSUMÉ

The COVID-19 pandemic has profoundly affected all aspects of our lives. Through real-time monitoring and rapid vaccine implementation, we succeeded in suppressing the spread of the disease and mitigating its consequences. Finally, conclusions can be summarized and drawn. Here, we use the example of Poland, which was seriously affected by the pandemic. Compared to other countries, Poland has not achieved impressive results in either testing or vaccination, which may explain its high mortality (case fatality rate, CFR 1.94%). Through retrospective analysis of data collected by the COVID-19 Data Portal Poland, we found significant regional differences in the number of tests performed, number of cases detected, number of COVID-19-related deaths, and vaccination rates. The Masovian, Greater Poland, and Pomeranian voivodeships, the country's leaders in vaccination, reported high case numbers but low death rates. In contrast, the voivodeships in the eastern and southern parts of Poland (Subcarpathian, Podlaskie, Lublin, Opole), which documented low vaccination levels and low case numbers, had higher COVID-19-related mortality rates. The strong negative correlation between the CFR and the percentage of the population that was vaccinated in Poland supports the validity of vaccination. To gain insight into virus evolution, we sequenced more than 500 genomes and analyzed nearly 80 thousand SARS-CoV-2 genome sequences deposited in GISAID by Polish diagnostic centers. We showed that the SARS-CoV-2 variant distribution over time in Poland reflected that in Europe. Haplotype network analysis allowed us to follow the virus transmission routes and identify potential superspreaders in each pandemic wave.


Sujet(s)
Vaccins contre la COVID-19 , COVID-19 , Pandémies , SARS-CoV-2 , Pologne/épidémiologie , COVID-19/épidémiologie , COVID-19/virologie , COVID-19/prévention et contrôle , Humains , SARS-CoV-2/génétique , SARS-CoV-2/isolement et purification , Études rétrospectives , Génome viral , Génomique/méthodes , Vaccination
2.
Front Immunol ; 15: 1340273, 2024.
Article de Anglais | MEDLINE | ID: mdl-38601149

RÉSUMÉ

The AID/APOBECs are a group of zinc-dependent cytidine deaminases that catalyse the deamination of bases in nucleic acids, resulting in a cytidine to uridine transition. Secreted novel AID/APOBEC-like deaminases (SNADs), characterized by the presence of a signal peptide are unique among all of intracellular classical AID/APOBECs, which are the central part of antibody diversity and antiviral defense. To date, there is no available knowledge on SNADs including protein characterization, biochemical characteristics and catalytic activity. We used various in silico approaches to define the phylogeny of SNADs, their common structural features, and their potential structural variations in fish species. Our analysis provides strong evidence of the universal presence of SNAD1 proteins/transcripts in fish, in which expression commences after hatching and is highest in anatomical organs linked to the immune system. Moreover, we searched published fish data and identified previously, "uncharacterized proteins" and transcripts as SNAD1 sequences. Our review into immunological research suggests SNAD1 role in immune response to infection or immunization, and interactions with the intestinal microbiota. We also noted SNAD1 association with temperature acclimation, environmental pollution and sex-based expression differences, with females showing higher level. To validate in silico predictions we performed expression studies of several SNAD1 gene variants in carp, which revealed distinct patterns of responses under different conditions. Dual sensitivity to environmental and pathogenic stress highlights its importance in the fish and potentially enhancing thermotolerance and immune defense. Revealing the biological roles of SNADs represents an exciting new area of research related to the role of DNA and/or RNA editing in fish biology.


Sujet(s)
Cytidine deaminase , Acides nucléiques , Animaux , APOBEC-1 Deaminase/génétique , Cytidine deaminase/génétique , Cytidine deaminase/métabolisme , ADN , Cytidine
3.
Nucleic Acids Res ; 52(10): 5804-5824, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38676942

RÉSUMÉ

MicroRNAs (miRNAs) that share identical or near-identical sequences constitute miRNA families and are predicted to act redundantly. Yet recent evidence suggests that members of the same miRNA family with high sequence similarity might have different roles and that this functional divergence might be rooted in their precursors' sequence. Current knock-down strategies such as antisense oligonucleotides (ASOs) or miRNA sponges cannot distinguish between identical or near identical miRNAs originating from different precursors to allow exploring unique functions of these miRNAs. We here develop a novel strategy based on short 2'-OMe/LNA-modified oligonucleotides to selectively target specific precursor molecules and ablate the production of individual members of miRNA families in vitro and in vivo. Leveraging the highly conserved Xenopus miR-181a family as proof-of-concept, we demonstrate that 2'-OMe/LNA-ASOs targeting the apical region of pre-miRNAs achieve precursor-selective inhibition of mature miRNA-5p production. Furthermore, we extend the applicability of our approach to the human miR-16 family, illustrating its universality in targeting precursors generating identical miRNAs. Overall, our strategy enables efficient manipulation of miRNA expression, offering a powerful tool to dissect the functions of identical or highly similar miRNAs derived from different precursors within miRNA families.


Sujet(s)
microARN , Oligonucléotides , microARN/génétique , microARN/métabolisme , Animaux , Humains , Oligonucléotides/composition chimique , Oligonucléotides/génétique , Oligonucléotides antisens/composition chimique , Oligonucléotides antisens/génétique , Oligonucléotides antisens/métabolisme , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Précurseurs des ARN/composition chimique , Xenopus/génétique
4.
Pathogens ; 13(3)2024 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-38535599

RÉSUMÉ

The glycosylation of viral envelope proteins plays an important role in virus biology and the immune response of the host to infection. Hepatitis C virus (HCV) envelope proteins E1 and E2, key players in virus entry and spread, are highly N-glycosylated and possess 4 (5 in certain genotypes) to 11 conserved glycosylation sites, respectively. Many published results based on recombinant proteins indicate that the glycan shield can mask the epitopes targeted by neutralizing antibodies. Glycan shifting within the conserved linear E2 region (412-423) could be one of the escape strategies used by HCV. In the present report, we isolated E2 genes from samples (collected before the IFN-RBV therapy) originating from pediatric patients infected with HCV gt 1a. We analyzed the biochemical properties of cloned E2 glycoprotein variants and investigated their glycosylation status. The sequencing of E2 genes isolated from patients who did not respond to therapy revealed mutations at N-glycosylation sites, thus leading to a lower molecular weight and a low affinity to both linear and conformational neutralizing antibodies. The loss of the glycosylation site within the conserved epitope (amino acid 417) impaired the binding with AP33, an antibody that potently neutralizes all genotypes of HCV. Our findings, based on clinical samples, confirm the influence of N-glycosylation aberrations on the antigenic and conformational properties of HCV E1/E2, which may possibly correlate with the outcome of therapy in patients.

5.
Mol Ther Nucleic Acids ; 34: 102062, 2023 Dec 12.
Article de Anglais | MEDLINE | ID: mdl-38028200

RÉSUMÉ

Over recent years, zinc-dependent deaminases have attracted increasing interest as key components of nucleic acid editing tools that can generate point mutations at specific sites in either DNA or RNA by combining a targeting module (such as a catalytically impaired CRISPR-Cas component) and an effector module (most often a deaminase). Deaminase-based molecular tools are already being utilized in a wide spectrum of therapeutic and research applications; however, their medical and biotechnological potential seems to be much greater. Recent reports indicate that the further development of nucleic acid editing systems depends largely on our ability to engineer the substrate specificity and catalytic activity of the editors themselves. In this review, we summarize the current trends and achievements in deaminase engineering. The presented data indicate that the potential of these enzymes has not yet been fully revealed or understood. Several examples show that even relatively minor changes in the structure of deaminases can give them completely new and unique properties.

7.
Int J Mol Sci ; 24(16)2023 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-37628927

RÉSUMÉ

Cancer stem cells (CSCs) may contribute to an increased risk of recurrence in ovarian cancer (OC). Further research is needed to identify associations between CSC markers and OC patients' clinical outcomes with greater certainty. If they prove to be correct, in the future, the CSC markers can be used to help predict survival and indicate new therapeutic targets. This study aimed to determine the CSC markers at mRNA and protein levels and their association with clinical presentation, outcome, and risk of recurrence in HGSOC (High-Grade Serous Ovarian Cancer). TCGA (The Cancer Genome Atlas) database with 558 ovarian cancer tumor samples was used for the evaluation of 13 CSC markers (ALDH1A1, CD44, EPCAM, KIT, LGR5, NES, NOTCH3, POU5F1, PROM1, PTTG1, ROR1, SOX9, and THY1). Data on mRNA and protein levels assessed by microarray and mass spectrometry were retrieved from TCGA. Models to predict chemotherapy response and survival were built using multiple variables, including epidemiological data, expression levels, and machine learning methodology. ALDH1A1 and LGR5 mRNA expressions indicated a higher platinum sensitivity (p = 3.50 × 10-3; p = 0.01, respectively). POU5F1 mRNA expression marked platinum-resistant tumors (p = 9.43 × 10-3). CD44 and EPCAM mRNA expression correlated with longer overall survival (OS) (p = 0.043; p = 0.039, respectively). THY1 mRNA and protein levels were associated with worse OS (p = 0.019; p = 0.015, respectively). Disease-free survival (DFS) was positively affected by EPCAM (p = 0.004), LGR5 (p = 0.018), and CD44 (p = 0.012). In the multivariate model based on CSC marker expression, the high-risk group had 9.1 months longer median overall survival than the low-risk group (p < 0.001). ALDH1A1, CD44, EPCAM, LGR5, POU5F1, and THY1 levels in OC may be used as prognostic factors for the primary outcome and help predict the treatment response.


Sujet(s)
Ascomycota , Tumeurs de l'ovaire , Humains , Femelle , Pronostic , Molécule d'adhérence des cellules épithéliales , Pertinence clinique , Tumeurs de l'ovaire/génétique
8.
Genome Biol ; 24(1): 173, 2023 07 24.
Article de Anglais | MEDLINE | ID: mdl-37488661

RÉSUMÉ

BACKGROUND: The appearance of Slavs in East-Central Europe has been the subject of an over 200-year debate driven by two conflicting hypotheses. The first assumes that Slavs came to the territory of contemporary Poland no earlier than the sixth century CE; the second postulates that they already inhabited this region in the Iron Age (IA). Testing either hypothesis is not trivial given that cremation of the dead was the prevailing custom in Central Europe from the late Bronze Age until the Middle Ages (MA). RESULTS: To address this problem, we determined the genetic makeup of representatives of the IA Wielbark- and MA Slav-associated cultures from the territory of present-day Poland. The study involved 474 individuals buried in 27 cemeteries. For 197 of them, genome-wide data were obtained. We found close genetic affinities between the IA Wielbark culture-associated individuals and contemporary to them and older northern European populations. Further, we observed that the IA individuals had genetic components which were indispensable to model the MA population. CONCLUSIONS: The collected data suggest that the Wielbark culture-associated IA population was formed by immigrants from the north who entered the region of contemporary Poland most likely at the beginning of the first millennium CE and mixed with autochthons. The presented results are in line with the hypothesis that assumes the genetic continuation between IA and MA periods in East-Central Europe.


Sujet(s)
Populations d'Europe de l'Est , Génétique des populations , Humains , ADN mitochondrial/génétique , Europe , Haplotypes , Pologne , /génétique , Europe de l'Est , Populations d'Europe de l'Est/génétique
9.
Gut Microbes ; 15(1): 2211922, 2023.
Article de Anglais | MEDLINE | ID: mdl-37184158

RÉSUMÉ

In recent years, it has become clear that gut microbiota plays a major role in the human body, both in health and disease. Because of that, the gut microbiome and its impact on human well-being are getting wider and wider attention. Studies focused on the liver are not an exception. However, the majority of the analyses are concentrated on the bacterial part of the gut microbiota, while the fungi living in the human intestines are often omitted or underappreciated. This review is focused on the gut mycobiome as an important factor that should be taken into consideration regarding liver homeostasis and its perturbations. We have collected the findings in this field and we discuss their importance. We aim to emphasize the fungal compositional changes related to liver diseases and, by that, provide novel insights into the directions of liver research and gut microbiota as a therapeutic target for liver diseases.


Sujet(s)
Microbiome gastro-intestinal , Maladies du foie , Mycobiome , Humains
10.
Nucleic Acids Res ; 51(W1): W269-W273, 2023 07 05.
Article de Anglais | MEDLINE | ID: mdl-37216609

RÉSUMÉ

Archeogenomics is a rapidly growing interdisciplinary research field driven by the development of techniques that enable the acquisition and analysis of ancient DNA (aDNA). Recent advances in aDNA studies have contributed significantly to increasing our understanding of the natural history of humans. One of the most significant challenges facing archeogenomics is the integration of highly heterogeneous genomic, archeological, and anthropological data and their comprehensive analysis, considering changes that occur in time and space. Only this complex approach can explain the relationship between past populations in the context of migration or cultural development. To address these challenges, we developed a Human AGEs web server. It focuses on creating comprehensive spatiotemporal visualizations of genomic, archeogenomic, and archeological information, which can be provided by the user or loaded from a graph database. The interactive map application at the center of Human AGEs can display multiple layers of data in various forms, such as bubble charts, pie charts, heatmaps, or tag clouds. These visualizations can be modified using various clustering, filtering, and styling options, and the map state can be exported to a high-resolution image or saved as a session file for later use. Human AGEs, along with their tutorial, are accessible at https://archeogenomics.eu/.


Sujet(s)
Génomique , Humains , Génomique/méthodes , Logiciel , Génétique humaine , ADN ancien , Bases de données génétiques
11.
Funct Integr Genomics ; 23(2): 120, 2023 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-37036577

RÉSUMÉ

MicroRNAs (miRNAs) regulate gene expression by RNA interference mechanism. In plants, miRNA genes (MIRs) which are grouped into conserved families, i.e. they are present among the different plant taxa, are involved in the regulation of many developmental and physiological processes. The roles of the nonconserved MIRs-which are MIRs restricted to one plant family, genus, or even species-are less recognized; however, many of them participate in the responses to biotic and abiotic stresses. Both over- and underproduction of miRNAs may influence various biological processes. Consequently, maintaining intracellular miRNA homeostasis seems to be crucial for the organism. Deletions and duplications in the genomic sequence may alter gene dosage and/or activity. We evaluated the extent of copy number variations (CNVs) among Arabidopsis thaliana (Arabidopsis) MIRs in over 1000 natural accessions, using population-based analysis of the short-read sequencing data. We showed that the conserved MIRs were unlikely to display CNVs and their deletions were extremely rare, whereas nonconserved MIRs presented moderate variation. Transposon-derived MIRs displayed exceptionally high diversity. Conversely, MIRs involved in the epigenetic control of transposons reactivated during development were mostly invariable. MIR overlap with the protein-coding genes also limited their variability. At the expression level, a higher rate of nonvariable, nonconserved miRNAs was detectable in Col-0 leaves, inflorescence, and siliques compared to nonconserved variable miRNAs, although the expression of both groups was much lower than that of the conserved MIRs. Our data indicate that CNV rate of Arabidopsis MIRs is related with their age, function, and genomic localization.


Sujet(s)
Arabidopsis , microARN , Arabidopsis/génétique , Arabidopsis/métabolisme , Variations de nombre de copies de segment d'ADN , Gènes de plante , microARN/génétique , microARN/métabolisme , Génomique , ARN des plantes/génétique , Régulation de l'expression des gènes végétaux , Séquence conservée
12.
Front Plant Sci ; 14: 1104303, 2023.
Article de Anglais | MEDLINE | ID: mdl-36778696

RÉSUMÉ

Metabolic gene clusters (MGCs) are groups of genes involved in a common biosynthetic pathway. They are frequently formed in dynamic chromosomal regions, which may lead to intraspecies variation and cause phenotypic diversity. We examined copy number variations (CNVs) in four Arabidopsis thaliana MGCs in over one thousand accessions with experimental and bioinformatic approaches. Tirucalladienol and marneral gene clusters showed little variation, and the latter was fixed in the population. Thalianol and especially arabidiol/baruol gene clusters displayed substantial diversity. The compact version of the thalianol gene cluster was predominant and more conserved than the noncontiguous version. In the arabidiol/baruol cluster, we found a large genomic insertion containing divergent duplicates of the CYP705A2 and BARS1 genes. The BARS1 paralog, which we named BARS2, encoded a novel oxidosqualene synthase. The expression of the entire arabidiol/baruol gene cluster was altered in the accessions with the duplication. Moreover, they presented different root growth dynamics and were associated with warmer climates compared to the reference-like accessions. In the entire genome, paired genes encoding terpene synthases and cytochrome P450 oxidases were more variable than their nonpaired counterparts. Our study highlights the role of dynamically evolving MGCs in plant adaptation and phenotypic diversity.

13.
iScience ; 25(10): 105142, 2022 Oct 21.
Article de Anglais | MEDLINE | ID: mdl-36193047

RÉSUMÉ

Recent advances in imaging flow cytometry (IFC) have revolutionized high-throughput multiparameter analyses at single-cell resolution. Although enabling the discovery of population heterogeneities and the detection of rare events, IFC generates hyperdimensional datasets that demand innovative analytical approaches. Current methods work in a supervised manner, utilize only limited information content, or require large annotated reference datasets. Dimensionality reduction algorithms, including uniform manifold approximation and projection (UMAP), have been successfully applied to analyze the large number of parameters generated in various high-throughput techniques. Here, we apply a workflow incorporating UMAP to analyze different IFC datasets. We demonstrate that it out-competes other popular dimensionality reduction methods in speed and accuracy. Moreover, it enables fast visualization, clustering, and tagging of unannotated objects in large-scale experiments. We anticipate that our workflow will be a robust method to address complex IFC datasets, either alone or as an upstream addition to the deep learning approaches.

14.
Pathogens ; 11(7)2022 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-35890025

RÉSUMÉ

In Poland, the first case of SARS-CoV-2 infection was confirmed in March 2020. Since then, many circulating virus lineages fueled rapid pandemic waves which inflicted a severe burden on the Polish healthcare system. Some of these lineages were associated with increased transmissibility and immune escape. Mutations in the viral spike protein, which is responsible for host cell recognition and serves as the primary target for neutralizing antibodies, are of particular importance. We investigated the molecular epidemiology of the SARS-CoV-2 clades circulating in Southern Poland from February 2021 to August 2021. The 921 whole-genome sequences were used for variant identification, spike mutation, and phylogenetic analyses. The Pango B.1.1.7 was the dominant variant (n = 730, 89.68%) from March 2021 to July 2021. In July 2021, the B.1.1.7 was displaced by the B.1.617.2 lineage with 66.66% in July 2021 and 92.3% in August 2021 frequencies, respectively. Moreover, our results were compared with the sequencing available on the GISAID platform for other regions of Poland, the Czech Republic, and Slovakia. The analysis showed that the dominant variant in the analyzed period was B.1.1.7 in all countries and Southern Poland (Silesia). Interestingly, B.1.1.7 was replaced by B.1.617.2 earlier in Southern Poland than in the rest of the country. Moreover, in the Czech Republic and Slovakia, AY lineages were predominant at that time, contrary to the Silesia region.

15.
Sci Rep ; 12(1): 8470, 2022 05 19.
Article de Anglais | MEDLINE | ID: mdl-35589762

RÉSUMÉ

In recent years, the number of metagenomic studies increased significantly. Wide range of factors, including the tremendous community complexity and variability, is contributing to the challenge in reliable microbiome community profiling. Many approaches have been proposed to overcome these problems making hardly possible to compare results of different studies. The significant differences between procedures used in metagenomic research are reflected in a variation of the obtained results. This calls for the need for standardisation of the procedure, to reduce the confounding factors originating from DNA isolation, sequencing and bioinformatics analyses in order to ensure that the differences in microbiome composition are of a true biological origin. Although the best practices for metagenomics studies have been the topic of several publications and the main aim of the International Human Microbiome Standard (IHMS) project, standardisation of the procedure for generating and analysing metagenomic data is still far from being achieved. To highlight the difficulties in the standardisation of metagenomics methods, we thoroughly examined each step of the analysis of the human gut microbiome. We tested the DNA isolation procedure, preparation of NGS libraries for next-generation sequencing, and bioinformatics analysis, aimed at identifying microbial taxa. We showed that the homogenisation time is the leading factor impacting sample diversity, with the recommendation for a shorter homogenisation time (10 min). Ten minutes of homogenisation allows for better reflection of the bacteria gram-positive/gram-negative ratio, and the obtained results are the least heterogenous in terms of beta-diversity of samples microbial composition. Besides increasing the homogenisation time, we observed further potential impact of the library preparation kit on the gut microbiome profiling. Moreover, our analysis revealed that the choice of the library preparation kit influences the reproducibility of the results, which is an important factor that has to be taken into account in every experiment. In this study, a tagmentation-based kit allowed for obtaining the most reproducible results. We also considered the choice of the computational tool for determining the composition of intestinal microbiota, with Kraken2/Bracken pipeline outperforming MetaPhlAn2 in our in silico experiments. The design of an experiment and a detailed establishment of an experimental protocol may have a serious impact on determining the taxonomic profile of the intestinal microbiome community. Results of our experiment can be helpful for a wide range of studies that aim to better understand the role of the gut microbiome, as well as for clinical purposes.


Sujet(s)
Métagénomique , Microbiote , ADN , Humains , Métagénome , Métagénomique/méthodes , Microbiote/génétique , ARN ribosomique 16S/génétique , Reproductibilité des résultats
16.
Adv Sci (Weinh) ; 9(11): e2105059, 2022 04.
Article de Anglais | MEDLINE | ID: mdl-35156333

RÉSUMÉ

Actin is a fundamental member of an ancient superfamily of structural intracellular proteins and plays a crucial role in cytoskeleton dynamics, ciliogenesis, phagocytosis, and force generation in both prokaryotes and eukaryotes. It is shown that actin has another function in metazoans: patterning biosilica deposition, a role that has spanned over 500 million years. Species of glass sponges (Hexactinellida) and demosponges (Demospongiae), representatives of the first metazoans, with a broad diversity of skeletal structures with hierarchical architecture unchanged since the late Precambrian, are studied. By etching their skeletons, organic templates dominated by individual F-actin filaments, including branched fibers and the longest, thickest actin fiber bundles ever reported, are isolated. It is proposed that these actin-rich filaments are not the primary site of biosilicification, but this highly sophisticated and multi-scale form of biomineralization in metazoans is ptterned.


Sujet(s)
Actines , Silice , Verre , Silice/composition chimique , Squelette
17.
Nanoscale ; 14(8): 3224-3233, 2022 Feb 24.
Article de Anglais | MEDLINE | ID: mdl-35156989

RÉSUMÉ

The increasing interest in virus-like particles (VLPs) has been reflected by the growing number of studies on their assembly and application. However, the formation of complete VLPs is a complex phenomenon, making it difficult to rationally design VLPs with desired features de novo. In this paper, we describe VLPs assembled in vitro from the recombinant capsid protein of brome mosaic virus (BMV). The analysis of VLPs was performed by Cryo-EM reconstructions and allowed us to visualize a few classes of VLPs, giving insight into the VLP self-assembly process. Apart from the mature icosahedral VLP practically identical with native virions, we describe putative VLP intermediates displaying non-icosahedral arrangements of capsomers, proposed to occur before the final disorder-order transition stage of icosahedral VLP assembly. Some of the described VLP classes show a lack of protein shell continuity, possibly resulting from too strong interaction with the cargo (in this case tRNA) with the capsid protein. We believe that our results are a useful prerequisite for the rational design of VLPs in the future and lead the way to the effective production of modified VLPs.


Sujet(s)
Bromovirus , Capside/composition chimique , Protéines de capside/composition chimique , Cryomicroscopie électronique , Virion/composition chimique , Assemblage viral
18.
Database (Oxford) ; 2021(2021)2021 11 11.
Article de Anglais | MEDLINE | ID: mdl-34788390

RÉSUMÉ

Circular RNAs (circRNAs) are a large class of noncoding RNAs with functions that, in most cases, remain unknown. Recent genome-wide analysis of circRNAs using RNA-Seq has revealed that circRNAs are abundant and some of them conserved in plants. Furthermore, it has been shown that the expression of circRNAs in plants is regulated in a tissue-specific manner. Arabidopsis thaliana circular RNA database is a new resource designed to integrate and standardize the data available for circRNAs in a model plant A. thaliana, which is currently the best-characterized plant in terms of circRNAs. The resource integrates all applicable publicly available RNA-seq datasets. These datasets were subjected to extensive reanalysis and curation, yielding results in a unified format. Moreover, all data were normalized according to our optimized approach developed for circRNA identification in plants. As a result, the database accommodates circRNAs identified across organs and seedlings of wild-type A. thaliana and its single-gene knockout mutants for genes related to splicing. The database provides free access to unified data and search functionalities, thus enabling comparative analyses of A. thaliana circRNAs between organs, variants and studies for the first time. Database URLhttps://plantcircrna.ibch.poznan.pl/.


Sujet(s)
Arabidopsis , ARN circulaire , Arabidopsis/génétique , Bases de données d'acides nucléiques , ARN/génétique , Épissage des ARN , ARN non traduit
19.
Int J Mol Sci ; 22(6)2021 Mar 18.
Article de Anglais | MEDLINE | ID: mdl-33803568

RÉSUMÉ

Virus-like particles (VLPs), due to their nanoscale dimensions, presence of interior cavities, self-organization abilities and responsiveness to environmental changes, are of interest in the field of nanotechnology. Nevertheless, comprehensive knowledge of VLP self-assembly principles is incomplete. VLP formation is governed by two types of interactions: protein-cargo and protein-protein. These interactions can be modulated by the physicochemical properties of the surroundings. Here, we used brome mosaic virus (BMV) capsid protein produced in an E. coli expression system to study the impact of ionic strength, pH and encapsulated cargo on the assembly of VLPs and their features. We showed that empty VLP assembly strongly depends on pH whereas ionic strength of the buffer plays secondary but significant role. Comparison of VLPs containing tRNA and polystyrene sulfonic acid (PSS) revealed that the structured tRNA profoundly increases VLPs stability. We also designed and produced mutated BMV capsid proteins that formed VLPs showing altered diameters and stability compared to VLPs composed of unmodified proteins. We also observed that VLPs containing unstructured polyelectrolyte (PSS) adopt compact but not necessarily more stable structures. Thus, our methodology of VLP production allows for obtaining different VLP variants and their adjustment to the incorporated cargo.


Sujet(s)
Bromovirus/métabolisme , Protéines de capside/métabolisme , Escherichia coli/métabolisme , Protéines recombinantes/métabolisme , Virion/métabolisme , Bromovirus/ultrastructure , Modèles moléculaires , Taille de particule , ARN de transfert/métabolisme , Température , Virion/ultrastructure
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...