Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Neuropsychopharmacology ; 49(6): 915-923, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38374364

RÉSUMÉ

Opioid use disorder is a chronic relapsing disorder encompassing misuse, dependence, and addiction to opioid drugs. Long term maintenance of associations between the reinforcing effects of the drug and the cues associated with its intake are a leading cause of relapse. Indeed, exposure to the salient drug-associated cues can lead to drug cravings and drug seeking behavior. The dorsal hippocampus (dHPC) and locus coeruleus (LC) have emerged as important structures for linking the subjective rewarding effects of opioids with environmental cues. However, their role in cue-induced reinstatement of opioid use remains to be further elucidated. In this study, we showed that chemogenetic inhibition of excitatory dHPC neurons during re-exposure to drug-associated cues significantly attenuates cue-induced reinstatement of morphine-seeking behavior. In addition, the same manipulation reduced reinstatement of sucrose-seeking behavior but failed to alter memory recall in the object location task. Finally, intact activity of tyrosine hydroxylase (TH) LC-dHPCTh afferents is necessary to drive cue induced reinstatement of morphine-seeking as inhibition of this pathway blunts cue-induced drug-seeking behavior. Altogether, these studies show an important role of the dHPC and LC-dHPCTh pathway in mediating cue-induced reinstatement of opioid seeking.


Sujet(s)
Signaux , Comportement de recherche de substances , Hippocampe , Locus ceruleus , Autoadministration , Animaux , Locus ceruleus/effets des médicaments et des substances chimiques , Locus ceruleus/métabolisme , Mâle , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Rats , Femelle , Comportement de recherche de substances/effets des médicaments et des substances chimiques , Comportement de recherche de substances/physiologie , Morphine/pharmacologie , Morphine/administration et posologie , Rat Sprague-Dawley , Voies nerveuses/effets des médicaments et des substances chimiques , Voies nerveuses/physiologie , Analgésiques morphiniques/pharmacologie , Analgésiques morphiniques/administration et posologie , Troubles liés aux opiacés/physiopathologie , Extinction (psychologie)/effets des médicaments et des substances chimiques , Extinction (psychologie)/physiologie , Conditionnement opérant/effets des médicaments et des substances chimiques , Conditionnement opérant/physiologie
2.
Nat Neurosci ; 24(11): 1601-1613, 2021 11.
Article de Anglais | MEDLINE | ID: mdl-34663957

RÉSUMÉ

The persistence of negative affect in pain leads to co-morbid symptoms such as anhedonia and depression-major health issues in the United States. The neuronal circuitry and contribution of specific cellular populations underlying these behavioral adaptations remains unknown. A common characteristic of negative affect is a decrease in motivation to initiate and complete goal-directed behavior, known as anhedonia. We report that in rodents, inflammatory pain decreased the activity of ventral tegmental area (VTA) dopamine (DA) neurons, which are critical mediators of motivational states. Pain increased rostromedial tegmental nucleus inhibitory tone onto VTA DA neurons, making them less excitable. Furthermore, the decreased activity of DA neurons was associated with reduced motivation for natural rewards, consistent with anhedonia-like behavior. Selective activation of VTA DA neurons was sufficient to restore baseline motivation and hedonic responses to natural rewards. These findings reveal pain-induced adaptations within VTA DA neurons that underlie anhedonia-like behavior.


Sujet(s)
Adaptation physiologique/physiologie , Anhédonie/physiologie , Neurones dopaminergiques/métabolisme , Douleur/métabolisme , Aire tegmentale ventrale/métabolisme , Animaux , Conditionnement opérant/physiologie , Neurones dopaminergiques/composition chimique , Femelle , Mâle , Optogénétique/méthodes , Douleur/génétique , Rats , Rat Long-Evans , Rats transgéniques , Aire tegmentale ventrale/composition chimique
3.
Neurosci Lett ; 703: 58-67, 2019 06 11.
Article de Anglais | MEDLINE | ID: mdl-30885631

RÉSUMÉ

Burgeoning use of segregated microfluidic platforms that parse somas and neurites into discrete compartments is fueling unique examinations of neuronal structure and physiology in a manner impossible to achieve with non-compartmentalized systems. However, even though this line of axon-soma polarizing microfluidic devices stems from the same general design of a Campenot chamber set-up, slight deviations in device geometry appear to induce vastly different nutrient transport profiles that influence neuron survival and maturation. Here we examine the uptake of nerve growth factor (NGF) by a pheochromocytoma PC12 cell line cultured using two Campenot-like device designs, a "Standard" layout, representative of a commercial device, and a custom "Notch" layout, predicted to encourage more efficient nutrient transfer that gives rise to sustained neuron viability and extensive neurite elaboration. Exploiting in vitro culture schemes coupled with computational analyses, we identify the influence of device design geometry on the interplay between neuronal survival and maturation, gauged from morphometric assessments and the spatiotemporal distribution of NGF. Computer simulations of NGF transport within the devices revealed that the microfluidic neuron culture system is highly sensitive to change, where nutrient transport is intricately linked to device geometry and cell plating density, and premature depletion of nutrients is observed if specific design criteria are not met. This study underscores the importance of validating specific device geometries for a particular neuro-based assessment, while showcasing computational modeling as a powerful tool to achieve this goal.


Sujet(s)
Laboratoires sur puces , Facteur de croissance nerveuse/métabolisme , Neurones/cytologie , Animaux , Techniques de culture cellulaire , Différenciation cellulaire , Survie cellulaire , Simulation numérique , Diffusion , Neurones/métabolisme , Cellules PC12 , Rats
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...