Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cell ; 187(4): 814-830.e23, 2024 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-38364788

RÉSUMÉ

Myelin, the insulating sheath that surrounds neuronal axons, is produced by oligodendrocytes in the central nervous system (CNS). This evolutionary innovation, which first appears in jawed vertebrates, enabled rapid transmission of nerve impulses, more complex brains, and greater morphological diversity. Here, we report that RNA-level expression of RNLTR12-int, a retrotransposon of retroviral origin, is essential for myelination. We show that RNLTR12-int-encoded RNA binds to the transcription factor SOX10 to regulate transcription of myelin basic protein (Mbp, the major constituent of myelin) in rodents. RNLTR12-int-like sequences (which we name RetroMyelin) are found in all jawed vertebrates, and we further demonstrate their function in regulating myelination in two different vertebrate classes (zebrafish and frogs). Our study therefore suggests that retroviral endogenization played a prominent role in the emergence of vertebrate myelin.


Sujet(s)
Gaine de myéline , Rétroéléments , Animaux , Expression des gènes , Gaine de myéline/métabolisme , Oligodendroglie/métabolisme , Rétroéléments/génétique , ARN/métabolisme , Danio zébré/génétique , Anura
2.
Proc Natl Acad Sci U S A ; 116(50): 25311-25321, 2019 12 10.
Article de Anglais | MEDLINE | ID: mdl-31740610

RÉSUMÉ

The microbiota is now recognized as a key influence on the host immune response in the central nervous system (CNS). As such, there has been some progress toward therapies that modulate the microbiota with the aim of limiting immune-mediated demyelination, as occurs in multiple sclerosis. However, remyelination-the regeneration of myelin sheaths-also depends upon an immune response, and the effects that such interventions might have on remyelination have not yet been explored. Here, we show that the inflammatory response during CNS remyelination in mice is modulated by antibiotic or probiotic treatment, as well as in germ-free mice. We also explore the effect of these changes on oligodendrocyte progenitor cell differentiation, which is inhibited by antibiotics but unaffected by our other interventions. These results reveal that high combined doses of oral antibiotics impair oligodendrocyte progenitor cell responses during remyelination and further our understanding of how mammalian regeneration relates to the microbiota.


Sujet(s)
Système nerveux central/physiopathologie , Microbiome gastro-intestinal , Sclérose en plaques/immunologie , Sclérose en plaques/microbiologie , Animaux , Antibactériens/administration et posologie , Antibactériens/effets indésirables , Différenciation cellulaire/effets des médicaments et des substances chimiques , Système nerveux central/effets des médicaments et des substances chimiques , Système nerveux central/immunologie , Femelle , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Humains , Mâle , Souris , Souris de lignée C57BL , Sclérose en plaques/traitement médicamenteux , Sclérose en plaques/physiopathologie , Oligodendroglie/cytologie , Oligodendroglie/effets des médicaments et des substances chimiques , Probiotiques/administration et posologie , Remyélinisation/effets des médicaments et des substances chimiques , Cellules souches/cytologie , Cellules souches/effets des médicaments et des substances chimiques
4.
Nature ; 573(7772): 130-134, 2019 09.
Article de Anglais | MEDLINE | ID: mdl-31413369

RÉSUMÉ

Ageing causes a decline in tissue regeneration owing to a loss of function of adult stem cell and progenitor cell populations1. One example is the deterioration of the regenerative capacity of the widespread and abundant population of central nervous system (CNS) multipotent stem cells known as oligodendrocyte progenitor cells (OPCs)2. A relatively overlooked potential source of this loss of function is the stem cell 'niche'-a set of cell-extrinsic cues that include chemical and mechanical signals3,4. Here we show that the OPC microenvironment stiffens with age, and that this mechanical change is sufficient to cause age-related loss of function of OPCs. Using biological and synthetic scaffolds to mimic the stiffness of young brains, we find that isolated aged OPCs cultured on these scaffolds are molecularly and functionally rejuvenated. When we disrupt mechanical signalling, the proliferation and differentiation rates of OPCs are increased. We identify the mechanoresponsive ion channel PIEZO1 as a key mediator of OPC mechanical signalling. Inhibiting PIEZO1 overrides mechanical signals in vivo and allows OPCs to maintain activity in the ageing CNS. We also show that PIEZO1 is important in regulating cell number during CNS development. Thus we show that tissue stiffness is a crucial regulator of ageing in OPCs, and provide insights into how the function of adult stem and progenitor cells changes with age. Our findings could be important not only for the development of regenerative therapies, but also for understanding the ageing process itself.


Sujet(s)
Cellules souches adultes/anatomopathologie , Vieillissement/anatomopathologie , Système nerveux central/anatomopathologie , Cellules souches multipotentes/anatomopathologie , Niche de cellules souches , Animaux , Animaux nouveau-nés , Numération cellulaire , Matrice extracellulaire/anatomopathologie , Femelle , Humains , Protéines membranaires/antagonistes et inhibiteurs , Protéines membranaires/métabolisme , Oligodendroglie/anatomopathologie , Rats , Niche de cellules souches/physiologie
5.
Glia ; 67(8): 1510-1525, 2019 08.
Article de Anglais | MEDLINE | ID: mdl-31038798

RÉSUMÉ

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) that leads to severe neurological deficits. Due to their immunomodulatory and neuroprotective activities and their ability to promote the generation of oligodendrocytes, mesenchymal stem cells (MSCs) are currently being developed for autologous cell therapy in MS. As aging reduces the regenerative capacity of all tissues, it is of relevance to investigate whether MSCs retain their pro-oligodendrogenic activity with increasing age. We demonstrate that MSCs derived from aged rats have a reduced capacity to induce oligodendrocyte differentiation of adult CNS stem/progenitor cells. Aging also abolished the ability of MSCs to enhance the generation of myelin-like sheaths in demyelinated cerebellar slice cultures. Finally, in a rat model for CNS demyelination, aging suppressed the capability of systemically transplanted MSCs to boost oligodendrocyte progenitor cell (OPC) differentiation during remyelination. Thus, aging restricts the ability of MSCs to support the generation of oligodendrocytes and consequently inhibits their capacity to enhance the generation of myelin-like sheaths. These findings may impact on the design of therapies using autologous MSCs in older MS patients.


Sujet(s)
Vieillissement/physiologie , Cellules souches mésenchymateuses/physiologie , Oligodendroglie/physiologie , Remyélinisation/physiologie , Animaux , Cellules cultivées , Maladies démyélinisantes/physiopathologie , Modèles animaux de maladie humaine , Femelle , Mâle , Rats de lignée F344 , Rat Sprague-Dawley , Techniques de culture de tissus
6.
Neurosci Bull ; 34(2): 247-260, 2018 Apr.
Article de Anglais | MEDLINE | ID: mdl-29397565

RÉSUMÉ

The differentiation and maturation of oligodendrocyte precursor cells (OPCs) is essential for myelination and remyelination in the CNS. The failure of OPCs to achieve terminal differentiation in demyelinating lesions often results in unsuccessful remyelination in a variety of human demyelinating diseases. However, the molecular mechanisms controlling OPC differentiation under pathological conditions remain largely unknown. Myt1L (myelin transcription factor 1-like), mainly expressed in neurons, has been associated with intellectual disability, schizophrenia, and depression. In the present study, we found that Myt1L was expressed in oligodendrocyte lineage cells during myelination and remyelination. The expression level of Myt1L in neuron/glia antigen 2-positive (NG2+) OPCs was significantly higher than that in mature CC1+ oligodendrocytes. In primary cultured OPCs, overexpression of Myt1L promoted, while knockdown inhibited OPC differentiation. Moreover, Myt1L was potently involved in promoting remyelination after lysolecithin-induced demyelination in vivo. ChIP assays showed that Myt1L bound to the promoter of Olig1 and transcriptionally regulated Olig1 expression. Taken together, our findings demonstrate that Myt1L is an essential regulator of OPC differentiation, thereby supporting Myt1L as a potential therapeutic target for demyelinating diseases.


Sujet(s)
Différenciation cellulaire/physiologie , Protéines de tissu nerveux/métabolisme , Précurseurs des oligodendrocytes/métabolisme , Oligodendroglie/métabolisme , Remyélinisation/physiologie , Facteurs de transcription/métabolisme , Animaux , Maladies démyélinisantes/induit chimiquement , Lysolécithine/toxicité , Souris , Souris de lignée C57BL , Précurseurs des oligodendrocytes/cytologie , Oligodendroglie/cytologie
7.
Cell Rep ; 20(8): 1755-1764, 2017 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-28834740

RÉSUMÉ

The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs) proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs) rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC) differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.


Sujet(s)
Système nerveux central/physiologie , Oligodendroglie/physiologie , Péricytes/physiologie , Animaux , Différenciation cellulaire/physiologie , Cellules cultivées , Système nerveux central/cytologie , Système nerveux central/métabolisme , Maladies démyélinisantes , Humains , Souris , Régénération nerveuse/physiologie , Oligodendroglie/cytologie , Oligodendroglie/métabolisme , Péricytes/cytologie , Péricytes/métabolisme
8.
Sci Rep ; 6: 31599, 2016 08 24.
Article de Anglais | MEDLINE | ID: mdl-27554391

RÉSUMÉ

Enhancing central nervous system (CNS) myelin regeneration is recognized as an important strategy to ameliorate the devastating consequences of demyelinating diseases such as multiple sclerosis. Previous findings have indicated that myelin proteins, which accumulate following demyelination, inhibit remyelination by blocking the differentiation of rat oligodendrocyte progenitor cells (OPCs) via modulation of PKCα. We therefore screened drugs for their potential to overcome this differentiation block. From our screening, tamoxifen emerges as a potent inducer of OPC differentiation in vitro. We show that the effects of tamoxifen rely on modulation of the estrogen receptors ERα, ERß, and GPR30. Furthermore, we demonstrate that administration of tamoxifen to demyelinated rats in vivo accelerates remyelination. Tamoxifen is a well-established drug and is thus a promising candidate for a drug to regenerate myelin, as it will not require extensive safety testing. In addition, Tamoxifen plays an important role in biomedical research as an activator of inducible genetic models. Our results highlight the importance of appropriate controls when using such models.


Sujet(s)
Différenciation cellulaire/effets des médicaments et des substances chimiques , Maladies démyélinisantes , Cellules souches neurales , Oligodendroglie , Tamoxifène/pharmacologie , Animaux , Maladies démyélinisantes/traitement médicamenteux , Maladies démyélinisantes/métabolisme , Maladies démyélinisantes/anatomopathologie , Cellules souches neurales/métabolisme , Cellules souches neurales/anatomopathologie , Oligodendroglie/métabolisme , Oligodendroglie/anatomopathologie , Rats , Rat Sprague-Dawley
9.
J Cell Biol ; 211(5): 975-85, 2015 Dec 07.
Article de Anglais | MEDLINE | ID: mdl-26644513

RÉSUMÉ

The mechanisms regulating differentiation of oligodendrocyte (OLG) progenitor cells (OPCs) into mature OLGs are key to understanding myelination and remyelination. Signaling via the retinoid X receptor γ (RXR-γ) has been shown to be a positive regulator of OPC differentiation. However, the nuclear receptor (NR) binding partner of RXR-γ has not been established. In this study we show that RXR-γ binds to several NRs in OPCs and OLGs, one of which is vitamin D receptor (VDR). Using pharmacological and knockdown approaches we show that RXR-VDR signaling induces OPC differentiation and that VDR agonist vitamin D enhances OPC differentiation. We also show expression of VDR in OLG lineage cells in multiple sclerosis. Our data reveal a role for vitamin D in the regenerative component of demyelinating disease and identify a new target for remyelination medicines.


Sujet(s)
Régulation de l'expression des gènes , Sclérose en plaques/métabolisme , Oligodendroglie/cytologie , Récepteur calcitriol/métabolisme , Récepteur X des rétinoïdes type gamma/métabolisme , Cellules souches/cytologie , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , Animaux , Différenciation cellulaire , Lignage cellulaire , Femelle , Humains , Mâle , Adulte d'âge moyen , Gaine de myéline/composition chimique , Liaison aux protéines , Multimérisation de protéines , Rats , Rat Sprague-Dawley , Transduction du signal , Vitamine D/métabolisme
10.
EMBO Mol Med ; 5(12): 1918-34, 2013 Dec.
Article de Anglais | MEDLINE | ID: mdl-24293318

RÉSUMÉ

The increasing effectiveness of new disease-modifying drugs that suppress disease activity in multiple sclerosis has opened up opportunities for regenerative medicines that enhance remyelination and potentially slow disease progression. Although several new targets for therapeutic enhancement of remyelination have emerged, few lend themselves readily to conventional drug development. Here, we used transcription profiling to identify mitogen-activated protein kinase (Mapk) signalling as an important regulator involved in the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes. We show in tissue culture that activation of Mapk signalling by elevation of intracellular levels of cyclic adenosine monophosphate (cAMP) using administration of either dibutyryl-cAMP or inhibitors of the cAMP-hydrolysing enzyme phosphodiesterase-4 (Pde4) enhances OPC differentiation. Finally, we demonstrate that systemic delivery of a Pde4 inhibitor leads to enhanced differentiation of OPCs within focal areas of toxin-induced demyelination and a consequent acceleration of remyelination. These data reveal a novel approach to therapeutic enhancement of remyelination amenable to pharmacological intervention and hence with significant potential for translation.


Sujet(s)
Différenciation cellulaire , Système nerveux central/métabolisme , Cyclic Nucleotide Phosphodiesterases, Type 4/métabolisme , Gaine de myéline/métabolisme , Animaux , Dibutyryl AMP cyclique/composition chimique , Dibutyryl AMP cyclique/pharmacologie , Différenciation cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , AMP cyclique/métabolisme , Cyclic Nucleotide Phosphodiesterases, Type 4/composition chimique , Humains , Immunité innée/effets des médicaments et des substances chimiques , Mitogen-Activated Protein Kinases/métabolisme , Sclérose en plaques/métabolisme , Sclérose en plaques/anatomopathologie , Gaine de myéline/composition chimique , Oligodendroglie/cytologie , Oligodendroglie/métabolisme , Inhibiteurs de la phosphodiestérase-4/composition chimique , Inhibiteurs de la phosphodiestérase-4/métabolisme , Inhibiteurs de la phosphodiestérase-4/pharmacologie , Rats , Rat Sprague-Dawley , Transcriptome
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...