Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 733
Filtrer
1.
Infect Drug Resist ; 17: 2823-2832, 2024.
Article de Anglais | MEDLINE | ID: mdl-39005857

RÉSUMÉ

Introduction: Recent studies suggested the potential benefits of extended infusion times to optimize the treatment efficacy of ceftazidime/avibactam, which indicated that the current pharmacokinetic/pharmacodynamic (PK/PD) target may not be sufficient, especially for severe infections. The purpose of this study is to assess the adequacy of dosing strategies and infusion durations of ceftazidime/avibactam when applying higher PK/PD targets. Methods: This study utilized published PK parameters to conduct Monte Carlo simulations. Different dosages including the recommended regimen based on renal function were simulated and evaluated by the probability of target attainment (PTA) and cumulative fraction of response (CFR). Different PK/PD targets were set for ceftazidime and avibactam. MIC distributions from various sources were used to calculate the CFR. Results: Multiple PK/PD targets have been set in this study, All recommended dosage could easily achieve the target of 50%fT ≥ MIC (ceftazidime) and 50%fT ≥ CT=1.0 mg/L (avibactam). However, for severe infection patients with normal renal function and augmented renal clearance at the recommended dosage (2000 mg/500 mg, every 8 hours), the infusion duration needs to be extended to 3 hours and 4 hours to achieve the targets of 100%fT ≥ MIC and 100%fT ≥ CT=1.0 mg/L. Only continuous infusion at higher dosages achieved 100%fT ≥ 4×MIC and 100%fT ≥ CT=4.0 mg/L targets to all currently recommended regimens. According to the varying MIC distributions, higher concentrations are needed for Pseudomonas aeruginosa, with the attainment rates vary across different regions. Conclusion: The current recommended dosing regimen of ceftazidime/avibactam is insufficient for severe infection patients, and continuous infusion is suggested.

2.
Anal Chem ; 96(28): 11603-11610, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-38953495

RÉSUMÉ

Long noncoding RNAs (lncRNAs) act as the dynamic regulatory molecules that control the expression of genes and affect numerous biological processes, and their dysregulation is associated with tumor progression. Herein, we develop a fluorescent light-up aptasensor to simultaneously measure multiple lncRNAs in living cells and breast tissue samples based on the DNAzyme-mediated cleavage reaction and transcription-driven synthesis of light-up aptamers. When target lncRNAs are present, they can be recognized by template probes to form the active DNAzyme structures, initiating the T4 PNK-catalyzed dephosphorylation-triggered extension reaction to generate double-strand DNAs with the T7 promoter sequences. The corresponding T7 promoters can initiate the transcription amplification catalyzed by the T7 RNA polymerase to generate abundant Broccoli aptamers and malachite green aptamers, which can bind DFHBI-1T and MG to generate strong fluorescence signals. Taking advantage of the good selectivity of DNAzyme-mediated cleavage of lncRNAs, high amplification efficiency of T7 transcription-driven amplification reaction, and bright fluorescence of the RNA aptamer-fluorophore complex, this method exhibits high sensitivity with a detection limit of 21.4 aM for lncRNA HOTAIR and 18.47 aM for lncRNA MALAT1, and it can accurately measure multiple lncRNAs in both tumor cell lines and breast tissue samples, providing a powerful paradigm for biomedical research and early clinic diagnostics.


Sujet(s)
Aptamères nucléotidiques , Techniques de biocapteur , ADN catalytique , Colorants fluorescents , ARN long non codant , ADN catalytique/composition chimique , ADN catalytique/métabolisme , ARN long non codant/analyse , ARN long non codant/métabolisme , ARN long non codant/génétique , Humains , Aptamères nucléotidiques/composition chimique , Colorants fluorescents/composition chimique , Limite de détection , Fluorescence
3.
Ecol Evol ; 14(7): e70013, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39011133

RÉSUMÉ

Amaranthaceae s.l. is a widely distributed family consisting of over 170 genera and 2000 species. Previous molecular phylogenetic studies have shown that Amaranthaceae s.s. and traditional Chenopodiaceae form a monophyletic group (Amaranthaceae s.l.), however, the relationships within this evolutionary branch have yet to be fully resolved. In this study, we assembled the complete plastomes and full-length ITS of 21 Amaranthaceae s.l. individuals and compared them with 38 species of Amaranthaceae s.l. Through plastome structure and sequence alignment analysis, we identified a reverse complementary region approximately 5200 bp long in the genera Atriplex and Chenopodium. Adaptive evolution analysis revealed significant positive selection in eight genes, which likely played a driving role in the evolution of Amaranthaceae s.l., as demonstrated by partitioned evolutionary analysis. Furthermore, we found that about two-thirds of the examined species lack the ycf15 gene, potentially associated with natural selection pressures from their adapted habitats. The phylogenetic tree indicated that some genera (Chenopodium, Halogeton, and Subtr. Salsolinae) are paraphyletic lineages. Our results strongly support the clustering of Amaranthaceae s.l. with monophyletic traditional Chenopodiaceae (Clades I and II) and Amaranthaceae s.s. After a comprehensive analysis, we determined that cytonuclear conflict, gene selection by adapted habitats, and incomplete lineage sorting (ILS) events were the primary reasons for the inconsistent phylogeny of Amaranthaceae s.l. During the last glacial period, certain species within Amaranthaceae s.l. underwent adaptations to different environments and began to differentiate rapidly. Since then, these species may have experienced morphological and genetic changes distinct from those of other genera due to intense selection pressure.

4.
J Colloid Interface Sci ; 675: 326-335, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38972120

RÉSUMÉ

Water splitting is a promising technique for clean hydrogen production. To improve the sluggish hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), the development of efficient bifunctional electrocatalysts for both HER and OER is urgent to approach the scale-up applications of water splitting. Nowadays transition metal oxides (TMOs) are considered as the promising electrocatalysts due to their low cost, structural flexibility and stability, however, their electrocatalytic activities are eager to be improved. Here, we synthesized waxberry-like hydrophilic Co-doped ZnFe2O4 electrocatalysts as bifunctional electrocatalysts for water splitting. Due to the enhanced active sites by electronic structure tuning and modified super-hydrophilic characteristics, the spinel ZFO-Co0.5 electrocatalyst exhibits excellent catalytic activities for both OER and HER. It exhibits a remarkable low OER overpotential of 220 mV at a current density of 10 mA cm-2 and a Tafel slope of 28.2 mV dec-1. Meanwhile, it achieves a low overpotential of 73 mV at a current density of 10 mA cm-2 with the Tafel slope of 87 mV dec-1 for HER. In addition, for water electrolysis device, the electrocatalytic performance of ZFO-Co0.5||ZFO-Co0.5 surpasses that of commercial IrO2||Pt/C. Our work reveals that the hydrophilic morphology regulation combined with metallic doping strategy is a facile and effective approach to synthesize spinel TMOs as excellent bifunctional electrocatalyst for water splitting.

5.
Sci Total Environ ; : 174836, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39029761

RÉSUMÉ

The United Nations Sustainable Development Goals call for innovative proposals to ensure access to clean water and sanitation. While significant strides have been made in enhancing drinking water purification technologies, the role of drinking water distribution systems (DWDS) in maintaining water quality safety has increasingly become a focal point of concern. The presence of scale within DWDS can impede the secure and efficient functioning of the drinking water supply system, posing risks to the safety of drinking water quality. Previous research has identified that the primary constituents of scale in DWDS are insoluble minerals, such as calcium and magnesium carbonate. Elevated levels of hardness and alkalinity in the water can exacerbate scale formation. To address the scaling issue, softening technologies like induced crystallization, nanofiltration/reverse osmosis, and ion exchange are currently in widespread use. These methods effectively mitigate the scaling in DWDS by reducing the water's hardness and alkalinity. However, the application of softening technologies not only alters the hardness and alkalinity but also induces changes in the fundamental characteristics of water quality, leading to transition effects within the DWDS. This article reviews the impact of various softening technologies on the intrinsic properties of water quality and highlights the merits of electrochemical characteristic indicators in the assessment of water quality stability. Additionally, the paper delves into the factors that influence the transition effects in DWDS. It concludes with a forward-looking proposal to leverage artificial intelligence, specifically machine learning and neural networks, to develop an evaluation and predictive framework for the stability of drinking water quality and the transition effects observed in DWDS. This approach aims to provide a more accurate and proactive method for managing and predicting the impacts of water treatment processes on distribution system integrity and water quality over time.

6.
Gerontologist ; 2024 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-38943547

RÉSUMÉ

BACKGROUND AND OBJECTIVES: This study examined the psychometric properties and measurement invariance of the 10-item Awareness of Age-Related Change Short Form (AARC-SF) questionnaire in a Chinese-speaking sample of older adults in Taiwan. RESEARCH DESIGN AND METHODS: Data from 292 participants (Mage = 77.64 years) in the Healthy Aging Longitudinal Study in Taiwan (HALST) cohort were used for Study 1, whereas data from young-old adult samples in Germany were used for Study 2. RESULTS: Study 1 showed that the AARC-SF had satisfactory reliability and validity for assessing adults' AARC in Taiwan. Analyses confirmed the two-factor structure of AARC-gains and AARC-losses. Study 2 demonstrated strong measurement invariance across men and women, whereas direct comparisons of the item scores between young-old adults and old-old adults need to be made with caution. Non-invariance of loadings indicated that certain items were more closely linked to AARC-gains and AARC-losses in Taiwan than in Germany. Non-invariance of intercepts suggested potential biases in comparing item scores between Taiwanese and German older adults. DISCUSSION AND IMPLICATIONS: The AARC-SF emerged as a reliable and valid instrument for capturing positive and negative subjective aging experiences among Taiwanese older adults. However, it is noteworthy that some items on the AARC-SF may solicit different responses from individuals of different ages and different countries of origin, requiring caution with age group and cross-cultural comparisons.

7.
Lab Chip ; 24(14): 3422-3433, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38860416

RÉSUMÉ

Thrombosis, characterized by blood clot formation within vessels, poses a significant medical challenge. Despite extensive research, the development of effective thrombosis therapies is hindered by substantial costs, lengthy development times, and high failure rates in medication commercialization. Conventional pre-clinical models often oversimplify cardiovascular disease, leading to a disparity between experimental results and human physiological responses. In response, we have engineered a photothrombosis-on-a-chip system. This microfluidic model integrates human endothelium, human whole blood, and blood flow dynamics and employs the photothrombotic method. It enables precise, site-specific thrombus induction through controlled laser irradiation, effectively mimicking both normal and thrombotic physiological conditions on a single chip. Additionally, the system allows for the fine-tuning of thrombus occlusion levels via laser parameter adjustments, offering a flexible thrombus model with varying degrees of obstruction. Additionally, the formation and progression of thrombosis noted on the chip closely resemble the thrombotic conditions observed in mice in previous studies. In the experiments, we perfused recalcified whole blood with Rose Bengal into an endothelialized microchannel and initiated photothrombosis using green laser irradiation. Various imaging methods verified the model's ability to precisely control thrombus formation and occlusion levels. The effectiveness of clinical drugs, including heparin and rt-PA, was assessed, confirming the chip's potential in drug screening applications. In summary, the photothrombosis-on-a-chip system significantly advances human thrombosis modeling. Its precise control over thrombus formation, flexibility in the thrombus severity levels, and capability to simulate dual physiological states on a single platform make it an invaluable tool for targeted drug testing, furthering the development of organ-on-a-chip drug screening techniques.


Sujet(s)
Laboratoires sur puces , Thrombose , Humains , Lasers , Techniques d'analyse microfluidique/instrumentation , Animaux , Rose de Bengale
8.
Microbiol Res ; 285: 127774, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38833829

RÉSUMÉ

Extended-spectrumß-lactam producing Escherichia coli (ESBL-EC) readily colonizes live poultry and serves as a major source of contamination in retail chicken meat, posing significant threats to public health. This study aims to investigate the impact of inappropriate antibiotic use on the dissemination and exacerbation of antibiotic resistance in ESBL-EC and explore the underlying molecular mechanisms. Through experimental analysis, we propose a hypothesis that inappropriate antibiotic use may exacerbate resistance by affecting vesicle formation and protein secretion. Experimental results demonstrate that under the influence of amoxicillin, the concentration of proteins secreted in outer membrane vehicles (OMVs) by ESBL-EC significantly increases, along with a significant upregulation in the expression of the CTX-M-55-type Extended-spectrum beta-lactamase (CTX-M-55). Proteomic analysis and differential gene knockout experiments identified the key protein YdcZ, associated with OMVs formation and protein transportation in ESBL-EC under amoxicillin treatment. Further investigations reveal direct interactions between YdcZ and other proteins (YdiH and BssR). Upon ydcz gene knockout, a significant decrease in protein concentration within OMVs is observed, accompanied by a noticeable reduction in protection against sensitive bacteria. These findings suggest a critical role of YdcZ in regulating the process of protein transportation to OMVs in ESBL-EC under the influence of amoxicillin. In summary, our research uncovers the significant role of inappropriate antibiotic use in promoting the secretion of OMVs by ESBL-EC, aiding the survival of antibiotic-sensitive bacteria in the vicinity of infection sites. These findings provide new insights into the mechanisms underlying antibiotic-induced bacterial resistance dissemination and offer novel avenues for exploring prevention and control strategies against bacterial resistance propagation.


Sujet(s)
Amoxicilline , Antibactériens , Protéines Escherichia coli , Escherichia coli , Transport des protéines , bêta-Lactamases , Antibactériens/pharmacologie , Escherichia coli/génétique , Escherichia coli/effets des médicaments et des substances chimiques , Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines Escherichia coli/métabolisme , bêta-Lactamases/métabolisme , bêta-Lactamases/génétique , Amoxicilline/pharmacologie , Animaux , Tests de sensibilité microbienne , Protéomique , Protéines de la membrane externe bactérienne/métabolisme , Protéines de la membrane externe bactérienne/génétique , Poulets/microbiologie , Résistance bactérienne aux médicaments , Membrane bactérienne externe/effets des médicaments et des substances chimiques , Membrane bactérienne externe/métabolisme , Infections à Escherichia coli/microbiologie , Infections à Escherichia coli/traitement médicamenteux
9.
Int J Med Sci ; 21(6): 1117-1128, 2024.
Article de Anglais | MEDLINE | ID: mdl-38774761

RÉSUMÉ

In this study, we developed a microfluidic device that is able to monitor cell biology under continuous PM2.5 treatment. The effects of PM2.5 on human alveolar basal epithelial cells, A549 cells, and uncovered several significant findings were investigated. The results showed that PM2.5 exposure did not lead to a notable decrease in cell viability, indicating that PM2.5 did not cause cellular injury or death. However, the study found that PM2.5 exposure increased the invasion and migration abilities of A549 cells, suggesting that PM2.5 might promote cell invasiveness. Results of RNA sequencing revealed 423 genes that displayed significant differential expression in response to PM2.5 exposure, with a particular focus on pathways associated with the generation of reactive oxygen species (ROS) and mitochondrial dysfunction. Real-time detection demonstrated an increase in ROS production in A549 cells after exposure to PM2.5. JC1 assay, which indicated a loss of mitochondrial membrane potential (ΔΨm) in A549 cells exposed to PM2.5. The disruption of mitochondrial membrane potential further supports the detrimental effects of PM2.5 on A549 cells. These findings highlight several adverse effects of PM2.5 on A549 cells, including enhanced invasion and migration capabilities, altered gene expression related to ROS pathways, increased ROS production and disruption of mitochondrial membrane potential. These findings contribute to our understanding of the potential mechanisms through which PM2.5 can impact cellular function and health.


Sujet(s)
Mouvement cellulaire , Survie cellulaire , Tumeurs du poumon , Potentiel de membrane mitochondriale , Matière particulaire , Espèces réactives de l'oxygène , Humains , Matière particulaire/effets indésirables , Espèces réactives de l'oxygène/métabolisme , Cellules A549 , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/génétique , Mouvement cellulaire/effets des médicaments et des substances chimiques , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Laboratoires sur puces , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Invasion tumorale/génétique , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Microfluidique/méthodes
10.
Phys Chem Chem Phys ; 26(20): 14613-14623, 2024 May 22.
Article de Anglais | MEDLINE | ID: mdl-38739028

RÉSUMÉ

A Ru-containing complex shows good catalytic performance toward the hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) with the assistance of organic base ligands (OBLs) and CO2. Herein, we report the competitive mechanisms for the hydrogenation of LA to GVL, 4-oxopentanal (OT), and 2-methyltetrahydro-2,5-furandiol (MFD) with HCOOH or H2 as the H source catalyzed by RuCl3 in aqueous solution at the M06/def2-TZVP, 6-311++G(d,p) theoretical level. Kinetically, the hydrodehydration of LA to GVL is predominant, with OT and MFD as side products. With HCOOH as the H source, initially, the OBL (triethylamine, pyridine, or triphenylphosphine) is responsible for capturing H+ from HCOOH, leading to HCOO- and [HL]+. Next, the Ru3+ site is in charge of sieving H- from HCOO-, yielding [RuH]2+ hydride and CO2. Alternatively, with H2 as the H source, the OBL stimulates the heterolysis of H-H bond with the aid of Ru3+ active species, producing [RuH]2+ and [HL]+. Toward the [RuH]2+ formation, H2 as the H source exhibits higher activity than HCOOH as the H source in the presence of an OBL. Thereafter, H- in [RuH]2+ gets transferred to the unsaturated C site of ketone carbonyl in LA. Afterwards, the Ru3+ active species is capable of cleaving the C-OH bond in 4-hydroxyvaleric acid, yielding [RuOH]2+ hydroxide and GVL. Subsequently, CO2 promotes Ru-OH bond cleavage in [RuOH]2+, forming HCO3- and regenerating the Ru3+-active species owing to its Lewis acidity. Lastly, between the resultant HCO3- and [HL]+, a neutralization reaction occurs, generating H2O, CO2, and OBLs. Thus, the present study provides insights into the promotive roles of additives such as CO2 and OBLs in Ru-catalyzed hydrogenation.

11.
World J Psychiatry ; 14(5): 695-703, 2024 May 19.
Article de Anglais | MEDLINE | ID: mdl-38808087

RÉSUMÉ

BACKGROUND: Cognitive reserve (CR) and the catechol-O-methyltransferase (COMT) Val/Met polymorphism are reportedly linked to negative symptoms in schizophrenia. However, the regulatory effect of the COMT genotype on the relationship between CR and negative symptoms is still unexamined. AIM: To investigate whether the relationship between CR and negative symptoms could be regulated by the COMT Val/Met polymorphism. METHODS: In a cross-sectional study, 54 clinically stable patients with schizophrenia underwent assessments for the COMT genotype, CR, and negative symptoms. CR was estimated using scores in the information and similarities subtests of a short form of the Chinese version of the Wechsler Adult Intelligence Scale. RESULTS: COMT Met-carriers exhibited fewer negative symptoms than Val homozygotes. In the total sample, significant negative correlations were found between negative symptoms and information, similarities. Associations between information, similarities and negative symptoms were observed in Val homozygotes only, with information and similarities showing interaction effects with the COMT genotype in relation to negative symptoms (information, ß = -0.282, 95%CI: -0.552 to -0.011, P = 0.042; similarities, ß = -0.250, 95%CI: -0.495 to -0.004, P = 0.046). CONCLUSION: This study provides initial evidence that the association between negative symptoms and CR is under the regulation of the COMT genotype in schizophrenia.

12.
Anal Chem ; 96(19): 7738-7746, 2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38690966

RÉSUMÉ

Telomerase is an important biomarker for early diagnosis of cancers, but current telomerase assays usually rely on measuring the extension products of telomerase substrates, which increases the assay complexity. More evidence indicates that human telomerase RNA (hTR), as a core component of telomerase, is positively correlated with the telomerase activity. Herein, we demonstrate the development of a duplex-specific nuclease (DSN)-propelled 3D quantum dot (QD) nanoassembly with two-step Föster resonance energy transfer (FRET) for the one-step sensing of hTR in breast cancer cells and tissues. This assay involves only one hairpin probe modified with a Cy5 at the sixth base from the 5'-biotin end and a BHQ2 at the 3'-terminus, which integrates three functions of target recognition, target recycling amplification, and signal readout. The anchoring of the hairpin probe on the 605QD surface results in the formation of a 3D 605QD-Cy5-probe-BHQ2 nanoassembly in which two-step FRET occurs among the 605QD, Cy5, and BHQ2 quencher. Notably, the formation of 605QD-Cy5-probe-BHQ2 nanoassembly facilitates the reduction of background signal and the increase of signal-to-background ratio due to its dense, highly oriented nucleic acid shell-induced steric hindrance effect. This assay can achieve one-step and rapid detection of hTR with a detection limit of 2.10 fM, which is the simplest and most rapid hTR assay reported so far. Moreover, this assay can efficiently distinguish single-base mismatched sequences, and it can discriminate the hTR level between breast cancer patients and healthy donors with a high accuracy of 100%, with great prospects for early diagnosis of cancers.


Sujet(s)
Tumeurs du sein , Transfert d'énergie par résonance de fluorescence , Boîtes quantiques , ARN , Telomerase , Humains , Telomerase/métabolisme , Telomerase/analyse , Boîtes quantiques/composition chimique , ARN/métabolisme , ARN/analyse , Femelle , Carbocyanines/composition chimique , Techniques de biocapteur/méthodes
13.
J Nanobiotechnology ; 22(1): 290, 2024 May 27.
Article de Anglais | MEDLINE | ID: mdl-38802884

RÉSUMÉ

Corneal neovascularization (CNV) is one of the common blinding factors worldwide, leading to reduced vision or even blindness. However, current treatments such as surgical intervention and anti-VEGF agent therapy still have some shortcomings or evoke some adverse effects. Recently, SU6668, an inhibitor targeting angiogenic tyrosine kinases, has demonstrated growth inhibition of neovascularization. But the hydrophobicity and low ocular bioavailability limit its application in cornea. Hereby, we proposed the preparation of SU6668 pure nanoparticles (NanoSU6668; size ~135 nm) using a super-stable pure-nanomedicine formulation technology (SPFT), which possessed uniform particle size and excellent aqueous dispersion at 1 mg/mL. Furthermore, mesenchymal stem cell membrane vesicle (MSCm) was coated on the surface of NanoSU6668, and then conjugated with TAT cell penetrating peptide, preparing multifunctional TAT-MSCm@NanoSU6668 (T-MNS). The T-MNS at a concentration of 200 µg/mL was treated for CNV via eye drops, and accumulated in blood vessels with a high targeting performance, resulting in elimination of blood vessels and recovery of cornea transparency after 4 days of treatment. Meanwhile, drug safety test confirmed that T-MNS did not cause any damage to cornea, retina and other eye tissues. In conclusion, the T-MNS eye drop had the potential to treat CNV effectively and safely in a low dosing frequency, which broke new ground for CNV theranostics.


Sujet(s)
Cornée , Néovascularisation cornéenne , Nanoparticules , Solutions ophtalmiques , Néovascularisation cornéenne/traitement médicamenteux , Animaux , Nanoparticules/composition chimique , Solutions ophtalmiques/composition chimique , Cornée/métabolisme , Cornée/effets des médicaments et des substances chimiques , Souris , Inhibiteurs de l'angiogenèse/composition chimique , Inhibiteurs de l'angiogenèse/usage thérapeutique , Inhibiteurs de l'angiogenèse/pharmacologie , Taille de particule , Humains , Mâle , Souris de lignée C57BL , Lapins
14.
Small ; : e2401447, 2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-38693087

RÉSUMÉ

Topological defects are widely recognized as effective active sites toward a variety of electrochemical reactions. However, the role of defect curvature is still not fully understood. Herein, carbon nanomaterials with rich topological defect sites of tunable curvature is reported. The curved defective surface is realized by controlling the high-temperature pyrolytic shrinkage process of precursors. Theoretical calculations demonstrate bending the defect sites can change the local electronic structure, promote the charge transfer to key intermediates, and lower the energy barrier for oxygen reduction reaction (ORR). Experimental results convince structural superiority of highly-curved defective sites, with a high kinetic current density of 22.5 mA cm-2 at 0.8 V versus RHE for high-curvature defective carbon (HCDC), ≈18 times that of low-curvature defective carbon (LCDC). Further raising the defect densities in HCDC leads to the dual-regulated products (HCHDC), which exhibit exceptionally outstanding ORR activity in both alkaline and acidic media (half-wave potentials: 0.88 and 0.74 V), outperforming most of the reported metal-free carbon catalysts. This work uncovers the curvature-activity relationship in carbon defect for ORR and provides new guidance to design advanced catalysts via curvature-engineering.

15.
Sci Rep ; 14(1): 11486, 2024 05 20.
Article de Anglais | MEDLINE | ID: mdl-38769368

RÉSUMÉ

The purpose of this study was to investigate the relationship between circulating cytokines and liver function and prognosis of patients with advanced hepatocellular carcinoma (HCC) treated with radiotherapy combined with tislelizumab and anlotinib. The liver function indexes and pre-treatment levels of cytokines in 47 patients were measured by chemical method and flow cytometry. The median follow-up was 23.1 months. The objective response and the disease control rates were 46.8% and 68.1%, while overall survival (OS) and progression-free survival (PFS) were 12.6 and 11.4 months, respectively. Adverse events (2.1%) were grade 3-4. In addition to stage, intrahepatic metastasis and Child-Pugh score, pre-treatment interleukin-6 (IL-6) was the main cytokine affecting OS and PFS (p < 0.05). The OS (14.63 pg/mL as cutoff value) and PFS (9.85 pg/mL as cutoff value) of patients with low IL-6 levels exceeded those with high levels (21.0 and 6.9, 15.8 and 10.0 months, respectively). The risks of death and disease progression were reduced by 63.0% (HR = 0.37, 95% CI: 0.19-0.72) and 43.0% (HR = 0.57, 95% CI: 0.22-1.47), respectively. Pre-treatment IL-6 levels may be a simple and effective prognostic indicator for patients with advanced HCC treated with radiotherapy combined with immunotargeted therapy.


Sujet(s)
Anticorps monoclonaux humanisés , Carcinome hépatocellulaire , Cytokines , Indoles , Tumeurs du foie , Quinoléines , Humains , Carcinome hépatocellulaire/traitement médicamenteux , Carcinome hépatocellulaire/radiothérapie , Carcinome hépatocellulaire/mortalité , Carcinome hépatocellulaire/anatomopathologie , Tumeurs du foie/radiothérapie , Tumeurs du foie/traitement médicamenteux , Tumeurs du foie/mortalité , Mâle , Femelle , Adulte d'âge moyen , Quinoléines/usage thérapeutique , Quinoléines/administration et posologie , Anticorps monoclonaux humanisés/usage thérapeutique , Anticorps monoclonaux humanisés/administration et posologie , Sujet âgé , Indoles/usage thérapeutique , Indoles/administration et posologie , Pronostic , Cytokines/sang , Adulte , Interleukine-6/sang , Protocoles de polychimiothérapie antinéoplasique/usage thérapeutique , Protocoles de polychimiothérapie antinéoplasique/effets indésirables
16.
Phys Chem Chem Phys ; 26(23): 16664-16673, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38808589

RÉSUMÉ

For the conversion of fructose/methylglucoside (MG) into both methyl formate (MF) and methyl levulinate (MLev), the C-source of formate [HCOO]- remains unclear at the molecular level. Herein, reaction mechanisms catalyzed by [CH3OH2]+ in a methanol solution were theoretically investigated at the PBE0/6-311++G(d,p) level. For the conversion of fructose into MF and MLev, the formate [HCOO]- comes from the C1-atom of fructose, in which the rate-determining step lies in the reaction of 5-hydroxymethylfurfural (HMF) with CH3OH to yield MF and MLev. The reaction of fructose with CH3OH kinetically tends to generate HMF intermediates rather than yield (MF + MLev). When MG is dissolved in a methanol solution, its O2, O3, and O4 atoms are closer to the first layer of the solvent than O1, O5, and O6 atoms. For the dehydration of MG with methanol into MF and MLev, the formate [HCOO]- stems from the dominant C1- and secondary C3-atoms of MG. Kinetically, MG is ready to yield (MF + MLev), whereas fructose can induce the reaction to remain at the HMF intermediate, inhibiting the further conversion of HMF with CH3OH into MF and MLev. If MG isomerizes into fructose, the reaction will be more preferable for yielding HMF rather than (MF + MLev).

18.
Talanta ; 274: 126030, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38574540

RÉSUMÉ

Aberrant long noncoding RNA (lncRNA) expression is linked to varied pathological processes and malignant tumors, and lncRNA can serve as potential disease biomarkers. Herein, we demonstrate the autonomous enzymatic synthesis of functional nucleic acids for sensitive measurement of lncRNA in human lung tissues on the basis of multiple primer generation-mediated rolling circle amplification (mPG-RCA). This assay involves two padlock probes that act as both a detection probe for recognizing target lncRNA and a domain for producing complementary DNAzyme. Two padlock probes can hybridize with target lncRNA at different sites, followed by ligation to form a circular template with the aid of RNA ligase. The circular template can initiate mPG-RCA to generate abundant Mg2+-dependent DNAzymes that can specifically cleave signal probes to induce the recovery of Cy3 fluorescence. The inherent characteristics of ligase-based ligation reaction and DNAzymes endow this assay with excellent specificity, and the introduction of multiple padlock probes endows this assay with high sensitivity. This strategy can rapidly and sensitively measure lncRNA with a wide linear range of 1 fM - 1 nM and a detection limit of 678 aM within 1.5 h, and it shows distinct advantages of simplicity and immobilization-free without the need of precise temperature control and tedious procedures of nanomaterial preparation. Moreover, it enables accurate measurement of lncRNA level in normal cells and malignant tumor cells as well as differentiation of lncRNA expressions in tissues of non-small cell lung cancer (NSCLC) patients and normal individuals, with promising applications in biomedical studies and disease diagnosis.


Sujet(s)
ADN catalytique , Poumon , Techniques d'amplification d'acides nucléiques , ARN long non codant , Humains , ARN long non codant/génétique , ARN long non codant/métabolisme , ADN catalytique/composition chimique , ADN catalytique/métabolisme , Poumon/métabolisme , Techniques d'amplification d'acides nucléiques/méthodes , Limite de détection
19.
Org Biomol Chem ; 22(15): 3080-3085, 2024 Apr 17.
Article de Anglais | MEDLINE | ID: mdl-38563263

RÉSUMÉ

Herein we report an additive-free protocol for the facile synthesis of α,α-dichloroketones and α-chlorohydrins from various aryl terminal, diaryl internal, and aliphatic terminal alkynes and alkenes, respectively. The commercially available tert-butyl hypochlorite (tBuOCl) was employed as a suitable chlorinating reagent, being accompanied by the less harmful tBuOH as the by-product. In addition, the oxygen atoms in the products came from water rather than molecular oxygen, based on the 18O-labelling experiments. Meanwhile, the diastereoselectivity of the Z- and the corresponding E-alkenes has been compared and rationalized. Using a group of control experiments, the possible mechanisms have been proposed as the initial electrophilic chlorination of unsaturated C-C bonds in a Markovnikov-addition manner in general followed by a nucleophilic addition with water. This work simplified the oxychlorination method with a mild chlorine source and a green oxygen source under ambient conditions.

20.
Small ; : e2402397, 2024 Apr 18.
Article de Anglais | MEDLINE | ID: mdl-38634268

RÉSUMÉ

Optimizing the local electronic structure of electrocatalysts can effectively lower the energy barrier of electrochemical reactions, thus enhancing the electrocatalytic activity. However, the intrinsic contribution of the electronic effect is still experimentally unclear. In this work, the electron injection-incomplete discharge approach to achieve the electron accumulation (EA) degree on the nickel-iron layered double hydroxide (NiFe LDH) is proposed, to reveal the intrinsic contribution of EA toward oxygen evolution reaction (OER). Such NiFe LDH with EA effect results in only 262 mV overpotential to reach 50 mA cm-2, which is 51 mV-lower compared with pristine NiFe LDH (313 mV), and reduced Tafel slope of 54.8 mV dec-1 than NiFe LDH (107.5 mV dec-1). Spectroscopy characterizations combined with theoretical calculations confirm that the EA near concomitant Vo can induce a narrower energy gap and lower thermodynamic barrier to enhance OER performance. This study clarifies the mechanism of the EA effect on OER activity, providing a direct electronic structure modulation guideline for effective electrocatalyst design.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE