Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 25
Filtrer
Plus de filtres










Base de données
Gamme d'année
2.
STAR Protoc ; 3(4): 101919, 2022 12 16.
Article de Anglais | MEDLINE | ID: mdl-36595908

RÉSUMÉ

Here, we present a protocol using MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) platform to investigate changes of the protein synthesis machinery in U87MG glioblastoma cells in response to the rocaglate silvestrol. This protocol describes steps to perform SILAC (stable isotope labeling by amino acids in cell culture), ribosome density fractionation, protein isolation, and mass spectrometry analysis. This approach can be applied to study any adaptive remodeling of protein synthesis machineries. For complete details on the use and execution of this protocol, please refer to Ho et al. (2021).1.


Sujet(s)
Glioblastome , Humains , Protéomique/méthodes , Protéines/composition chimique , Acides aminés/métabolisme , Spectrométrie de masse/méthodes
3.
Cell Rep ; 37(13): 110144, 2021 12 28.
Article de Anglais | MEDLINE | ID: mdl-34965440

RÉSUMÉ

Kaposi's sarcoma herpesvirus (KSHV) is an angiogenesis-inducing oncovirus whose ability to usurp the oxygen-sensing machinery is central to its oncogenicity. By upregulating the hypoxia-inducible factors (HIFs), KSHV reprograms infected cells to a hypoxia-like state, triggering angiogenesis. Here we identify a link between KSHV replicative biology and oncogenicity by showing that KSHV's ability to regulate HIF2α levels and localization to the endoplasmic reticulum (ER) in normoxia enables translation of viral lytic mRNAs through the HIF2α-regulated eIF4E2 translation-initiation complex. This mechanism of translation in infected cells is critical for lytic protein synthesis and contributes to KSHV-induced PDGFRA activation and VEGF secretion. Thus, KSHV regulation of the oxygen-sensing machinery allows virally infected cells to initiate translation via the mTOR-dependent eIF4E1 or the HIF2α-dependent, mTOR-independent, eIF4E2. This "translation initiation plasticity" (TRIP) is an oncoviral strategy used to optimize viral protein expression that links molecular strategies of viral replication to angiogenicity and oncogenesis.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Carcinogenèse/anatomopathologie , Herpèsvirus humain de type 8/physiologie , Hypoxie/physiopathologie , Initiation de la traduction , Sarcome de Kaposi/anatomopathologie , Réplication virale , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Carcinogenèse/génétique , Carcinogenèse/métabolisme , Facteur-4E d'initiation eucaryote/génétique , Facteur-4E d'initiation eucaryote/métabolisme , Humains , Sarcome de Kaposi/génétique , Sarcome de Kaposi/métabolisme , Sarcome de Kaposi/virologie , Activation virale
4.
Cell Rep ; 37(2): 109806, 2021 10 12.
Article de Anglais | MEDLINE | ID: mdl-34644561

RÉSUMÉ

Tactical disruption of protein synthesis is an attractive therapeutic strategy, with the first-in-class eIF4A-targeting compound zotatifin in clinical evaluation for cancer and COVID-19. The full cellular impact and mechanisms of these potent molecules are undefined at a proteomic level. Here, we report mass spectrometry analysis of translational reprogramming by rocaglates, cap-dependent initiation disruptors that include zotatifin. We find effects to be far more complex than simple "translational inhibition" as currently defined. Translatome analysis by TMT-pSILAC (tandem mass tag-pulse stable isotope labeling with amino acids in cell culture mass spectrometry) reveals myriad upregulated proteins that drive hitherto unrecognized cytotoxic mechanisms, including GEF-H1-mediated anti-survival RHOA/JNK activation. Surprisingly, these responses are not replicated by eIF4A silencing, indicating a broader translational adaptation than currently understood. Translation machinery analysis by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) identifies rocaglate-specific dependence on specific translation factors including eEF1ε1 that drive translatome remodeling. Our proteome-level interrogation reveals that the complete cellular response to these historical "translation inhibitors" is mediated by comprehensive translational landscape remodeling.


Sujet(s)
Biosynthèse des protéines/effets des médicaments et des substances chimiques , Inhibiteurs de la synthèse protéique/pharmacologie , Animaux , Benzofuranes/pharmacologie , Lignée cellulaire tumorale , Facteur-4A d'initiation eucaryote/effets des médicaments et des substances chimiques , Facteur-4A d'initiation eucaryote/métabolisme , Humains , Mâle , Souris , Souris de lignée NOD , Culture de cellules primaires , Biosynthèse des protéines/physiologie , Protéomique/méthodes , Ribosomes/métabolisme , Transcriptome/effets des médicaments et des substances chimiques , Transcriptome/génétique , Triterpènes/pharmacologie
5.
Wiley Interdiscip Rev RNA ; 12(5): e1647, 2021 09.
Article de Anglais | MEDLINE | ID: mdl-33694288

RÉSUMÉ

Responsible for generating the proteome that controls phenotype, translation is the ultimate convergence point for myriad upstream signals that influence gene expression. System-wide adaptive translational reprogramming has recently emerged as a pillar of cellular adaptation. As classic regulators of mRNA stability and translation efficiency, foundational studies established the concept of collaboration and competition between RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) on individual mRNAs. Fresh conceptual innovations now highlight stress-activated, evolutionarily conserved RBP networks and ncRNAs that increase the translation efficiency of populations of transcripts encoding proteins that participate in a common cellular process. The discovery of post-transcriptional functions for long noncoding RNAs (lncRNAs) was particularly intriguing given their cell-type-specificity and historical definition as nuclear-functioning epigenetic regulators. The convergence of RBPs, lncRNAs, and microRNAs on functionally related mRNAs to enable adaptive protein synthesis is a newer biological paradigm that highlights their role as "translatome (protein output) remodelers" and reinvigorates the paradigm of "RNA operons." Together, these concepts modernize our understanding of cellular stress adaptation and strategies for therapeutic development. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.


Sujet(s)
ARN long non codant , Protéines de liaison à l'ARN , Stabilité de l'ARN , ARN long non codant/génétique , ARN messager , ARN non traduit/génétique , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/métabolisme
6.
Trends Biochem Sci ; 46(3): 171-174, 2021 03.
Article de Anglais | MEDLINE | ID: mdl-33309326

RÉSUMÉ

Global translational remodeling has emerged as a principal mechanism of biological adaptation. Oxygen deficiency (hypoxia) disables the basal protein synthesis machinery ('Jekyll') and activates a hypoxic translational architecture ('Hyde') to drive translatome remodeling. Independent from mRNA-level fluctuations, this newer paradigm modernizes a field traditionally dominated by the hypoxia-inducible factor (HIF) transcriptional program.


Sujet(s)
Hypoxie , Biosynthèse des protéines , Hypoxie cellulaire , Humains , Sous-unité alpha du facteur-1 induit par l'hypoxie , Oxygène , ARN messager/métabolisme
7.
Nat Commun ; 11(1): 5755, 2020 11 13.
Article de Anglais | MEDLINE | ID: mdl-33188200

RÉSUMÉ

Translatome reprogramming is a primary determinant of protein levels during stimuli adaptation. This raises the question: what are the translatome remodelers that reprogram protein output to activate biochemical adaptations. Here, we identify a translational pathway that represses metabolism to safeguard genome integrity. A system-wide MATRIX survey identified the ancient eIF5A as a pH-regulated translation factor that responds to fermentation-induced acidosis. TMT-pulse-SILAC analysis identified several pH-dependent proteins, including the mTORC1 suppressor Tsc2 and the longevity regulator Sirt1. Sirt1 operates as a pH-sensor that deacetylates nuclear eIF5A during anaerobiosis, enabling the cytoplasmic export of eIF5A/Tsc2 mRNA complexes for translational engagement. Tsc2 induction inhibits mTORC1 to suppress cellular metabolism and prevent acidosis-induced DNA damage. Depletion of eIF5A or Tsc2 leads to metabolic re-initiation and proliferation, but at the expense of incurring substantial DNA damage. We suggest that eIF5A operates as a translatome remodeler that suppresses metabolism to shield the genome.


Sujet(s)
Altération de l'ADN , Facteurs initiation chaîne peptidique/métabolisme , Biosynthèse des protéines , Protéines de liaison à l'ARN/métabolisme , Acidose/métabolisme , Acidose/anatomopathologie , Transport nucléaire actif , Adénosine triphosphate/métabolisme , Hypoxie cellulaire , Lignée cellulaire tumorale , Noyau de la cellule/métabolisme , Prolifération cellulaire , Humains , Complexe-1 cible mécanistique de la rapamycine/antagonistes et inhibiteurs , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Facteurs initiation chaîne peptidique/génétique , Protéomique , ARN messager/métabolisme , Protéines de liaison à l'ARN/génétique , Sirtuine-1/antagonistes et inhibiteurs , Sirtuine-1/métabolisme , Transcription génétique , Protéine-2 du complexe de la sclérose tubéreuse/génétique , Protéine-2 du complexe de la sclérose tubéreuse/métabolisme ,
8.
Nat Commun ; 11(1): 2677, 2020 05 29.
Article de Anglais | MEDLINE | ID: mdl-32472050

RÉSUMÉ

Protein expression evolves under greater evolutionary constraint than mRNA levels, and translation efficiency represents a primary determinant of protein levels during stimuli adaptation. This raises the question as to the translatome remodelers that titrate protein output from mRNA populations. Here, we uncover a network of RNA-binding proteins (RBPs) that enhances the translation efficiency of glycolytic proteins in cells responding to oxygen deprivation. A system-wide proteomic survey of translational engagement identifies a family of oxygen-regulated RBPs that functions as a switch of glycolytic intensity. Tandem mass tag-pulse SILAC (TMT-pSILAC) and RNA sequencing reveals that each RBP controls a unique but overlapping portfolio of hypoxic responsive proteins. These RBPs collaborate with the hypoxic protein synthesis apparatus, operating as a translation efficiency checkpoint that integrates upstream mRNA signals to activate anaerobic metabolism. This system allows anoxia-resistant animals and mammalian cells to initiate anaerobic glycolysis and survive hypoxia. We suggest that an oxygen-sensitive RBP cluster controls anaerobic metabolism to confer hypoxia tolerance.


Sujet(s)
Anaérobiose/physiologie , Hypoxie cellulaire/physiologie , Glycolyse/physiologie , Protéines de liaison à l'ARN/métabolisme , Cellules 3T3 , Cellules A549 , Animaux , Caenorhabditis elegans/métabolisme , Lignée cellulaire tumorale , Analyse de profil d'expression de gènes , Cellules HCT116 , Humains , Souris , Oxygène/métabolisme , Cellules PC-3 , Biosynthèse des protéines/physiologie , Maturation post-traductionnelle des protéines/génétique , Protéomique , ARN messager/génétique
9.
J Immunol ; 204(5): 1173-1187, 2020 03 01.
Article de Anglais | MEDLINE | ID: mdl-31996458

RÉSUMÉ

Homogeneous populations of mature differentiated primary cell types can display variable responsiveness to extracellular stimuli, although little is known about the underlying mechanisms that govern such heterogeneity at the level of gene expression. In this article, we show that morphologically homogenous human endothelial cells exhibit heterogeneous expression of VCAM1 after TNF-α stimulation. Variability in VCAM1 expression was not due to stochasticity of intracellular signal transduction but rather to preexisting established heterogeneous states of promoter DNA methylation that were generationally conserved through mitosis. Variability in DNA methylation of the VCAM1 promoter resulted in graded RelA/p65 and RNA polymerase II binding that gave rise to a distribution of VCAM1 transcription in the population after TNF-α stimulation. Microarray analysis and single-cell RNA sequencing revealed that a number of cytokine-inducible genes shared this heterogeneous response pattern. These results show that heritable epigenetic heterogeneity is fundamental in inflammatory signaling and highlight VCAM1 as a metastable epiallele.


Sujet(s)
Épigenèse génétique/immunologie , Cellules endothéliales de la veine ombilicale humaine/immunologie , Cellules endothéliales de la veine ombilicale humaine/cytologie , Humains , Régions promotrices (génétique)/immunologie , RNA polymerase II/génétique , RNA polymerase II/immunologie , Facteur de transcription RelA/génétique , Facteur de transcription RelA/immunologie , Facteur de nécrose tumorale alpha/génétique , Facteur de nécrose tumorale alpha/immunologie , Molécule-1 d'adhérence des cellules vasculaires/génétique , Molécule-1 d'adhérence des cellules vasculaires/immunologie
10.
Cell Rep ; 24(7): 1713-1721.e4, 2018 08 14.
Article de Anglais | MEDLINE | ID: mdl-30110628

RÉSUMÉ

Amyloid bodies (A-bodies) are inducible membrane-less nuclear compartments composed of heterogeneous proteins that adopt an amyloid-like state. A-bodies are seeded by noncoding RNA derived from stimuli-specific loci of the rDNA intergenic spacer (rIGSRNA). This raises the question of how rIGSRNA recruits a large population of diverse proteins to confer A-body identity. Here, we show that long low-complexity dinucleotide repeats operate as the architectural determinants of rIGSRNA. On stimulus, clusters of rIGSRNA with simple cytosine/uracil (CU) or adenosine/guanine (AG) repeats spanning hundreds of nucleotides accumulate in the nucleolar area. The low-complexity sequences facilitate charge-based interactions with short cationic peptides to produce multiple nucleolar liquid-like foci. Local concentration of proteins with fibrillation propensity in these nucleolar foci induces the formation of an amyloidogenic liquid phase that seeds A-bodies. These results demonstrate the physiological importance of low-complexity RNA and repetitive regions of the genome often dismissed as "junk" DNA.


Sujet(s)
Protéines amyloïdogènes/composition chimique , Nucléole/génétique , ADN intergénique/composition chimique , ADN ribosomique/composition chimique , ARN ribosomique/composition chimique , ARN non traduit/composition chimique , Amyloïde/composition chimique , Amyloïde/génétique , Amyloïde/métabolisme , Protéines amyloïdogènes/génétique , Protéines amyloïdogènes/métabolisme , Animaux , Séquence nucléotidique , Hypoxie cellulaire , Nucléole/métabolisme , Nucléole/ultrastructure , ADN intergénique/génétique , ADN intergénique/métabolisme , ADN ribosomique/génétique , ADN ribosomique/métabolisme , Répétitions de dinucléotides , Expression des gènes , Réaction de choc thermique , Humains , Concentration en ions d'hydrogène , Cellules MCF-7 , Souris , Transition de phase , ARN ribosomique/génétique , ARN ribosomique/métabolisme , ARN non traduit/génétique , ARN non traduit/métabolisme , Protéines de fusion recombinantes/composition chimique , Protéines de fusion recombinantes/génétique , Protéines de fusion recombinantes/métabolisme , Électricité statique , Stress physiologique , Imagerie accélérée
11.
Proc Natl Acad Sci U S A ; 115(10): 2401-2406, 2018 03 06.
Article de Anglais | MEDLINE | ID: mdl-29467285

RÉSUMÉ

Endothelial cell (EC)-enriched protein coding genes, such as endothelial nitric oxide synthase (eNOS), define quintessential EC-specific physiologic functions. It is not clear whether long noncoding RNAs (lncRNAs) also define cardiovascular cell type-specific phenotypes, especially in the vascular endothelium. Here, we report the existence of a set of EC-enriched lncRNAs and define a role for spliced-transcript endothelial-enriched lncRNA (STEEL) in angiogenic potential, macrovascular/microvascular identity, and shear stress responsiveness. STEEL is expressed from the terminus of the HOXD locus and is transcribed antisense to HOXD transcription factors. STEEL RNA increases the number and integrity of de novo perfused microvessels in an in vivo model and augments angiogenesis in vitro. The STEEL RNA is polyadenylated, nuclear enriched, and has microvascular predominance. Functionally, STEEL regulates a number of genes in diverse ECs. Of interest, STEEL up-regulates both eNOS and the transcription factor Kruppel-like factor 2 (KLF2), and is subject to feedback inhibition by both eNOS and shear-augmented KLF2. Mechanistically, STEEL up-regulation of eNOS and KLF2 is transcriptionally mediated, in part, via interaction of chromatin-associated STEEL with the poly-ADP ribosylase, PARP1. For instance, STEEL recruits PARP1 to the KLF2 promoter. This work identifies a role for EC-enriched lncRNAs in the phenotypic adaptation of ECs to both body position and hemodynamic forces and establishes a newer role for lncRNAs in the transcriptional regulation of EC identity.


Sujet(s)
Chromatine/métabolisme , Cellules endothéliales , Néovascularisation physiologique , ARN long non codant , Animaux , Cellules cultivées , Cellules endothéliales/cytologie , Cellules endothéliales/métabolisme , Endothélium vasculaire/cytologie , Hémodynamique , Cellules endothéliales de la veine ombilicale humaine , Humains , Souris , Souris SCID , Néovascularisation physiologique/génétique , Néovascularisation physiologique/physiologie , ARN long non codant/génétique , ARN long non codant/métabolisme
12.
J Biol Chem ; 293(12): 4381-4402, 2018 03 23.
Article de Anglais | MEDLINE | ID: mdl-29414790

RÉSUMÉ

Although the functional role of chromatin marks at promoters in mediating cell-restricted gene expression has been well characterized, the role of intragenic chromatin marks is not well understood, especially in endothelial cell (EC) gene expression. Here, we characterized the histone H3 and H4 acetylation profiles of 19 genes with EC-enriched expression via locus-wide chromatin immunoprecipitation followed by ultra-high-resolution (5 bp) tiling array analysis in ECs versus non-ECs throughout their genomic loci. Importantly, these genes exhibit differential EC enrichment of H3 and H4 acetylation in their promoter in ECs versus non-ECs. Interestingly, VEGFR-2 and VEGFR-1 show EC-enriched acetylation across broad intragenic regions and are up-regulated in non-ECs by histone deacetylase inhibition. It is unclear which histone acetyltransferases (KATs) are key to EC physiology. Depletion of KAT7 reduced VEGFR-2 expression and disrupted angiogenic potential. Microarray analysis of KAT7-depleted ECs identified 263 differentially regulated genes, many of which are key for growth and angiogenic potential. KAT7 inhibition in zebrafish embryos disrupted vessel formation and caused loss of circulatory integrity, especially hemorrhage, all of which were rescued with human KAT7. Notably, perturbed EC-enriched gene expression, especially the VEGFR-2 homologs, contributed to these vascular defects. Mechanistically, KAT7 participates in VEGFR-2 transcription by mediating RNA polymerase II binding, H3 lysine 14, and H4 acetylation in its intragenic region. Collectively, our findings support the importance of differential histone acetylation at both promoter and intragenic regions of EC genes and reveal a previously underappreciated role of KAT7 and intragenic histone acetylation in regulating VEGFR-2 and endothelial function.


Sujet(s)
Chromatine/composition chimique , Endothélium vasculaire/métabolisme , Régulation de l'expression des gènes , Histone acetyltransferases/métabolisme , Histone/composition chimique , Danio zébré/métabolisme , Acétylation , Animaux , Cellules cultivées , Chromatine/métabolisme , Endothélium vasculaire/cytologie , Histone acetyltransferases/génétique , Histone/métabolisme , Humains , Régions promotrices (génétique) , Maturation post-traductionnelle des protéines , Récepteur-1 au facteur croissance endothéliale vasculaire/génétique , Récepteur-1 au facteur croissance endothéliale vasculaire/métabolisme , Récepteur-2 au facteur croissance endothéliale vasculaire/génétique , Récepteur-2 au facteur croissance endothéliale vasculaire/métabolisme , Danio zébré/croissance et développement
13.
Cell Rep ; 22(1): 17-26, 2018 01 02.
Article de Anglais | MEDLINE | ID: mdl-29298419

RÉSUMÉ

The eukaryotic translation initiation factor 5B (eIF5B) is a homolog of IF2, an ancient translation factor that enables initiator methionine-tRNAiMet (met-tRNAiMet) loading on prokaryotic ribosomes. While it can be traced back to the last universal common ancestor, eIF5B is curiously dispensable in modern aerobic yeast and mammalian cells. Here, we show that eIF5B is an essential element of the cellular hypoxic cap-dependent protein synthesis machinery. System-wide interrogation of dynamic translation machineries by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) demonstrated augmented eIF5B activity in hypoxic translating ribosomes. Global translatome studies revealed central carbon metabolism, cellular hypoxic adaptation, and ATF4-mediated stress response as major eIF5B-dependent pathways. These primordial processes rely on eIF5B even in the presence of oxygen and active eIF2, the canonical recruiter of met-tRNAiMet in eukaryotes. We suggest that aerobic eukarya retained eIF5B/IF2 to remodel anaerobic pathways during episodes of oxygen deficiency.


Sujet(s)
Carbone/métabolisme , Facteurs d'initiation eucaryotes/métabolisme , Oxygène/métabolisme , Biosynthèse des protéines , Cellules A549 , Facteur de transcription ATF-4/métabolisme , Aérobiose , Hypoxie cellulaire , Facteur-2 d'initiation eucaryote/métabolisme , Humains , Cellules MCF-7
14.
Dev Cell ; 39(2): 155-168, 2016 10 24.
Article de Anglais | MEDLINE | ID: mdl-27720612

RÉSUMÉ

The amyloid state of protein organization is typically associated with debilitating human neuropathies and is seldom observed in physiology. Here, we uncover a systemic program that leverages the amyloidogenic propensity of proteins to regulate cell adaptation to stressors. On stimulus, cells assemble the amyloid bodies (A-bodies), nuclear foci containing heterogeneous proteins with amyloid-like biophysical properties. A discrete peptidic sequence, termed the amyloid-converting motif (ACM), is capable of targeting proteins to the A-bodies by interacting with ribosomal intergenic noncoding RNA (rIGSRNA). The pathological ß-amyloid peptide, involved in Alzheimer's disease, displays ACM-like activity and undergoes stimuli-mediated amyloidogenesis in vivo. Upon signal termination, elements of the heat-shock chaperone pathway disaggregate the A-bodies. Physiological amyloidogenesis enables cells to store large quantities of proteins and enter a dormant state in response to stressors. We suggest that cells have evolved a post-translational pathway that rapidly and reversibly converts native-fold proteins to an amyloid-like solid phase.


Sujet(s)
Adaptation physiologique , Amyloïde/métabolisme , Stress physiologique , Motifs d'acides aminés , Peptides bêta-amyloïdes/métabolisme , Animaux , Phénomènes biophysiques , Noyau de la cellule/métabolisme , Noyau de la cellule/ultrastructure , Femelle , Réaction de choc thermique , Humains , Cellules MCF-7 , Souris nude , Chaperons moléculaires/métabolisme , ARN non traduit/génétique , Ribosomes/métabolisme
15.
Trends Biochem Sci ; 41(10): 821-823, 2016 10.
Article de Anglais | MEDLINE | ID: mdl-27283511

RÉSUMÉ

The eukaryotic translation initiation factor 4F (eIF4F) has become essentially synonymous with 5' cap-dependent mRNA translation. Recent studies demonstrate that cells assemble variants of eIF4F to produce adaptive, cap-dependent translatomes during physiological conditions that inhibit eIF4F. These findings challenge us to reassess classical perceptions of cellular translational pathways.


Sujet(s)
Facteur-4E d'initiation eucaryote/génétique , Facteur-4F d'initiation eucaryote/génétique , Biosynthèse des protéines , ARN messager/génétique , Schizosaccharomyces/génétique , Trypanosomatina/génétique , Animaux , Facteur-4E d'initiation eucaryote/métabolisme , Facteur-4F d'initiation eucaryote/métabolisme , Humains , Phosphoprotéines/génétique , Phosphoprotéines/métabolisme , Liaison aux protéines , Isoformes de protéines/génétique , Isoformes de protéines/métabolisme , Coiffes des ARN/génétique , Coiffes des ARN/métabolisme , ARN messager/métabolisme , Schizosaccharomyces/métabolisme , Trypanosomatina/métabolisme
16.
Cell Rep ; 14(6): 1293-1300, 2016 Feb 16.
Article de Anglais | MEDLINE | ID: mdl-26854219

RÉSUMÉ

Protein concentrations evolve under greater evolutionary constraint than mRNA levels. Translation efficiency of mRNA represents the chief determinant of basal protein concentrations. This raises a fundamental question of how mRNA and protein levels are coordinated in dynamic systems responding to physiological stimuli. This report examines the contributions of mRNA abundance and translation efficiency to protein output in cells responding to oxygen stimulus. We show that changes in translation efficiencies, and not mRNA levels, represent the major mechanism governing cellular responses to [O2] perturbations. Two distinct cap-dependent protein synthesis machineries select mRNAs for translation: the normoxic eIF4F and the hypoxic eIF4F(H). O2-dependent remodeling of translation efficiencies enables cells to produce adaptive translatomes from preexisting mRNA pools. Differences in mRNA expression observed under different [O2] are likely neutral, given that they occur during evolution. We propose that mRNAs contain translation efficiency determinants for their triage by the translation apparatus on [O2] stimulus.


Sujet(s)
Facteur-4F d'initiation eucaryote/génétique , Oxygène/pharmacologie , Biosynthèse des protéines/effets des médicaments et des substances chimiques , ARN messager/génétique , Hypoxie cellulaire , Lignée cellulaire tumorale , Cellules épithéliales/cytologie , Cellules épithéliales/effets des médicaments et des substances chimiques , Cellules épithéliales/métabolisme , Facteur-4F d'initiation eucaryote/métabolisme , Évolution moléculaire , Humains , Névroglie/cytologie , Névroglie/effets des médicaments et des substances chimiques , Névroglie/métabolisme , ARN messager/métabolisme
17.
Wiley Interdiscip Rev RNA ; 5(1): 69-86, 2014.
Article de Anglais | MEDLINE | ID: mdl-24124109

RÉSUMÉ

Posttranscriptional regulation of mRNA species represents a major regulatory checkpoint in the control of gene expression. Historically, RNA-binding proteins (RBPs) have been regarded as the primary regulators of mRNA stability and translation. More recently, however, microRNAs have emerged as a class of potent and pervasive posttranscriptional rheostats that similarly affect mRNA stability and translation. The observation that both microRNAs and RBPs regulate mRNA stability and translation has initiated a newer area of research that involves the examination of dynamic interactions between these two important classes of posttranscriptional regulators, the myriad of factors that influence these biological interactions, and ultimately, their effects on target mRNAs. Specifically, microRNAs and RBPs can act synergistically to effect mRNA destabilization and translational inhibition. They can also engage in competition with each other and exert opposing effects on target mRNAs. To date, several key studies have provided critical details regarding the mechanisms and principles of interaction between these molecules. Additionally, these findings raise important questions regarding the regulation of these interactions, including the roles of posttranslational modification, subcellular localization, target inhibition versus activation, and changes in expression levels of these regulatory factors, especially under stimulus- and cell-specific conditions. Indeed, further experimentation is warranted to address these key issues that pertain to the collaboration and competition between microRNAs and RBPs. Significantly, the elucidation of these important details bears critical implications for disease management, especially for those diseases in which these cellular factors are dysregulated.


Sujet(s)
microARN/génétique , microARN/métabolisme , Protéines de liaison à l'ARN/métabolisme , Animaux , Régulation de l'expression des gènes , Humains , microARN/analyse , Stabilité de l'ARN , ARN messager/composition chimique , ARN messager/métabolisme , Protéines de liaison à l'ARN/analyse
18.
Mol Cell Biol ; 33(10): 2029-46, 2013 May.
Article de Anglais | MEDLINE | ID: mdl-23478261

RÉSUMÉ

Human endothelial nitric oxide synthase (eNOS) mRNA is highly stable in endothelial cells (ECs). Posttranscriptional regulation of eNOS mRNA stability is an important component of eNOS regulation, especially under hypoxic conditions. Here, we show that the human eNOS 3' untranslated region (3' UTR) contains multiple, evolutionarily conserved pyrimidine (C and CU)-rich sequence elements that are both necessary and sufficient for mRNA stabilization. Importantly, RNA immunoprecipitations and RNA electrophoretic mobility shift assays (EMSAs) revealed the formation of heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1)-containing RNP complexes at these 3'-UTR elements. Knockdown of hnRNP E1 decreased eNOS mRNA half-life, mRNA levels, and protein expression. Significantly, these stabilizing RNP complexes protect eNOS mRNA from the inhibitory effects of its antisense transcript sONE and 3'-UTR-targeting small interfering RNAs (siRNAs), as well as microRNAs, specifically, hsa-miR-765, which targets eNOS mRNA stability determinants. Hypoxia disrupts hnRNP E1/eNOS 3'-UTR interactions via increased Akt-mediated serine phosphorylation (including serine 43) and increased nuclear localization of hnRNP E1. These mechanisms account, at least in part, for the decrease in eNOS mRNA stability under hypoxic conditions. Thus, the stabilization of human eNOS mRNA by hnRNP E1-containing RNP complexes serves as a key protective mechanism against the posttranscriptional inhibitory effects of antisense RNA and microRNAs under basal conditions but is disrupted under hypoxic conditions.


Sujet(s)
Ribonucléoprotéines nucléaires hétérogènes/métabolisme , microARN/génétique , Nitric oxide synthase type III/génétique , Interférence par ARN , Stabilité de l'ARN , Régions 3' non traduites , Animaux , Éléments de réponse aux anti-oxydants , Séquence nucléotidique , Sites de fixation , Hypoxie cellulaire , Cellules cultivées , DEAD-box RNA helicases/métabolisme , Protéines de liaison à l'ADN , Période , Cellules endothéliales de la veine ombilicale humaine/métabolisme , Humains , Souris , Données de séquences moléculaires , Nitric oxide synthase type III/métabolisme , ARN messager/génétique , ARN messager/métabolisme , Petit ARN interférent/génétique , Protéines de liaison à l'ARN , Lapins , Ribonuclease III/métabolisme , Ribonucléoprotéines/métabolisme
19.
J Biol Chem ; 287(34): 29003-20, 2012 Aug 17.
Article de Anglais | MEDLINE | ID: mdl-22745131

RÉSUMÉ

The processes by which cells sense and respond to ambient oxygen concentration are fundamental to cell survival and function, and they commonly target gene regulatory events. To date, however, little is known about the link between the microRNA pathway and hypoxia signaling. Here, we show in vitro and in vivo that chronic hypoxia impairs Dicer (DICER1) expression and activity, resulting in global consequences on microRNA biogenesis. We show that von Hippel-Lindau-dependent down-regulation of Dicer is key to the expression and function of hypoxia-inducible factor α (HIF-α) subunits. Specifically, we show that EPAS1/HIF-2α is regulated by the Dicer-dependent microRNA miR-185, which is down-regulated by hypoxia. Full expression of hypoxia-responsive/HIF target genes in chronic hypoxia (e.g. VEGFA, FLT1/VEGFR1, KDR/VEGFR2, BNIP3L, and SLC2A1/GLUT1), the function of which is to regulate various adaptive responses to compromised oxygen availability, is also dependent on hypoxia-mediated down-regulation of Dicer function and changes in post-transcriptional gene regulation. Therefore, functional deficiency of Dicer in chronic hypoxia is relevant to both HIF-α isoforms and hypoxia-responsive/HIF target genes, especially in the vascular endothelium. These findings have relevance to emerging therapies given that we show that the efficacy of RNA interference under chronic hypoxia, but not normal oxygen availability, is Dicer-dependent. Collectively, these findings show that the down-regulation of Dicer under chronic hypoxia is an adaptive mechanism that serves to maintain the cellular hypoxic response through HIF-α- and microRNA-dependent mechanisms, thereby providing an essential mechanistic insight into the oxygen-dependent microRNA regulatory pathway.


Sujet(s)
Adaptation physiologique/physiologie , DEAD-box RNA helicases/biosynthèse , Endothélium vasculaire/enzymologie , Régulation de l'expression des gènes codant pour des enzymes/physiologie , Oxygène/métabolisme , Ribonuclease III/biosynthèse , Facteurs de transcription à motif basique hélice-boucle-hélice/biosynthèse , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Hypoxie cellulaire , DEAD-box RNA helicases/génétique , Endothélium vasculaire/cytologie , Transporteur de glucose de type 1/biosynthèse , Transporteur de glucose de type 1/génétique , Cellules HepG2 , Cellules endothéliales de la veine ombilicale humaine , Humains , Protéines membranaires/biosynthèse , Protéines membranaires/génétique , microARN/biosynthèse , microARN/génétique , Protéines proto-oncogènes/biosynthèse , Protéines proto-oncogènes/génétique , Ribonuclease III/génétique , Protéines suppresseurs de tumeurs/biosynthèse , Protéines suppresseurs de tumeurs/génétique , Facteur de croissance endothéliale vasculaire de type A/biosynthèse , Facteur de croissance endothéliale vasculaire de type A/génétique , Récepteur-1 au facteur croissance endothéliale vasculaire/biosynthèse , Récepteur-1 au facteur croissance endothéliale vasculaire/génétique , Récepteur-2 au facteur croissance endothéliale vasculaire/biosynthèse , Récepteur-2 au facteur croissance endothéliale vasculaire/génétique , Protéine Von Hippel-Lindau supresseur de tumeur/génétique , Protéine Von Hippel-Lindau supresseur de tumeur/métabolisme
20.
J Mol Med (Berl) ; 90(3): 217-31, 2012 Mar.
Article de Anglais | MEDLINE | ID: mdl-22349396

RÉSUMÉ

Endothelial-derived nitric oxide (NO) is classically viewed as a regulator of vasomotor tone. NO plays an important role in regulating O(2) delivery through paracrine control of vasomotor tone locally and cardiovascular and respiratory responses centrally. Very soon after the cloning and functional characterization of the endothelial nitric oxide synthase (eNOS), studies on the interaction between O(2) and NO made the paradoxical finding that hypoxia led to decreases in eNOS expression and function. Why would decreases in O(2) content in tissues elicit a loss of a potent endothelial-derived vasodilator? We now know that restricting our view of NO as a regulator of vasomotor tone or blood pressure limited deeper levels of mechanistic insight. Exciting new studies indicate that functional interactions between NO and O(2) exhibit profound complexity and are relevant to diseases states, especially those associated with hypoxia in tissues. NOS isoforms catalytically require O(2). Hypoxia regulates steady-state expression of the mRNA and protein abundance of the NOS enzymes. Animals genetically deficient in NOS isoforms have perturbations in their ability to adapt to changes in O(2) supply or demand. Most interestingly, the intracellular pathways for O(2) sensing that evolved to ensure an appropriate balance of O(2) delivery and utilization intersect with NO signaling networks. Recent studies demonstrate that hypoxia-inducible factor (HIF) stabilization and transcriptional activity is achieved through two parallel pathways: (1) a decrease in O(2)-dependent prolyl hydroxylation of HIF and (2) S-nitrosylation of HIF pathway components. Recent findings support a role for S-nitrosothiols as hypoxia-mimetics in certain biological and/or disease settings, such as living at high altitude, exposure to small molecules that can bind NO, or anemia.


Sujet(s)
Hypoxie/physiopathologie , Monoxyde d'azote/métabolisme , Oxygène/métabolisme , Transduction du signal , Animaux , Hypoxie cellulaire/physiologie , Humains , Hypoxie/métabolisme , Souris , S-Nitrosothiols/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE