Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 14 de 14
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Angew Chem Int Ed Engl ; 63(2): e202310623, 2024 Jan 08.
Article de Anglais | MEDLINE | ID: mdl-37820079

RÉSUMÉ

Many metal coordination compounds catalyze CO2 electroreduction to CO, but cobalt phthalocyanine hybridized with conductive carbon such as carbon nanotubes is currently the only one that can generate methanol. The underlying structure-reactivity correlation and reaction mechanism desperately demand elucidation. Here we report the first in situ X-ray absorption spectroscopy characterization, combined with ex situ spectroscopic and electrocatalytic measurements, to study CoPc-catalyzed CO2 reduction to methanol. Molecular dispersion of CoPc on CNT surfaces, as evidenced by the observed electronic interaction between the two, is crucial to fast electron transfer to the active sites and multi-electron CO2 reduction. CO, the key intermediate in the CO2 -to-methanol pathway, is found to be labile on the active site, which necessitates a high local concentration in the microenvironment to compete with CO2 for active sites and promote methanol production. A comparison of the electrocatalytic performance of structurally related porphyrins indicates that the bridging aza-N atoms of the Pc macrocycle are critical components of the CoPc active site that produces methanol. In situ X-ray absorption spectroscopy identifies the active site as Co(I) and supports an increasingly non-centrosymmetric Co coordination environment at negative applied potential, likely due to the formation of a Co-CO adduct during the catalysis.

2.
J Am Chem Soc ; 144(19): 8449-8453, 2022 05 18.
Article de Anglais | MEDLINE | ID: mdl-35535858

RÉSUMÉ

Electrocatalytic ammonia oxidation at room temperature and pressure allows energy-economical and environmentally friendly production of nitrites and nitrates. Few molecular catalysts, however, have been developed for this six- or eight-electron oxidation process. We now report [Cu(bipyalk)]+, a homogeneous electrocatalyst that realizes the title reaction in water at 94% Faradaic efficiency. The catalyst exhibits high selectivity against water oxidation in aqueous media, as [Cu(bipyalk)]+ is not competent for water oxidation.


Sujet(s)
Nitrates , Nitrites , Ammoniac , Cuivre , Oxydes d'azote , Oxydoréduction , Eau
3.
J Am Chem Soc ; 144(19): 8454-8459, 2022 May 18.
Article de Anglais | MEDLINE | ID: mdl-35511107

RÉSUMÉ

Water oxidation is the step limiting the efficiency of electrocatalytic hydrogen production from water. Spectroelectrochemical analyses are employed to make a direct comparison of water oxidation reaction kinetics between a molecular catalyst, the dimeric iridium catalyst [Ir2(pyalc)2(H2O)4-(µ-O)]2+ (IrMolecular, pyalc = 2-(2'pyridinyl)-2-propanolate) immobilized on a mesoporous indium tin oxide (ITO) substrate, with that of an heterogeneous electrocatalyst, an amorphous hydrous iridium (IrOx) film. For both systems, four analogous redox states were detected, with the formation of Ir(4+)-Ir(5+) being the potential-determining step in both cases. However, the two systems exhibit distinct water oxidation reaction kinetics, with potential-independent first-order kinetics for IrMolecular contrasting with potential-dependent kinetics for IrOx. This is attributed to water oxidation on the heterogeneous catalyst requiring co-operative effects between neighboring oxidized Ir centers. The ability of IrMolecular to drive water oxidation without such co-operative effects is explained by the specific coordination environment around its Ir centers. These distinctions between molecular and heterogeneous reaction kinetics are shown to explain the differences observed in their water oxidation electrocatalytic performance under different potential conditions.

4.
Inorg Chem ; 60(18): 14349-14356, 2021 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-34478282

RÉSUMÉ

One ongoing challenge in the field of iridium-based water oxidation catalysts is to develop a molecular precatalyst affording well-defined homogeneous active species for catalysis. Our previous work by using organometallic precatalysts Cp*Ir(pyalk)OH and Ir(pyalk)(CO)2 (pyalk = (2-pyridyl)-2-propanolate) suggested a µ-oxo-bridged Ir dimer as the probable resting state, although the structure of the active species remained elusive. During the activation, the ligands Cp* and CO were found to oxidatively degrade into acetic acid or other products, which coordinate to Ir centers and affect the catalytic reaction. Two related dimers bearing two pyalk ligands on each iridium were crystallized for structural analysis. However, preliminary results indicated that these crystallographically characterized dimers are not active catalysts. In this work, we accessed a mixture of dinuclear iridium species from a coordination precursor, Na[Ir(pyalk)Cl4], and assayed their catalytic activity for oxygen evolution by using NaIO4 as the oxidant. This catalyst showed comparable oxygen-evolution activity to the ones previously reported from organometallic precursors without demanding oxidative activation to remove sacrificial ligands. Future research along this direction is expected to provide insights and design principles toward a well-defined active species.

5.
Chem Commun (Camb) ; 56(64): 9126-9129, 2020 Aug 11.
Article de Anglais | MEDLINE | ID: mdl-32779668

RÉSUMÉ

Here, we report the quantitative electroreduction of CO2 to CO by a PNP-pincer iridium(i) complex bearing amino linkers in DMF/water. The electrocatalytic properties greatly depend on the choice of linker within the ligand. The complex 3-N is far superior to the analogues with methylene and oxygen linkers, showing higher activity and better selectivity for CO2 over proton reduction.

6.
Chem Commun (Camb) ; 56(65): 9340-9343, 2020 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-32671361

RÉSUMÉ

Robust surface attachment of molecular species to metal oxide semiconductors is desirable for many applications. Here, we report the interfacial diazo coupling of surface-bound amines with aromatics to bind them to the surface of TiO2 nanoparticles via a siloxane anchor and a diazo linker. The technique shows potential for the inexpensive, stable, modular and tunable attachment of molecules to metal oxide surfaces.

7.
ChemSusChem ; 13(23): 6296-6299, 2020 Dec 07.
Article de Anglais | MEDLINE | ID: mdl-32668072

RÉSUMÉ

Molecular catalysts for electrochemical CO2 reduction have traditionally been studied in their dissolved states. However, the heterogenization of molecular catalysts has the potential to deliver much higher reaction rates and enable the reduction of CO2 by more than two electrons. In light of the recently discovered reactivity of heterogenized cobalt phthalocyanine molecules to catalyze CO2 reduction into methanol, direct comparison is needed to uncover the distinct catalytic activity and selectivity in homogeneous catalysis versus heterogeneous catalysis. Herein, soluble cobalt phthalocyanine derivatives were synthesized, and their catalytic activities in the homogeneous solutions were evaluated. The results show that the observed catalytic activities for both CO2 -to-CO and CO-to-methanol conversions in aqueous solutions of the cobalt phthalocyanines are predominantly heterogeneous in nature through the adsorbed species on the electrode.

8.
J Am Chem Soc ; 141(25): 9793-9797, 2019 06 26.
Article de Anglais | MEDLINE | ID: mdl-31179698

RÉSUMÉ

While metal-organic frameworks (MOFs) have been under thorough investigation over the past two decades, photoconductive MOFs are an emerging class of materials with promising applications in light harvesting and photocatalysis. To date, there is not a general method to investigate the photoconductivity of polycrystalline MOF samples as-prepared. Herein, we utilize time-resolved terahertz spectroscopy along with a new sample preparation method to determine the photoconductivity of Zn2TTFTB, an archetypical conductive MOF, in a noncontact manner. Using this technique, we were able to gain insight into MOF photoconductivity dynamics with subpicosecond resolution, revealing two distinct carrier lifetimes of 0.6 and 31 ps and a long-lived component of several ns. Additionally, we determined the frequency dependent photoconductivity of Zn2TTFTB which was shown to follow Drude-Smith behavior. Such insights are crucially important with regard to developing the next generation of functional photoconductive MOF materials.


Sujet(s)
Conductivité électrique , Réseaux organométalliques/composition chimique , Lumière , Réseaux organométalliques/effets des radiations , Réfractométrie , Spectroscopie térahertz
9.
ACS Appl Mater Interfaces ; 11(8): 8000-8008, 2019 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-30698407

RÉSUMÉ

The development of light-harvesting architectures with broad absorption coverage in the visible region continues to be an important research area in the field of artificial photosynthesis. Here, we introduce a new class of ethynyl-linked panchromatic dyads composed of dibenzophenazines coupled ortho and meta to tetrapyrroles with an anchoring group that can be grafted onto metal oxide surfaces. Quantum chemical calculations and photophysical measurements of the synthesized materials reveal that both of the dibenzophenazine dyads absorb broadly from 300 to 636 nm and exhibit absorption bands different from those of the constituent chromophore units. Moreover, the different points of attachment of dibenzophenazines to tetrapyrroles give different absorption profiles which computations suggest result from differences in the planarity of the two dyads. Applicability of the dyads in artificial photosynthesis systems was assessed by their incorporation and characterization of their performance in dye-sensitized solar cells.

10.
RSC Adv ; 8(42): 23854-23874, 2018 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-35540249

RÉSUMÉ

Achieving solar light harvesting followed by efficient charge separation and transport is an essential objective of molecular-based artificial photosynthesis. Architectures that afford strong absorption across the near-UV to near-infrared region, namely panchromatic absorptivity, are critically important given the broad spectral distribution of sunlight. A tetrapyrrole-perylene pentad array was synthesized and investigated as a means to integrate panchromatic light harvesting and intramolecular charge separation. The pentad consists of three moieties: (1) a panchromatically absorbing triad, in which a porphyrin is strongly coupled to two perylene-monoimides via ethyne linkages; (2) a perylene-diimide electron acceptor; and (3) a chlorin hole-trapping unit. Integrating the three components with diphenylethyne linkers generates moderate electronic coupling for intramolecular energy and hole/electron transfer. The construction of the array relies on a stepwise strategy for incorporating modular pigment building blocks. The key building blocks include a trans-A2BC porphyrin, a chlorin, a perylene-monoimide, and a perylene-diimide, each bearing appropriate (halo, ethynyl) synthetic handles for Pd-catalyzed Sonogashira coupling reactions. One target pentad, three tetrads, four triads, and four monomeric benchmark compounds were synthesized from six building blocks (three new, three reported) and 10 new synthetic intermediates. Four of the tetrapyrrole-containing arrays are zinc chelated, and four others are in the free base form. Absorption and fluorescence spectra and fluorescence quantum yields were also measured. Collectively, investigations of the arrays reveal insights into principles for the design of novel reaction centers integrated with a panchromatic antenna for artificial photosynthetic studies.

11.
J Am Chem Soc ; 139(48): 17547-17564, 2017 12 06.
Article de Anglais | MEDLINE | ID: mdl-29160700

RÉSUMÉ

Three sets of tetrapyrrole-chromophore arrays have been examined that exhibit panchromatic absorption across large portions of the near-ultraviolet (NUV) to near-infrared (NIR) spectrum along with favorable excited-state properties for use in solar-energy conversion. The arrays vary the tetrapyrrole (porphyrin, chlorin, bacteriochlorin), chromophore (boron-dipyrrin, perylene, terrylene), and attachment sites (meso-position, ß-pyrrole position). In all, seven dyads, one triad, and nine benchmarks in toluene and benzonitrile were studied using steady-state and time-resolved absorption and fluorescence spectroscopy. The results were analyzed with the aid of density functional theory (DFT) and time-dependent DFT calculations. Natural transition orbitals (NTOs) were constructed to assess the net change in electron density associated with each NUV-NIR absorption transition. The porphyrin-perylene dyad P-PMI displays the most even spectral coverage from 400 to 700 nm, with an average ε ∼ 43 000 M-1 cm-1. A significant contributor is a chromophore-induced reduction in the configuration interaction involving the four frontier molecular orbitals of benchmark porphyrins and associated constructive/destructive transition-dipole interference that results in intense (ε ∼ 400 000 M-1 cm-1) NUV and weak (<20 000 M-1 cm-1) visible features. P-PMI has an S1 lifetime (τS) of 4.7 ns in toluene and 1.3 ns in benzonitrile. Bacteriochlorin analogue BC-PMI has more extended spectral coverage (350-750 nm) and τS = 2.8 ns in toluene and 30 ps in benzonitrile. Terrylene analogue P-TMI has intermediate optical characteristics with τS = 310 ps in toluene and 150 ps in benzonitrile. The NTOs for most arrays show that S0 → S1 primarily involves the tetrapyrrole, but for P-TMI the NTOs have electron density delocalized over the two units as a result of extensive orbital mixing. Collectively, the insights obtained should aid the design of tetrapyrrole-based architectures for panchromatic light-harvesting systems for solar-energy conversion.

12.
J Phys Chem A ; 120(38): 7434-50, 2016 Sep 29.
Article de Anglais | MEDLINE | ID: mdl-27636001

RÉSUMÉ

Light-harvesting architectures that afford strong absorption across the near-ultraviolet to near-infrared region, namely, panchromatic absorptivity, are potentially valuable for capturing the broad spectral distribution of sunlight. One previously reported triad consisting of two perylene monoimides strongly coupled to a free base porphyrin via ethyne linkers (FbT) shows panchromatic absorption together with a porphyrin-like S1 excited state albeit at lower energy than that of a typical monomeric porphyrin. Here, two new porphyrin-bis(perylene) triads have been prepared wherein the porphyrin bears two pentafluorophenyl substituents. The porphyrin is in the free base (FbT-F) or zinc chelate (ZnT-F) forms. The zinc chelate (ZnT) of the original triad bearing nonfluorinated aryl rings also was prepared. The triads were characterized using static and time-resolved optical spectroscopy. The results were analyzed with the aid of molecular-orbital characteristics obtained using density functional theory calculations. Of the four triads, FbT is the most panchromatic in affording the most even distribution of absorption spectral intensity as well as exhibiting the largest wavelength span (380-750 nm). The triads exhibit fluorescence yields (0.35 for FbT-F in toluene) that are substantially greater than for the porphyrin benchmarks (0.049 for FbP-F). The singlet excited-state lifetimes (τS) for the triads in toluene decrease in the order FbT-F (2.7 ns) > FbT (2.0 ns) > ZnT (1.2 ns) ∼ ZnT-F (1.1 ns). The τS values in benzonitrile are FbT (1.3 ns) > FbT-F (1.2 ns) > ZnT-F (0.6 ns) > ZnT (0.2 ns). Thus, the free base triads exhibit relatively long (1.2-2.7 ns) excited-state lifetimes in both polar and nonpolar media. The combined photophysical characteristics indicate that FbT and FbT-F are the best choices for panchromatic light-harvesting systems. Collectively, the findings afford insights into the effects of electronic structure on the panchromatic behavior of ethynyl-linked porphyrin-perylene architectures that can help guide next-generation designs and utilization of these systems.

13.
J Org Chem ; 78(7): 3001-8, 2013 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-23464793

RÉSUMÉ

A series of highly fluorescent, oligo(3,6-phenanthrene ethynylenes) (F1-F7) were synthesized, and their photophysical behavior was systematically investigated. They emitted light with highly emissive quantum yields, up to 0.92. Emissive wavelengths of these compounds relied on the number of phenanthrene blocks existing in the oligomers. Red-shifted emissions were observed as the number of phenanthrenes increased. On the basis of theoretical calculations, helical structures could be formed for F4-F7, indicating that the excimer emissions might be observed for F4-F7 due to the intramolecular π-π stackings of phenanthrenes in the helical structures. However, excimer emissions were only observed for F5-F7 in dilute cyclohexane and for F6 and F7 in dilute methylene chloride, respectively. No excimer emission was observed for F4-F7 in dilute tetrahydrofuran due to the degree of solvation.


Sujet(s)
Alcynes/composition chimique , Luminescence , Phénanthrènes/composition chimique , Phénanthrènes/synthèse chimique , Contre-indications , Structure moléculaire
14.
Org Biomol Chem ; 10(44): 8848-59, 2012 Nov 28.
Article de Anglais | MEDLINE | ID: mdl-23052186

RÉSUMÉ

Heptaaryldipyrromethenes are efficiently prepared from ammonium acetate and tetraarylcyclopentadienones in a one-pot cascade process and can be converted into heptaaryl BODIPYs with fluorescent response to environmental acidity.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...