Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Article de Anglais | MEDLINE | ID: mdl-38959287

RÉSUMÉ

Ragworts like tansy ragwort (J. vulgaris Gaertn., syn. Senecio jacobaea L.) contain hepatotoxic and cancerogenic pyrrolizidine alkaloids (PA) and their corresponding pyrrolizidine alkaloid N-oxides (PANO). Due to increasing spread of ragworts (Jacobaea spp.) PA/PANO may pose a health risk to animals and humans consuming contaminated feed and food. Therefore, the aim of the present study was to investigate the transfer of individual PA/PANO originating from a well-defined PA/PANO extract into the milk of dairy cows. For this objective, 16 German Holstein cows were assigned to four treatment groups (n = 4) in a 28-day dose-response study. Administration into the reticulorumen was performed daily by gavage after the morning milking. Three groups received different amounts of the J. vulgaris extract resulting in a PA/PANO exposure of 0.47, 0.95, or 1.91 mg PA/PANO/kg body weight/day, respectively. Furthermore, a control group received molasses to account for the sugar content of the used PA/PANO extract. While the composition of the PA/PANO extract was more diverse, the PA/PANO pattern in milk was dominated by the PA in their free base form. It was shown that mainly PA considered stable in the rumen environment were transferred into the milk. The main compounds in milk were jacoline (74.3 ± 2.4% of the PA/PANO sum), jaconine (11.2 ± 1.3%), and jacobine (7.2 ± 0.6%) with concentrations up to 29.7, 4.65 µg/l, or in the highest exposed group, 3.44 µg/l. There was no dose-dependent effect on the total PA/PANO transfer rate into the milk. The average transfer rate was 0.064 ± 0.005% of the administered content.

2.
Article de Anglais | MEDLINE | ID: mdl-38592240

RÉSUMÉ

1,2-Dehydro-pyrrolizidine alkaloids (PA), their corresponding N-oxides (PANO) and tropane alkaloids (TA), are toxic plant metabolites. If plant material, containing these toxins, is present in the feed of dairy cows these toxins can be transferred into milk. Here, milk was sampled directly from dairy farms in the German federal states of Bavaria and Schleswig-Holstein in 2020-2022 in order to investigate a possible contamination of milk at the production stage. In total, 228 milk samples were analysed for 54 PA/PANO and two TA by a sensitive LC-ESI-MS/MS method. In addition, a subset of milk samples (n = 85) was independently analysed for TA by a cooperating laboratory for verification. PA/PANO were found in 26 samples (11%) with a low median sum content of the contaminated samples of 0.024 µg/L. The highest level of contamination was 5.6 µg/L. Senecionine-, lycopsamine- and heliotrine-type PA/PANO were detected. In four samples (1.8%), atropine was determined up to 0.066 µg/L. The toxin levels in the milk samples hardly contributed to the total daily exposure. These data are first-time results on contamination rates and levels occurring in milk from individual dairy farms, based on a large sample number.


Sujet(s)
Contamination des aliments , Lait , Alcaloïdes de type pyrrolizidine , Tropanes , Animaux , Lait/composition chimique , Alcaloïdes de type pyrrolizidine/analyse , Allemagne , Tropanes/analyse , Bovins , Contamination des aliments/analyse , Fermes , Spectrométrie de masse en tandem , Industrie laitière
3.
Arch Anim Nutr ; 77(5): 363-384, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37842997

RÉSUMÉ

The increasing spread of ragworts is observed with concern. Ragworts like tansy ragwort (Jacobaea vulgaris Gaertn.) or marsh ragwort (J. aquatica) contain pyrrolizidine alkaloids (PA) which may induce hepatotoxic effects. Grazing animals usually avoid ragworts if their pasture management is appropriate. Preserved feed prepared from ragworts contaminated meadows may, however, lead to a significant exposure to PA. Previous studies on toxicity of PA for dairy cows revealed inconsistent results due to feeding ragwort plant material which was associated with heterogeneous PA exposure and thus failed to conclusively deduce critical PA doses. Therefore, the aim of the present study was to expose dairy cows (n = 4 per group) in a short-term scenario for 28 days with increasing PA doses (PA1: 0.47 mg PA/kg body weight (BW)/day (d); PA2: 0.95 mg PA/kg BW/d; PA3: 1.91 mg PA/kg BW/d) via oral administration by gavage of a defined PA-extract. While group PA3 was dosed with the PA-extract alone, groups PA2 and PA1 received PA-extracts blended in similar volumes with molasses to provide comparable amounts of sugar. Additionally, two control groups were treated either with water (CONWater) or with molasses (CONMolasses) to assess the effects of sugar without PA interference. While clinical traits including dry matter intake, milking performance, rectal body temperature, ruminal activity and body condition score (BCS) were not influenced by PA exposure, activities of enzymes indicative for liver damages, such as gamma-glutamyltransferase (GGT), aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH), increased significantly over time at an exposure of 1.91 mg total PA/kg BW/d.


Sujet(s)
Alcaloïdes de type pyrrolizidine , Senecio , Tanacetum , Femelle , Bovins , Animaux , Alcaloïdes de type pyrrolizidine/toxicité , Régime alimentaire/médecine vétérinaire , Aliment pour animaux/analyse , Eau , Extraits de plantes , Sucres
4.
J Agric Food Chem ; 71(36): 13495-13507, 2023 Sep 13.
Article de Anglais | MEDLINE | ID: mdl-37652440

RÉSUMÉ

Dioxin-like polychlorinated biphenyls (dl-PCBs) as well as polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) are a major concern for food safety, especially in fat-containing foods of animal origin, such as milk. Due to the lipophilic character of PCDD/Fs and PCBs, it is of special interest to explore whether the metabolic state of high-yielding cows influences the transfer rates into milk. Five German Holstein cows were orally exposed to a mixture of 17 PCDD/Fs, 12 dl-PCBs, and 6 non-dioxin-like PCBs (ndl-PCBs) for two dosing periods of 28 days each. The first period covered the negative energy balance (NEB) after calving, while the second period addressed the positive energy balance (PEB) in late lactation. Each dosing period was followed by a depuration period of around 100 days. During the NEB phase, the transfer rates of 14 PCDD/Fs and 7 dl-PCBs quantified were significantly (p ≤ 0.1) higher compared to the PEB phase, indicating an influence of the metabolic state on the transfer. Furthermore, the congener-specific transfer rates (0.3-39%) were in the range of the results from former studies. This indicates that the milk yield of the exposed cows is not the only determining factor for the transfer of these congeners into milk.


Sujet(s)
Polychlorobiphényles , Dibenzodioxines polychlorées , Femelle , Bovins , Animaux , Lait , Dibenzofuranes , Lactation
5.
J Dairy Sci ; 101(8): 7156-7167, 2018 Aug.
Article de Anglais | MEDLINE | ID: mdl-29778483

RÉSUMÉ

This study aimed to evaluate the effect of replacing maize silage plus soybean meal with red clover silage (RCS) plus wheat on the fatty acid (FA) profile in the milk fat of cows. Forty-four lactating German Holstein cows were used in a 4 × 4 Latin square design with 21-d periods composed of 13 d of adaptation to diets followed by an 8-d sampling phase. Experimental diets offered as total mixed ration consisted of a constant forage-to-concentrate ratio (75:25) with target proportions of RCS to maize silage of 15:60 (RCS15), 30:45 (RCS30), 45:30 (RCS45), and 60:15 (RCS60) on a dry matter basis. Increasing the level of RCS in the diet was accompanied by a reduction of linoleic acid content in the diet and decreased linearly the proportions of linoleic acid in the milk up to 4%. Proportions of α-linolenic acid in milk increased 2-fold with RCS60 compared with RCS15, which resulted from the linear increase in α-linolenic acid intake with incremental levels of RCS. Vaccenic acid in the milk fat was reduced by 24%. Rumenic acid, a conjugated linoleic acid (cis-9,trans-11 conjugated linoleic acid) considered to be a human health promoter, was also decreased by 22%. Reduced rumenic acid in the milk fat was probably due to a reduced amount of vaccenic acid produced in the rumen and, consequently, to the low amount of vaccenic acid to be desaturated to rumenic acid in the mammary gland by Δ9-desaturase. Oleic acid was enriched in the milk fat, although the dietary concentration of oleic acid decreased. Stearic acid proportions remained constant with increasing levels of RCS. The proportions of total polyunsaturated FA were increased by 12%, and the long-chain FA proportions increased linearly with increasing levels of RCS. Myristic acid was reduced linearly, but palmitic acid remained constant. Saturated FA was reduced linearly by 2%. Branched-chain FA, which are presumed to possess anticarcinogenic properties, were reduced to a small extent only (quadratic effect). We conclude that replacing maize silage with RCS appears to alter milk FA composition by reducing linoleic acid intake and ruminal biohydrogenation. Feeding RCS represents a strategy to increase intake of α-linolenic acid in dairy cows. However, because changes in the FA profile show positive as well as negative effects, no distinct conclusions can be drawn with regard to human health benefits.


Sujet(s)
Phénomènes physiologiques nutritionnels chez l'animal , Bovins/métabolisme , Acides gras/analyse , Lait/composition chimique , Trifolium , Animaux , Régime alimentaire , Femelle , Lactation , Rumen , Ensilage , Zea mays
6.
J Dairy Sci ; 101(2): 1216-1226, 2018 Feb.
Article de Anglais | MEDLINE | ID: mdl-29248232

RÉSUMÉ

The objectives of this study were to evaluate the effects of replacing maize silage plus soybean meal with red clover silage (RCS) plus wheat on feed intake, diet digestibility, N partitioning, urinary excretion of purine derivatives, and milk production in dairy cows. Forty-four lactating German Holstein cows were used in a 4 × 4 Latin square design with 21-d periods composed of a 13-d adaptation phase followed by an 8-d sampling phase. Experimental diets offered as total mixed ration consisted of a constant forage-to-concentrate ratio (75:25) with targeted proportions of RCS-to-maize silage of 15:60 (RCS15), 30:45 (RCS30), 45:30 (RCS45), and 60:15 (RCS60) on a dry matter (DM) basis. Increasing the proportion of RCS plus wheat in the diet decreased linearly the intake of DM from 22.4 to 19.8 kg/d, and of organic matter from 21.1 to 18.1 kg/d. The apparent total tract digestibility (ATTD) of DM and organic matter did not differ across diets and averaged 68.4 and 70.5%, respectively. However, ATTD of N decreased linearly from 68.5 to 63.2%, whereas ATTD of neutral detergent fiber and acid detergent fiber increased linearly from 50.4 to 59.6% and from 48.4 to 57.7%, respectively, when increasing the proportion of RCS plus wheat. Fecal N excretion increased from 31.6 (RCS15) to 37.2% (RCS60) of N intake, whereas urinary N excretion was the lowest (32.8% of N intake) with RCS45. Hence, N efficiency (milk N/N intake) decreased linearly with incremental levels of RCS plus wheat, being the lowest when feeding RCS60 (25.4%), probably due to increased nonprotein N proportion in total dietary N. Urinary excretion of purine derivatives decreased linearly from 378 to 339 mmol/d, which suggests that increasing levels of RCS plus wheat reduced the microbial crude protein flow at the duodenum. Milk yield and milk protein concentration declined linearly from 35.9 to 30.2 kg/d and from 3.20 to 3.01%, respectively, when increasing the proportion of RCS plus wheat. In conclusion, caution should be taken before introducing high levels of RCS plus wheat in diets of high-yielding dairy cows. However, RCS plus wheat can be included up to 30% of the dairy cow diet (DM basis) without a reduction in lactation performance.


Sujet(s)
Bovins/physiologie , Glycine max/métabolisme , Ensilage/analyse , Trifolium/métabolisme , Triticum/métabolisme , Zea mays/métabolisme , Aliment pour animaux/analyse , Animaux , Régime alimentaire/médecine vétérinaire , Fibre alimentaire/métabolisme , Digestion , Femelle , Lactation , Lait/métabolisme , Protéines de lait/métabolisme
7.
J Dairy Sci ; 100(8): 6229-6238, 2017 Aug.
Article de Anglais | MEDLINE | ID: mdl-28551180

RÉSUMÉ

The aim of this study was to examine the capacity of quebracho tannin extract (QTE) to modulate the fatty acid (FA) profile in the milk fat of cows. Fifty Holstein cows yielding 33.2 ± 8.2 kg/d of milk were divided into 2 groups. The cows were fed a basal diet with a forage-concentrate ratio of 66:34 on a dry matter (DM) basis. Diets tested were control (CON, basal diet without QTE) and basal diet plus 15 or 30 g of QTE/kg of DM (QTE15 and QTE30, respectively). Two treatments could be tested simultaneously and were arranged along 6 periods. The milk FA profile was characterized by increments in the proportion of linoleic (LA) and α-linolenic acid (α-LNA) (QTE15 = 10 and 6.1%; QTE30 = 28 and 25%, respectively) compared to CON, which might indicate reduced ruminal biohydrogenation (BH) of both dietary LA and α-LNA. Vaccenic acid (VA) in the milk fat was reduced (QTE15 8.9% and QTE30 12%) compared to CON, which may be linked to inhibited BH of LA and α-LNA. Rumenic acid (RA), a conjugated LA (cis-9,trans-11 conjugated linoleic acid) and an important human health promoter, was unfortunately decreased (QTE15 8.3% and QTE30 16%) in the milk compared with CON, probably because of inhibited ruminal BH of LA. However, reduced RA in the milk was probably due to reduced availability of VA produced in the rumen and the consequently low VA available to be desaturated to RA in the mammary gland by Δ9-desaturase. The proportions of total polyunsaturated FA were increased with QTE15 and QTE30 by 4.7 and 15% compared to CON, respectively, and the long-chain FA proportions were also increased (QTE15 2.0% and QTE30 8.2%). Moreover, myristic and palmitic acid were reduced by QTE30 (9.6 and 3.3%, respectively) compared to CON, which also contributed to increasing the nutritional quality of milk because they are recognized to increase high-density lipoprotein in humans. Branched-chain FA in milk was reduced with QTE treatments, which indicates inhibited ruminal BH and microbial activity. In general, our findings suggest that dietary QTE have the potential to modulate FA profile of milk fat, and this effect is dosage dependent. Because QTE influenced the FA profile of milk fat both positively and negatively, further research is needed before concluding that QTE may improve the nutritional quality of cow milk fat in human diets.


Sujet(s)
Bovins/métabolisme , Lait/composition chimique , Tanins/pharmacologie , Animaux , Régime alimentaire/médecine vétérinaire , Digestion , Acides gras , Femelle , Lactation , Lait/effets des médicaments et des substances chimiques , Rumen
8.
Arch Anim Nutr ; 71(1): 37-53, 2017 Feb.
Article de Anglais | MEDLINE | ID: mdl-27830586

RÉSUMÉ

The aim of this study was to evaluate the effects of dietary Quebracho tannin extract (QTE) on feed intake, apparent total tract digestibility (ATTD), excretion of urinary purine derivatives (PD) and milk composition and yield in dairy cows. Fifty Holstein cows were divided into two groups. To reach a similar performance of both groups, cows were divided according to their milk yield, body weight, days in milk and number of lactations at the start of the experiment averaging 33.2 ± 8.2 kg/d, 637 ± 58 kg, 114 ± 73 d and 2.3 ± 1.6 lactations, respectively. The cows were fed a basal diet as total mixed ration containing on dry matter (DM) basis 34% grass silage, 32% maize silage and 34% concentrate feeds. Three dietary treatments were tested, the control (CON, basal diet without QTE), QTE15 (basal diet with QTE at 15 g/kg DM) and QTE30 (basal diet with QTE at 30 g/kg DM). Two treatments were arranged along six periods each 21 d (13 d adaptation phase and 8 d sampling phase). The ATTD of DM and organic matter were reduced only in Diet QTE30, whereas both QTE treatments reduced ATTD of fibre and nitrogen (N), indicating that QTE impaired rumen fermentation. Nevertheless, feed intake was unaffected by QTE. In Diet CON, urinary N excretion accounted for 29.8% of N intake and decreased in treatments QTE15 and QTE30 to 27.5% and 17.9%, respectively. Daily faecal N excretion increased in treatments CON, QTE15 and QTE30 from 211 to 237 and 273 g/d, respectively, which amounted to 39.0%, 42.4% and 51.7% of the N intake, respectively. Hence, QTE shifted N excretion from urine to faeces, whereas the proportion of ingested N appearing in milk was not affected by QTE (average 30.7% of N intake). Daily PD excretion as indicator for microbial crude protein (CP) flow at the duodenum decreased in treatment QTE30 compared with Diet CON from 413 to 280 mmol/d. The ratios of total PD to creatinine suggest that urinary PD excretion was already lower when feeding Diet QTE15. While there was no effect of Diet QTE15, treatment QTE30 reduced milk yield, milk fat and protein. Both QTE treatments reduced milk urea concentration, which suggest that ruminal degradation of dietary CP was reduced. In summary, adding QTE at dosages of 15 and 30 g/kg DM to diets of lactating dairy cows to improve feed and protein use efficiency is not recommended.


Sujet(s)
Anacardiaceae/composition chimique , Phénomènes physiologiques nutritionnels chez l'animal/effets des médicaments et des substances chimiques , Bovins/physiologie , Comportement alimentaire/effets des médicaments et des substances chimiques , Tanins/administration et posologie , Aliment pour animaux/analyse , Animaux , Régime alimentaire/médecine vétérinaire , Digestion/effets des médicaments et des substances chimiques , Relation dose-effet des médicaments , Duodénum/effets des médicaments et des substances chimiques , Duodénum/physiologie , Femelle , Fermentation/effets des médicaments et des substances chimiques , Lactation , Lait/composition chimique , Lait/métabolisme , Azote/métabolisme , Extraits de plantes/administration et posologie , Extraits de plantes/composition chimique , Purines/urine , Tanins/composition chimique
9.
Berl Munch Tierarztl Wochenschr ; 126(1-2): 32-6, 2013.
Article de Anglais | MEDLINE | ID: mdl-23367666

RÉSUMÉ

Two commercially available pasteurizers for on farm pasteurization of milk intended for feeding calves were tested for their efficiency to inactivate mastitis pathogens. Raw bulk tank milk of the experimental farm Schaedtbek of the Max Rubner-Institute was artificially contaminated with twelve different strains of mastitis pathogens (intended level 7-8 log10 colony forming units [cfu]/ml). The average contamination level was 7.6 log10 cfu/ml in trials with pasteurizer 1 (P1) and 7.3 log10 cfu/ml in trials with pasteurizer 2 (P2), with lowest counts for yeasts (5.1 log10 cfu/ml for P1 and P2). Average reduction rates of > 5.8 log10 cfu/ml for P1 (72 degrees C, 12 s) and > 6.2 log10 cfu/ml for P2 (64 degrees C, 35 min) revealed an appropriate efficiency of both pasteurizers for practical purposes. Pathogens surviving pasteurization (enterococci in trials with both pasteurizers and of Staphylococcus aureus and Escherichia coli with P1) demonstrate the limits of pasteurization as a function of raw milk quality and emphasize the necessity for appropriate handling of pasteurized milk to prevent excessive multiplication of microbial pathogens.


Sujet(s)
Industrie laitière/méthodes , Mammite bovine/microbiologie , Lait/microbiologie , Pasteurisation/instrumentation , Aliment pour animaux , Animaux , Bovins , Industrie laitière/instrumentation , Industrie laitière/normes , Femelle , Pasteurisation/méthodes , Pasteurisation/normes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...