Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Commun ; 14(1): 6820, 2023 10 26.
Article de Anglais | MEDLINE | ID: mdl-37884513

RÉSUMÉ

The 4-letter DNA alphabet (A, T, G, C) as found in Nature is an elegant, yet non-exhaustive solution to the problem of storage, transfer, and evolution of biological information. Here, we report on strategies for both writing and reading DNA with expanded alphabets composed of up to 12 letters (A, T, G, C, B, S, P, Z, X, K, J, V). For writing, we devise an enzymatic strategy for inserting a singular, orthogonal xenonucleic acid (XNA) base pair into standard DNA sequences using 2'-deoxy-xenonucleoside triphosphates as substrates. Integrating this strategy with combinatorial oligos generated on a chip, we construct libraries containing single XNA bases for parameterizing kmer basecalling models for commercially available nanopore sequencing. These elementary steps are combined to synthesize and sequence DNA containing 12 letters - the upper limit of what is accessible within the electroneutral, canonical base pairing framework. By introducing low-barrier synthesis and sequencing strategies, this work overcomes previous obstacles paving the way for making expanded alphabets widely accessible.


Sujet(s)
Séquençage par nanopores , ADN/génétique , Appariement de bases , Biosynthèse des protéines
2.
Nature ; 615(7953): 720-727, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36922599

RÉSUMÉ

Engineering the genetic code of an organism has been proposed to provide a firewall from natural ecosystems by preventing viral infections and gene transfer1-6. However, numerous viruses and mobile genetic elements encode parts of the translational apparatus7-9, potentially rendering a genetic-code-based firewall ineffective. Here we show that such mobile transfer RNAs (tRNAs) enable gene transfer and allow viral replication in Escherichia coli despite the genome-wide removal of 3 of the 64 codons and the previously essential cognate tRNA and release factor genes. We then establish a genetic firewall by discovering viral tRNAs that provide exceptionally efficient codon reassignment allowing us to develop cells bearing an amino acid-swapped genetic code that reassigns two of the six serine codons to leucine during translation. This amino acid-swapped genetic code renders cells resistant to viral infections by mistranslating viral proteomes and prevents the escape of synthetic genetic information by engineered reliance on serine codons to produce leucine-requiring proteins. As these cells may have a selective advantage over wild organisms due to virus resistance, we also repurpose a third codon to biocontain this virus-resistant host through dependence on an amino acid not found in nature10. Our results may provide the basis for a general strategy to make any organism safely resistant to all natural viruses and prevent genetic information flow into and out of genetically modified organisms.


Sujet(s)
Acides aminés , Escherichia coli , Transfert horizontal de gène , Code génétique , Interactions hôte-microbes , Biosynthèse des protéines , Maladies virales , Acides aminés/génétique , Acides aminés/métabolisme , Codon/génétique , Écosystème , Escherichia coli/génétique , Escherichia coli/virologie , Code génétique/génétique , Leucine/génétique , Leucine/métabolisme , Biosynthèse des protéines/génétique , ARN de transfert/génétique , ARN de transfert/métabolisme , Sérine/génétique , Maladies virales/génétique , Maladies virales/prévention et contrôle , Interactions hôte-microbes/génétique , Organismes génétiquement modifiés/génétique , Génome bactérien/génétique , Transfert horizontal de gène/génétique , Protéines virales/génétique , Protéines virales/métabolisme
3.
Proc Natl Acad Sci U S A ; 120(12): e2214512120, 2023 03 21.
Article de Anglais | MEDLINE | ID: mdl-36913566

RÉSUMÉ

Biocatalytic C-H activation has the potential to merge enzymatic and synthetic strategies for bond formation. FeII/αKG-dependent halogenases are particularly distinguished for their ability both to control selective C-H activation as well as to direct group transfer of a bound anion along a reaction axis separate from oxygen rebound, enabling the development of new transformations. In this context, we elucidate the basis for the selectivity of enzymes that perform selective halogenation to yield 4-Cl-lysine (BesD), 5-Cl-lysine (HalB), and 4-Cl-ornithine (HalD), allowing us to probe how site-selectivity and chain length selectivity are achieved. We now report the crystal structure of the HalB and HalD, revealing the key role of the substrate-binding lid in positioning the substrate for C4 vs C5 chlorination and recognition of lysine vs ornithine. Targeted engineering of the substrate-binding lid further demonstrates that these selectivities can be altered or switched, showcasing the potential to develop halogenases for biocatalytic applications.


Sujet(s)
Acides aminés , Lysine , Halogénation , Ornithine
4.
Nat Chem Biol ; 18(2): 171-179, 2022 02.
Article de Anglais | MEDLINE | ID: mdl-34937913

RÉSUMÉ

FeII/α-ketoglutarate (FeII/αKG)-dependent enzymes offer a promising biocatalytic platform for halogenation chemistry owing to their ability to functionalize unactivated C-H bonds. However, relatively few radical halogenases have been identified to date, limiting their synthetic utility. Here, we report a strategy to expand the palette of enzymatic halogenation by engineering a reaction pathway rather than substrate selectivity. This approach could allow us to tap the broader class of FeII/αKG-dependent hydroxylases as catalysts by their conversion to halogenases. Toward this goal, we discovered active halogenases from a DNA shuffle library generated from a halogenase-hydroxylase pair using a high-throughput in vivo fluorescent screen coupled to an alkyne-producing biosynthetic pathway. Insights from sequencing halogenation-active variants along with the crystal structure of the hydroxylase enabled engineering of a hydroxylase to perform halogenation with comparable activity and higher selectivity than the wild-type halogenase, showcasing the potential of harnessing hydroxylases for biocatalytic halogenation.


Sujet(s)
Halogènes/métabolisme , Mixed function oxygenases/composition chimique , Mixed function oxygenases/métabolisme , Domaine catalytique , Halogénation , Modèles moléculaires , Conformation des protéines , Ingénierie des protéines , Spécificité du substrat
5.
Nucleic Acids Res ; 49(D1): D229-D235, 2021 01 08.
Article de Anglais | MEDLINE | ID: mdl-32882008

RÉSUMÉ

T-box riboswitches constitute a large family of tRNA-binding leader sequences that play a central role in gene regulation in many gram-positive bacteria. Accurate inference of the tRNA binding to T-box riboswitches is critical to predict their cis-regulatory activity. However, there is no central repository of information on the tRNA binding specificities of T-box riboswitches, and de novo prediction of binding specificities requires advanced knowledge of computational tools to annotate riboswitch secondary structure features. Here, we present the T-box Riboswitch Annotation Database (TBDB, https://tbdb.io), an open-access database with a collection of 23,535 T-box riboswitch sequences, spanning the major phyla of 3,632 bacterial species. Among structural predictions, the TBDB also identifies specifier sequences, cognate tRNA binding partners, and downstream regulatory targets. To our knowledge, the TBDB presents the largest collection of feature, sequence, and structural annotations carried out on this important family of regulatory RNA.


Sujet(s)
Bactéries/génétique , Bases de données d'acides nucléiques , ARN de transfert/génétique , Riborégulateur , Logiciel , Bactéries/métabolisme , Appariement de bases , Séquence nucléotidique , Internet , Annotation de séquence moléculaire , Conformation d'acide nucléique , ARN de transfert/composition chimique , ARN de transfert/métabolisme
6.
Nat Chem Biol ; 15(10): 1009-1016, 2019 10.
Article de Anglais | MEDLINE | ID: mdl-31548692

RÉSUMÉ

The integration of synthetic and biological catalysis enables new approaches to the synthesis of small molecules by combining the high selectivity of enzymes with the reaction diversity offered by synthetic chemistry. While organohalogens are valued for their bioactivity and utility as synthetic building blocks, only a handful of enzymes that carry out the regioselective halogenation of unactivated [Formula: see text] bonds have previously been identified. In this context, we report the structural characterization of BesD, a recently discovered radical halogenase from the FeII/α-ketogluturate-dependent family that chlorinates the free amino acid lysine. We also identify and characterize additional halogenases that produce mono- and dichlorinated, as well as brominated and azidated, amino acids. The substrate selectivity of this new family of radical halogenases takes advantage of the central role of amino acids in metabolism and enables engineering of biosynthetic pathways to afford a wide variety of compound classes, including heterocycles, diamines, α-keto acids and peptides.


Sujet(s)
Acides aminés/composition chimique , Acides aminés/métabolisme , Protéines bactériennes/métabolisme , Ingénierie des protéines , Streptomyces/enzymologie , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Biologie informatique , Régulation de l'expression des gènes bactériens , Régulation de l'expression des gènes codant pour des enzymes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...