Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 22
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Trends Ecol Evol ; 39(7): 599-602, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38902166

RÉSUMÉ

Renewable energy projects, such as wind farms and hydropower dams, can indirectly benefit biodiversity by mitigating climate change. However, we explain why such indirect benefits should not contribute towards the accounting of project-level net biodiversity outcomes and provide guidance on the steps needed to legitimately claim no-net-loss of biodiversity.


Sujet(s)
Biodiversité , Changement climatique , Conservation des ressources naturelles , Énergie renouvelable
3.
Trends Ecol Evol ; 37(12): 1079-1091, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36182406

RÉSUMÉ

Connectivity underpins the persistence of life; it needs to inform biodiversity conservation decisions. Yet, when prioritising conservation areas and developing actions, connectivity is not being operationalised in spatial planning. The challenge is the translation of flows associated with connectivity into conservation objectives that lead to actions. Connectivity is nebulous, it can be abstract and mean different things to different people, making it difficult to include in conservation problems. Here, we show how connectivity can be included in mathematically defining conservation planning objectives. We provide a path forward for linking connectivity to high-level conservation goals, such as increasing species' persistence. We propose ways to design spatial management areas that gain biodiversity benefit from connectivity.


Sujet(s)
Biodiversité , Conservation des ressources naturelles , Écosystème
4.
Nat Ecol Evol ; 6(9): 1262-1270, 2022 09.
Article de Anglais | MEDLINE | ID: mdl-35798839

RÉSUMÉ

The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5-10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems.


Sujet(s)
Biodiversité , Écosystème , Animaux , Changement climatique , Humains
5.
PLoS One ; 17(1): e0261964, 2022.
Article de Anglais | MEDLINE | ID: mdl-35061746

RÉSUMÉ

Artificial reefs (ARs) have been used on coral reefs for ecological research, conservation, and socio-cultural purposes since the 1980s. We examined spatio-temporal patterns in AR deployment in tropical and subtropical coral reefs (up to 35° latitude) and evaluated their efficacy in meeting conservation objectives, using a systematic review of the scientific literature. Most deployments (136 studies) were in the North Atlantic and Central Indo-Pacific in 1980s - 2000s, with a pronounced shift to the Western Indo-Pacific in 2010s. Use of ARs in reef restoration or stressor mitigation increased markedly in response to accelerating coral decline over the last 2 decades. Studies that evaluated success in meeting conservation objectives (n = 51) commonly reported increasing fish abundance (55%), enhancing habitat quantity (31%) or coral cover (27%), and conserving target species (24%). Other objectives included stressor mitigation (22%), provision of coral nursery habitat (14%) or source populations (2%) and addressing socio-cultural and economic values (16%). Fish (55% of studies) and coral (53%) were the most commonly monitored taxa. Success in achieving conservation objectives was reported in 33 studies. Success rates were highest for provision of nursery habitat and increasing coral cover (each 71%). Increasing fish abundance or habitat quantity, mitigating environmental impacts, and attaining socio-cultural objectives were moderately successful (60-64%); conservation of target species was the least successful (42%). Failure in achieving objectives commonly was attributed to poor AR design or disruption by large-scale bleaching events. The scale of ARs generally was too small (m2 -10s m2) to address regional losses in coral cover, and study duration too short (< 5 years) to adequately assess ecologically relevant trends in coral cover and community composition. ARs are mostly likely to aid in reef conservation and restoration by providing nursery habitat for target species or recruitment substrate for corals and other organisms. Promoting local socio-cultural values also has potential for regional or global impact by increasing awareness of coral reef decline, if prioritized and properly monitored.


Sujet(s)
Anthozoa/physiologie , Conservation des ressources naturelles , Récifs de corail , Poissons/physiologie , Animaux
6.
Oecologia ; 198(2): 319-336, 2022 Feb.
Article de Anglais | MEDLINE | ID: mdl-35080649

RÉSUMÉ

Species distribution models (SDMs) are important tools for predicting the occurrence and abundance of organisms in space and time, with numerous applications in ecology. However, the accuracy and utility of SDMs can be compromised when predictor variables are selected without careful consideration of their ecophysiological relevance to the focal organism. We conducted an in-depth examination of the variable selection process by evaluating predictors to be used in SDMs for Membranipora membranacea, an ecologically significant marine invasive species with a complex lifecycle, as a case study. Using an information-theoretic and multi-model inference approach based on generalized linear mixed models, we assessed multiple environmental variables (depth, kelp density, kelp substrate, temperature, and wave exposure) as predictors of the abundance of multiple life stages of M. membranacea, investigating species-environment relationships and relative and absolute variable importance. We found that the relative importance of a predictor, the metric calculated to represent a predictor, and whether a predictor was proximal or distal were important considerations in the variable selection process. Data constraints (e.g. sample size, characteristics of available predictor data) may inhibit accurate assessment of predictor variables during variable selection. Importantly, our results suggest that species-environment relationships derived from small-scale studies can inform variable selection for SDMs at larger spatiotemporal scales. We developed a conceptual framework for variable selection for SDMs which can be applied to most contexts of species distribution modelling, but particularly those with several candidate predictors and a large dataset.


Sujet(s)
Bryozoa , Écosystème , Animaux , Écologie/méthodes , Espèce introduite , Varech , Modèles biologiques
7.
PLoS Biol ; 19(6): e3001282, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-34129646

RÉSUMÉ

Success and impact metrics in science are based on a system that perpetuates sexist and racist "rewards" by prioritizing citations and impact factors. These metrics are flawed and biased against already marginalized groups and fail to accurately capture the breadth of individuals' meaningful scientific impacts. We advocate shifting this outdated value system to advance science through principles of justice, equity, diversity, and inclusion. We outline pathways for a paradigm shift in scientific values based on multidimensional mentorship and promoting mentee well-being. These actions will require collective efforts supported by academic leaders and administrators to drive essential systemic change.


Sujet(s)
Récompense , Science , Biais (épidémiologie) , Diversité culturelle , Humains , Mentorat
10.
PLoS One ; 15(11): e0242153, 2020.
Article de Anglais | MEDLINE | ID: mdl-33175873

RÉSUMÉ

Coral reefs are critically important marine ecosystems that are threatened worldwide by cumulative impacts of global climate change and local stressors. The Solomon Islands comprise the southwestern boundary of the Coral Triangle, the global center of coral diversity located in the Indo-Pacific, and represent a bright spot of comparatively healthy coral reef ecosystems. However, reports on the status of coral reefs in the Solomon Islands are based on monitoring conducted at 5 stations in 2003-2004 and 2006-2007, with no information on how corals in this region have responded to more recent global bleaching events and other local stressors. In this study, we compare reef condition (substrate composition) and function (taxonomic and morphological diversity of hard corals) among 15 reefs surveyed in the Western Province, Solomon Islands that span a range of local disturbance and conservation histories. Overall, we found high cover of live hard coral (15-64%) and diverse coral assemblages despite an unprecedented 36-month global bleaching event in the three years leading up to our surveys in 2018. However, there was significant variation in coral cover and diversity across the 15 reefs surveyed, suggesting that impacts of global disturbance events are moderated at smaller scales by local anthropogenic factors (fisheries extraction, land-use impacts, marine management) and environmental (hydrodynamics) conditions. Our study provides evidence that relatively healthy reefs persist at some locations in the Solomon Islands and that local stewardship practices have the potential to impact reef condition at subregional scales. As coral reef conservation becomes increasingly urgent in the face of escalating cumulative threats, prioritising sites for management efforts is critical. Based on our findings and the high dependency of Solomon Islanders on coral reef ecosystem services, we advocate that the Western Province, Solomon Islands be considered of high conservation priority.


Sujet(s)
Anthozoa/physiologie , Conservation des ressources naturelles , Récifs de corail , Écosystème , Animaux , Biodiversité , Changement climatique , Surveillance de l'environnement/méthodes , Pêcheries , Poissons , Géographie , Mélanésie , Eau de mer , Température , Enregistrement sur magnétoscope
11.
Trends Ecol Evol ; 35(10): 853-857, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-32741648

RÉSUMÉ

Scientific misconceptions are likely leading to miscalculations of the environmental impacts of deep-seabed mining. These result from underestimating mining footprints relative to habitats targeted and poor understanding of the sensitivity, biodiversity, and dynamics of deep-sea ecosystems. Addressing these misconceptions and knowledge gaps is needed for effective management of deep-seabed mining.


Sujet(s)
Écosystème , Mine , Biodiversité
12.
PLoS One ; 14(2): e0212842, 2019.
Article de Anglais | MEDLINE | ID: mdl-30811459

RÉSUMÉ

Evaluating the efficacy of artificial structures in enhancing or sustaining biodiversity on tropical coral reefs is key to assessing their role in reef conservation or management. Here, we compare spatial and temporal patterns of colonization and succession of the benthic assemblage on settlement collectors (ceramic tiles) in a 13-mo mensurative experiment on a suspended artificial reef, a seafloor artificial reef, and two nearby natural reefs at Eilat, Gulf of Aqaba. We also conducted a concurrent 7-mo manipulative experiment on the suspended reef and one of the natural reefs, and monitored fish feeding behaviour on experimental collectors, to examine effects of large mobile consumers on these patterns. In both experiments, taxonomic composition as percent planar cover for the whole community or biomass for the invertebrate component differed between collector topsides, dominated by a filamentous algal matrix, and shaded undersides with a profuse assemblage of suspension- or filter-feeding invertebrates. In the mensurative experiment, we found differences in final community and invertebrate composition between sites, which clustered according to reef type (artificial vs. natural) for collector undersides. Invertebrate biomass was greater at both artificial reefs than at one (undersides) or both (topsides) natural reefs. In the manipulative experiment, we found similar differences in composition between sites/reef types as well as between treatments (exclusion vs. control), and the invertebrate biomass was greater on the artificial reef. Invertebrate biomass was greater in the exclusion treatment than the control on collector undersides, suggesting mobile consumers can affect community composition and abundance. Predominant fish species observed interacting with collectors differed between artificial and natural reefs, likely contributing to differences in patterns of colonization and succession between sites and reef types. Our findings suggest artificial reefs have the potential to enhance cover and biomass of certain reef-associated assemblages, particularly those occupying sheltered microhabitats.


Sujet(s)
Biodiversité , Biomasse , Récifs de corail , Assainissement et restauration de l'environnement , Animaux , Anthozoa , Poissons , Océan Indien , Invertébrés , Analyse spatio-temporelle
13.
Oecologia ; 189(2): 537-548, 2019 Feb.
Article de Anglais | MEDLINE | ID: mdl-30604087

RÉSUMÉ

Predicting long-term impacts of introduced species is challenging, since stressors related to global change can influence species-community interactions by affecting both demographic rates of invasive species and the structure of the invaded ecosystems. Invasive species can alter ecosystem structure over time, further complicating interactions between invasive species and invaded communities in response to additional stressors. Few studies have considered how cumulative impacts of species invasion and global change on the structure of invaded ecosystems may influence persistence and population growth of introduced species. Here, we present an empirically based population model for an invasive epiphytic bryozoan that can dramatically alter the structure of its invaded kelp bed ecosystems. We use this model to predict the response of invasive species to climate change and associated changes in the invaded community. Population growth of the bryozoan increased under near-future projections of increasing ocean temperature; however, the magnitude of population growth depended on the community composition of invaded kelp beds. Our results suggest that, in some cases, indirect effects of climate change mediated through changes to the structure of the invaded habitat can modulate direct effects of climate change on invasive species, with consequences for their long-term ecological impact. Our findings have important implications for management of invasive species, as modifying invaded habitats at local to regional scales may be more logistically feasible than addressing stressors related to global climate change.


Sujet(s)
Espèce introduite , Varech , Changement climatique , Écosystème , Croissance démographique
14.
Ann Rev Mar Sci ; 10: 19-42, 2018 01 03.
Article de Anglais | MEDLINE | ID: mdl-28813201

RÉSUMÉ

Marine animals with complex life cycles may move passively or actively for fertilization, dispersal, predator avoidance, resource acquisition, and migration, and over scales from micrometers to thousands of kilometers. This diversity has catalyzed idiosyncratic and unfocused research, creating unsound paradigms regarding the role of movement in ecology and evolution. The emerging movement ecology paradigm offers a framework to consolidate movement research independent of taxon, life-history stage, scale, or discipline. This review applies the framework to movement among life-history stages in marine animals with complex life cycles to consolidate marine movement research and offer insights for scientists working in aquatic and terrestrial realms. Irrespective of data collection or simulation strategy, breaking each life-history stage down into the fundamental units of movement allows each unit to be studied independently or interactively with other units. Understanding these underlying mechanisms of movement within each life-history stage can then be used to construct lifetime movement paths. These paths can allow further investigation of the relative contributions and interdependencies of steps and phases across a lifetime and how these paths influence larger research topics, such as population-level movements.


Sujet(s)
Organismes aquatiques/physiologie , Mouvement , Animaux , Écologie/méthodes , Étapes du cycle de vie , Caractéristiques du cycle biologique , Modèles biologiques
15.
PLoS Biol ; 15(9): e2001886, 2017 Sep.
Article de Anglais | MEDLINE | ID: mdl-28877168

RÉSUMÉ

Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effectiveness of marine- and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to 1 of 4 alternative conservation actions-protection on land, protection in the ocean, restoration on land, or restoration in the ocean-to maximise the extent of light-dependent marine benthic habitats across decadal timescales. We apply the model to a case study for a seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal timescales in this system, based on a conservative estimate of the rate at which seagrass can expand into a new habitat. The optimal decision will vary in different social-ecological contexts, but some basic information can guide optimal investments to counteract land- and ocean-based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is greater than 1:1.4, with terrestrial restoration typically the most cost-effective action; and (4) land protection should be prioritised if the catchment is relatively intact but the rate of vegetation decline is high. These rules of thumb illustrate how cost-effective conservation outcomes for connected land-ocean systems can proceed without complex modelling.


Sujet(s)
Organismes aquatiques , Conservation des ressources naturelles/économie , Analyse coût-bénéfice/méthodes , Écosystème , Pollution de l'eau/économie , Algorithmes , Techniques d'aide à la décision , Queensland
16.
Curr Biol ; 26(17): 2257-67, 2016 09 12.
Article de Anglais | MEDLINE | ID: mdl-27476600

RÉSUMÉ

Deep-sea hydrothermal vents are patchily distributed ecosystems inhabited by specialized animal populations that are textbook meta-populations. Many vent-associated species have free-swimming, dispersive larvae that can establish connections between remote populations. However, connectivity patterns among hydrothermal vents are still poorly understood because the deep sea is undersampled, the molecular tools used to date are of limited resolution, and larval dispersal is difficult to measure directly. A better knowledge of connectivity is urgently needed to develop sound environmental management plans for deep-sea mining. Here, we investigated larval dispersal and contemporary connectivity of ecologically important vent mussels (Bathymodiolus spp.) from the Mid-Atlantic Ridge by using high-resolution ocean modeling and population genetic methods. Even when assuming a long pelagic larval duration, our physical model of larval drift suggested that arrival at localities more than 150 km from the source site is unlikely and that dispersal between populations requires intermediate habitats ("phantom" stepping stones). Dispersal patterns showed strong spatiotemporal variability, making predictions of population connectivity challenging. The assumption that mussel populations are only connected via additional stepping stones was supported by contemporary migration rates based on neutral genetic markers. Analyses of population structure confirmed the presence of two southern and two hybridizing northern mussel lineages that exhibited a substantial, though incomplete, genetic differentiation. Our study provides insights into how vent animals can disperse between widely separated vent habitats and shows that recolonization of perturbed vent sites will be subject to chance events, unless connectivity is explicitly considered in the selection of conservation areas.


Sujet(s)
Répartition des animaux , Variation génétique , Mytilidae/physiologie , Animaux , Océan Atlantique , Écosystème , Cheminées hydrothermales , Larve/génétique , Larve/croissance et développement , Modèles génétiques , Modèles théoriques , Mytilidae/génétique , Mytilidae/croissance et développement , Analyse de séquence d'ADN
17.
PLoS One ; 9(8): e106178, 2014.
Article de Anglais | MEDLINE | ID: mdl-25153075

RÉSUMÉ

This study quantified the fine- scale (0.5 km) of variability in the horizontal distributions of benthic invertebrate larvae and related this variability to that in physical and biological variables, such as density, temperature, salinity, fluorescence and current velocity. Larvae were sampled in contiguous 500-m transects along two perpendicular 10-km transects with a 200-µm plankton ring net (0.75-m diameter) in St. George's Bay, Nova Scotia, Canada, in Aug 2009. Temperature, conductivity, pressure and fluorescence were measured with a CTD cast at each station, and currents were measured with an Acoustic Doppler Current Profiler moored at the intersection of the 2 transects. Gastropod, bivalve and, to a lesser extent, bryozoan larvae had very similar spatial distributions, but the distribution of decapod larvae had a different pattern. These findings suggest that taxonomic groups with functionally similar larvae have similar dispersive properties such as distribution and spatial variability, while the opposite is true for groups with functionally dissimilar larvae. The spatial variability in larval distributions was anisotropic and matched the temporal/spatial variability in the current velocity. We postulate that in a system with no strong oceanographic features, the scale of spatially coherent physical forcing (e.g. tidal periodicity) can regulate the formation or maintenance of larval patches; however, swimming ability may modulate it.


Sujet(s)
Invertébrés/physiologie , Larve/physiologie , Animaux , Bivalvia/physiologie , Bryozoa/physiologie , Gastropoda/physiologie , Nouvelle-Écosse , Océanographie/méthodes , Dynamique des populations , Température , Mouvements de l'eau
18.
PLoS One ; 8(6): e65394, 2013.
Article de Anglais | MEDLINE | ID: mdl-23762358

RÉSUMÉ

Deep-water gorgonian corals are long-lived organisms found worldwide off continental margins and seamounts, usually occurring at depths of ∼200-1,000 m. Most corals undergo sexual reproduction by releasing a planktonic larval stage that disperses; however, recruitment rates and the environmental and biological factors influencing recruitment in deep-sea species are poorly known. Here, we present results from a 4-year field experiment conducted in the Gulf of Maine (northwest Atlantic) at depths >650 m that document recruitment for 2 species of deep-water gorgonian corals, Primnoa resedaeformis and Paragorgia arborea. The abundance of P. resedaeformis recruits was high, and influenced by the structural complexity of the recipient habitat, but very few recruits of P. arborea were found. We suggest that divergent reproductive modes (P. resedaeformis as a broadcast spawner and P. arborea as a brooder) may explain this pattern. Despite the high recruitment of P. resedaeformis, severe mortality early on in the benthic stage of this species may limit the abundance of adult colonies. Most recruits of this species (∼80%) were at the primary polyp stage, and less than 1% of recruits were at stage of 4 polyps or more. We propose that biological disturbance, possibly by the presence of suspension-feeding brittle stars, and limited food supply in the deep sea may cause this mortality. Our findings reinforce the vulnerability of these corals to anthropogenic disturbances, such as trawling with mobile gear, and the importance of incorporating knowledge on processes during the early life history stages in conservation decisions.


Sujet(s)
Anthozoa/croissance et développement , Biodiversité , Phénomènes écologiques et environnementaux , Étapes du cycle de vie , Animaux , Anthozoa/classification , Écosystème
19.
PLoS One ; 5(11): e13832, 2010 Nov 19.
Article de Anglais | MEDLINE | ID: mdl-21124960

RÉSUMÉ

BACKGROUND: In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits development of alternatives for conservation and management. METHODOLOGY/PRINCIPAL FINDINGS: We use data from the published literature, unpublished studies, museum records and online sources, to: (1) assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf of Maine (39-43°N, 63-71°W, 150-3000 m depth); (2) compare patterns of taxonomic diversity and distribution of megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3) estimate the amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered. CONCLUSIONS/SIGNIFICANCE: The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling biases, life-history characteristics of target species, and the lack of trained taxonomists.


Sujet(s)
Anthozoa/croissance et développement , Biodiversité , Crustacea/croissance et développement , Poissons/croissance et développement , Mollusca/croissance et développement , Animaux , Anthozoa/classification , Océan Atlantique , Crustacea/classification , Écosystème , Poissons/classification , Géographie , Maine , Biologie marine , Mollusca/classification , Océans et mers , Spécificité d'espèce , Mouvements de l'eau
20.
PLoS One ; 5(7): e11646, 2010 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-20657831

RÉSUMÉ

BACKGROUND: The biological communities that inhabit chemosynthetic environments exist in an ephemeral and patchily distributed habitat with unique physicochemical properties that lead to high endemicity. Consequently, the maintenance and recovery from perturbation of the populations in these habitats is, arguably, mainly regulated by larval supply and recruitment. METHODOLOGY/PRINCIPAL FINDINGS: WE USE DATA FROM THE PUBLISHED SCIENTIFIC LITERATURE TO: (1) compare the magnitudes of and variability in larval supply and settlement and recruitment at hydrothermal vents, seeps, and whale, wood and kelp falls; (2) explore factors that affect these life history processes, when information is available; and (3) explore taxonomic affinities in the recruit assemblages of the different chemosynthetic habitats, using multivariate statistical techniques. Larval supply at vents can vary across segments by several orders of magnitude for gastropods; for bivalves, supply is similar at vents on different segments, and at cold seeps. The limited information on larval development suggests that dispersal potential may be highest for molluscs from cold seeps, intermediate for siboglinids at vents and lowest for the whale-bone siboglinid Osedax. Settlement is poorly studied and only at vents and seeps, but tends to be highest near an active source of emanating fluid in both habitats. Rate of recruitment at vents is more variable among studies within a segment than among segments. Across different chemosynthetic habitats, recruitment rate of bivalves is much more variable than that of gastropods and polychaetes. Total recruitment rate ranges only between 0.1 and 1 ind dm(-2) d(-1) across all chemosynthetic habitats, falling above rates in the non-reducing deep sea. The recruit assemblages at vents, seeps and kelp falls have lower taxonomic breadth, and include more families and genera that have many species more closely related to each other than those at whale and wood falls. Vents also have the most uneven taxonomic structure, with fewer recruits represented by higher taxonomic levels (phyla, orders, classes) compared to seeps and wood and kelp falls, whereas the opposite is true at whale falls. CONCLUSIONS/SIGNIFICANCE: Based on our evaluation of the literature, the patterns and regulatory factors of the early history processes in chemosynthetic environments in the deep sea remain poorly understood. More research focused on these early life history stages will allow us to make inferences about the ecological and biogeographic linkages among the reducing habitats in the deep sea.


Sujet(s)
Écosystème , Animaux , Annelida , Bivalvia , Gastropoda , Mollusca , Océans et mers
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...