Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 114
Filtrer
1.
Brachytherapy ; 2024 Aug 03.
Article de Anglais | MEDLINE | ID: mdl-39098499

RÉSUMÉ

PURPOSE: Surgically targeted radiation therapy (STaRT) with Cesium-131 seeds embedded in a collagen tile is a promising treatment for recurrent brain metastasis. In this study, the biological effective doses (BED) for normal and target tissues from STaRT plans were compared with those of external beam radiotherapy (EBRT) modalities. METHODS: Nine patients (n = 9) with 12 resection cavities (RCs) who underwent STaRT (cumulative physical dose of 60 Gy to a depth of 5 mm from the RC edge) were replanned with CyberKnifeⓇ (CK), Gamma KnifeⓇ (GK), and intensity modulated proton therapy (IMPT) using an SRT approach (30 Gy in 5 fractions). Statistical significance comparing D95% and D90% in BED10Gy (BED10Gy95% and BED10Gy90%) and to RC + 0 to + 5 mm expansion margins, and parameters associated with radiation necrosis risk (V83Gy, V103Gy, V123Gy and V243Gy) to the normal brain were evaluated by a Wilcoxon-signed rank test. RESULTS: For RC + 0 mm, median BED10Gy 90% for STaRT (90.1 Gy10, range: 64.1-140.9 Gy10) was significantly higher than CK (74.3 Gy10, range:59.3-80.4 Gy10, p = 0.04), GK (69.4 Gy10, range: 59.8-77.1 Gy10, p = 0.005), and IMPT (49.3 Gy10, range: 49.0-49.7 Gy10, p = 0.003), respectively. However, for the RC + 5 mm, the median BED10Gy 90% for STaRT (34.1 Gy10, range: 22.2-59.7 Gy10) was significantly lower than CK (44.3 Gy10, range: 37.8-52.4 Gy10), and IMPT (46.6 Gy10, range: 45.1-48.5 Gy10), respectively, but not significantly different from GK (34.1 Gy10, range: 22.8-47.0 Gy10). The median V243Gy was significantly higher in CK (11.7 cc, range: 4.7-20.1 cc), GK(6.2 cc, range: 2.3-11.9 cc) and IMPT (19.9 cc, range: 11.1-36.6 cc) compared to STaRT (1.1 cc, range: 0.0-7.8 cc) (p < 0.01). CONCLUSIONS: This comparative analysis suggests a STaRT approach may treat recurrent brain tumors effectively via delivery of higher radiation doses with equivalent or greater BED up to at least 3 mm from the RC edge as compared to EBRT approaches.

2.
Environ Res ; 261: 119684, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39067802

RÉSUMÉ

Dye industry plays an essential role in industrial development, contributing significantly to economic growth and progress. However, its rapid expansion has led to significant environmental concerns, especially water pollution and ecosystem degradation due to the discharge of untreated or inadequately treated dye effluents. The effluents introduce various harmful chemicals altering water quality, depleting oxygen levels, harming aquatic organisms, and disrupting food chains. Dye contamination can also persist in the environment for extended periods, leading to long-term ecological damage and threatening biodiversity. Therefore, the complex effects of dye pollutants on aquatic ecosystems have been comprehensively studied. Recently, zebrafish (Danio rerio) has proved to be an effective biomedical model for this study due to its transparent embryos allowing real-time observation of developmental processes and genetic proximity (approx. 87%) to humans for studying diverse biological responses. This review highlights the various toxicological effects of industrial dyes, including cardiovascular toxicity, neurotoxicity, genotoxicity, hepatotoxicity, and developmental toxicity. These effects have been observed at different developmental stages and dye concentrations in zebrafish. The review underscores that the structure, stability and chemical composition of dyes significantly influence toxicological impact, emphasizing the need for detailed investigation into dye degradation to better understand and mitigate the environmental and health risks posed by dye pollutants.

3.
ACS Polym Au ; 4(3): 168-188, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38882037

RÉSUMÉ

For most individuals, wound healing is a highly organized, straightforward process, wherein the body transitions through different phases in a timely manner. However, there are instances where external intervention becomes necessary to support and facilitate different phases of the body's innate healing mechanism. Furthermore, in developing countries, the cost of the intervention significantly impacts access to treatment options as affordability becomes a determining factor. This is particularly true in cases of long-term wound treatment and management, such as chronic wounds and infections. Silk fibroin (SF) and its nanocomposites have emerged as promising biomaterials with potent wound-healing activity. Driven by this motivation, this Review presents a critical overview of the recent advancements in different aspects of wound care using SF and SF-based nanocomposites. In this context, we explore various formats of hemostats and assess their suitability for different bleeding situations. The subsequent sections discuss the primary causes of nonhealing wounds, i.e., prolonged inflammation and infections. Herein, different treatment strategies to achieve immunomodulatory and antibacterial properties in a wound dressing were reviewed. Despite exhibiting excellent pro-healing properties, few silk-based products reach the market. This Review concludes by highlighting the bottlenecks in translating silk-based products into the market and the prospects for the future.

4.
Chem Biodivers ; : e202400891, 2024 Jun 02.
Article de Anglais | MEDLINE | ID: mdl-38825847

RÉSUMÉ

The utilization of natural materials for the synthesis of highly fluorescent carbon quantum dots (CQDs) presents a sustainable approach to overcome the challenges associated with traditional chemical precursors. Here, we report the synthesis of novel S,N-self-doped CQDs (S,N@CQDs) derived from asparagus officinalis herb. These S,N@CQDs exhibit 16.7 % fluorescence quantum yield, demonstrating their potential in medical diagnostics. We demonstrate the efficacy of S,N@CQDs as luminescent probes for the detection of anti-pathogenic medications metronidazole (MTZ) and nitazoxanide (NTZ) over concentration ranges of 0.0-180.0 µM (with a limit of detection (LOD) of 0.064 µM) and 0.25-40.0 µM (LOD of 0.05 µM), respectively. The probes were successfully applied to determine MTZ and NTZ in medicinal samples, real samples, and spiked human plasma, with excellent recovery rates ranging from 99.82 % to 103.03 %. Additionally, S,N@CQDs demonstrate exceptional efficacy as diagnostic luminescent probes for hemoglobin (Hb) detection over a concentration range of 0-900 nM, with a minimal detectability of 9.24 nM, comparable to commercially available medical laboratory diagnostic tests. The eco-friendly synthesis and precise detection limits of S,N@CQDs meet necessary analytical requirements and hold promise for advancing diagnostic capabilities in clinical settings. This research signifies a significant step towards sustainable and efficient fluorescence-based medical diagnostics.

5.
Environ Sci Pollut Res Int ; 31(25): 36748-36760, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38750276

RÉSUMÉ

Toxic organic dyes (colorants) are one of the main causes of water pollution that releases destructive effluents in the environment. To overcome this issue, a fundamental need to produce a novel, efficient catalyst for the degradation and mineralization of dye mixtures has arisen. The objective of this research is to develop an eminent Ni-doped magnetic carbon aerogel (Ni-MCA) catalyst using graft co-polymerization method having xanthan gum as backbone doped with Ni-magnetic nanoparticles (Ni-MNPs), that do not show agglomeration and easy to separate. The examination revealed that Ni-MCA provided exceptional magnetic characteristics (Ms = 52.75 emu/g) and potent catalytic activity for the degradation of mono- as well as binary-dye solutions of Congo red (CR) and methyl green (MG) dyes. The formation was verified by various characterization techniques such as FTIR, VSM, XRD, XPS, SEM, TEM, and EDX mapping. Interestingly, Ni-MCA shows faster result on anionic dye CR up to 97% with degradation rate of 5.647 × 10-1 min-1, and MG dye shows degradation of 95.7% with the degradation rate of 2.169 × 10-1 min-1, while dye mixture is showing 90% degradation with rate of 2.159 × 10-1 min-1.


Sujet(s)
Carbone , Agents colorants , Nickel , Polyosides bactériens , Polluants chimiques de l'eau , Nickel/composition chimique , Polyosides bactériens/composition chimique , Agents colorants/composition chimique , Polluants chimiques de l'eau/composition chimique , Carbone/composition chimique , Catalyse , Gels/composition chimique
7.
J Vector Borne Dis ; 61(1): 117-122, 2024 Jan 01.
Article de Anglais | MEDLINE | ID: mdl-38648413

RÉSUMÉ

BACKGROUND OBJECTIVES: This study reports observation on circulating serotypes and genotypes of Dengue Virus in North India. METHODS: Serum samples were obtained from suspected cases of dengue referred to the virus diagnostic laboratory during 2014 to 2022. All samples were tested for anti-dengue virus IgM antibodies and NS1Ag by ELISA. NS1Ag positive samples were processed for serotyping and genotyping. RESULTS: Total 41,476 dengue suspected cases were referred to the laboratory of which 12,292 (29.6%) tested positive. Anti-Dengue Virus IgM antibodies, NS1Ag, both IgM and NS1Ag, were positive in 7007 (57.4%); 3200 (26.0%) and 2085 (16.0%) cases respectively. Total 762 strains were serotyped during 9-year period. DENV-1, DENV-2, DENV-3 and DENV-4 serotypes were found in 79 (10.37%), 506 (66.40%), 151 (19.82%) and 26 (3.41%) cases respectively. DENV-1, DENV-2 and DENV-3 were in circulation throughout. Total 105 strains were genotyped. Genotype IV of DENV-1 serotype was circulating till 2014 which was later replaced by genotype V. A distinct seasonality with increase in number of cases in post-monsoon period was seen. INTERPRETATION CONCLUSION: DENV-1, DENV-2 and DENV-3 were found to be in circulation in North India. Predominant serotype/genotype changed at times, but not at regular intervals.


Sujet(s)
Anticorps antiviraux , Virus de la dengue , Dengue , Génotype , Sérogroupe , Inde/épidémiologie , Virus de la dengue/génétique , Virus de la dengue/classification , Virus de la dengue/isolement et purification , Humains , Dengue/virologie , Dengue/épidémiologie , Dengue/sang , Anticorps antiviraux/sang , Immunoglobuline M/sang , Femelle , Sérotypie , Mâle , Adulte , Enfant , Test ELISA , Adolescent , Adulte d'âge moyen , Jeune adulte , Saisons , Enfant d'âge préscolaire
8.
Front Oncol ; 14: 1331266, 2024.
Article de Anglais | MEDLINE | ID: mdl-38469241

RÉSUMÉ

Background and purpose: Implementing any radiopharmaceutical therapy (RPT) program requires a comprehensive review of system readiness, appropriate workflows, and training to ensure safe and efficient treatment delivery. A quantitative assessment of the dose delivered to targets and organs at risk (OAR) using RPT is possible by correlating the absorbed doses with the delivered radioactivity. Integrating dosimetry into an established RPT program demands a thorough analysis of the necessary components and system fine-tuning. This study aims to report an optimized workflow for molecular radiation therapy using 177Lu with a primary focus on integrating patient-specific dosimetry into an established radiopharmaceutical program in a radiation oncology setting. Materials and methods: We comprehensively reviewed using the Plan-Do-Check-Act (PDCA) cycle, including efficacy and accuracy of delivery and all aspects of radiation safety of the RPT program. The GE Discovery SPECT/CT 670DR™ system was calibrated per MIM protocol for dose calculation on MIM SurePlan™ MRT software. Jaszcak Phantom with 15-20 mCi of 177Lu DOTATATE with 2.5 µM EDTA solution was used, with the main energy window defined as 208 keV ±10% (187.6 to 229.2 keV); the upper scatter energy window was set to 240 keV ±5% (228 to 252 keV), while the lower scatter energy window was 177.8 keV ±5% (168.9 to 186.7 keV). Volumetric quality control tests and adjustments were performed to ensure the correct alignment of the table, NM, and CT gantry on SPECT/CT. A comprehensive end-to-end (E2E) test was performed to ensure workflow, functionality, and quantitative dose accuracy. Results: Workflow improvements and checklists are presented after systematically analyzing over 400 administrations of 177Lu-based RPT. Injected activity to each sphere in the NEMA Phantom scan was quantified, and the MIM Sureplan MRT reconstruction images calculated activities within ±12% of the injected activity. Image alignment tests on the SPECT/CT showed a discrepancy of more than the maximum tolerance of 2.2 mm on any individual axis. As a result of servicing the machine and updating the VQC and COR corrections, the hybrid imaging system was adjusted to achieve an accuracy of <1 mm in all directions. Conclusion: Workflows and checklists, after analysis of system readiness and adequate training for staff and patients, are presented. Hardware and software components for patient-specific dosimetry are presented with a focus on hybrid image registration and correcting any errors that affect dosimetric quantification calculation. Moreover, this manuscript briefly overviews the necessary quality assurance requirements for converting diagnostic images into dosimetry measurement tools and integrating dosimetry for RPT based on 177Lu.

9.
Indian J Pathol Microbiol ; 67(3): 576-580, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38394398

RÉSUMÉ

BACKGROUND: The incidence of meningoencephalitis (ME) in India is poorly understood, and the exact etiological diagnosis is often not possible. This study was planned to elucidate the bacterial and viral etiological diagnosis of ME in children less than 5 years of age. MATERIALS AND METHODS: The present study was conducted in Virus Research and Diagnostic Laboratory (VRDL), Department of Microbiology, King George's Medical University, Lucknow, from July 2020 to June 2022. Serum, cerebrospinal fluid (CSF), and nose/throat swabs were collected from all the enrolled cases of meningoencephalitis in children below 5 years of age and tested for various etiological agents by ELISA and/or real-time PCR. RESULTS: Of 130 enrolled cases, 50 (38.5%) cases tested positive for one or more etiological agents. Etiological agents of ME detected were Japanese encephalitis virus (JEV) (8.46%), adenovirus (6.92%), influenza virus (5.38%), dengue virus (3.85%), Parvo B-19 virus (3.08%), Orientia tsutsugamushi (3.08%), Herpes Simplex Virus-1 (HSV-1) (1.54%), measles virus (1.54%), and Varicella-Zoster Virus (VZV) (1.54%). Rubella virus, Chikungunya virus (CHKV), Mumps virus, Enteroviruses, Parecho virus, John Cunningham virus (JC), BK virus, Nipah virus, Kyasanur Forest Disease virus (KFD), Chandipura virus, Herpes Simplex Virus (HSV-2), SARS CoV-2, N. Meningitides , and H. Influenzae were tested but not detected in any of the cases. CONCLUSION: We identified the etiological agents in 50/130 (38.5%) suspected ME cases in children less than 5 years of age, using molecular and ELISA-based diagnostic methods. The four most common pathogens detected were JEV, adenovirus, influenza virus, and dengue virus.


Sujet(s)
Méningoencéphalite , Humains , Méningoencéphalite/virologie , Méningoencéphalite/épidémiologie , Enfant d'âge préscolaire , Nourrisson , Femelle , Mâle , Inde/épidémiologie , Virus/isolement et purification , Virus/classification , Virus/pathogénicité , Virus/génétique , Nouveau-né , Maladies virales
10.
PLoS One ; 19(1): e0296270, 2024.
Article de Anglais | MEDLINE | ID: mdl-38175842

RÉSUMÉ

Nowadays, it is fascinating to engineer waste biomass into functional valuable nanomaterials. We investigate the production of hetero-atom doped carbon quantum dots (N-S@MCDs) to address the adaptability constraint in green precursors concerning the contents of the green precursors i.e., Tagetes erecta (marigold extract). The successful formation of N-S@MCDs as described has been validated by distinct analytical characterizations. As synthesized N-S@MCDs successfully incorporated on corn-starch powder, providing a nano-carbogenic fingerprint powder composition (N-S@MCDs/corn-starch phosphors). N-S@MCDs imparts astounding color-tunability which enables highly fluorescent fingerprint pattern developed on different non-porous surfaces along with immediate visual enhancement under UV-light, revealing a bright sharp fingerprint, along with long-time preservation of developed fingerprints. The creation and comparison of latent fingerprints (LFPs) are two key research in the recognition and detection of LFPs, respectively. In this work, developed fingerprints are regulated with an artificial intelligence program. The optimum sample has a very high degree of similarity with the standard control, as shown by the program's good matching score (86.94%) for the optimal sample. Hence, our results far outperform the benchmark attained using the conventional method, making the N-S@MCDs/corn-starch phosphors and the digital processing program suitable for use in real-world scenarios.


Sujet(s)
Boîtes quantiques , Humains , Sueur , Intelligence artificielle , Anthropologie médicolégale , Poudres , Dermatoglyphes , Algorithmes , Agents colorants , Apprentissage machine , Ressources naturelles , Amidon , Carbone
11.
Biotechnol Bioeng ; 121(4): 1394-1406, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38214104

RÉSUMÉ

Dynamic flux balance analysis (FBA) allows estimation of intracellular reaction rates using organism-specific genome-scale metabolic models (GSMM) and by assuming instantaneous pseudo-steady states for processes that are inherently dynamic. This technique is well-suited for industrial bioprocesses employing complex media characterized by a hierarchy of substrate uptake and product secretion. However, knowledge of exchange rates of many components of the media would be required to obtain meaningful results. Here, we performed spent media analysis using mass spectrometry coupled with liquid and gas chromatography for a fed-batch, high-cell density cultivation of Escherichia coli BL21(DE3) expressing a recombinant protein. Time course measurements thus obtained for 246 metabolites were converted to instantaneous exchange rates. These were then used as constraints for dynamic FBA using a previously reported GSMM, thus providing insights into how the flux map evolves through the process. Changes in tri-carboxylic acid cycle fluxes correlated with the increased demand for energy during recombinant protein production. The results show how amino acids act as hubs for the synthesis of other cellular metabolites. Our results provide a deeper understanding of an industrial bioprocess and will have implications in further optimizing the process.


Sujet(s)
Techniques de culture cellulaire en batch , Modèles biologiques , Techniques de culture cellulaire en batch/méthodes , Escherichia coli/génétique , Escherichia coli/métabolisme , Spectrométrie de masse , Protéines recombinantes/métabolisme , Milieux de culture/métabolisme
12.
J Public Health Afr ; 14(10): 2696, 2023 Oct 31.
Article de Anglais | MEDLINE | ID: mdl-38020268

RÉSUMÉ

Antero-lateral ligament complex (ALC) is a vital structure for maintaining rotational stability of the knee. Evaluation of ALC radiologically (MRI) is still unpopular in setting of anterior cruciate ligament injury. A dire necessity exists for the orthopedic surgeons in outdoor patient department settings to rule out involvement of ALC. So, that it can be addressed during operating for Anterior Cruciate Ligament injury. The authors have formulated an algorithm on a personal level and have implemented this screening program and initiated screening of young to middle aged patients reporting with rotational knee instability for ALC involvement before recommending final operative plan. This screening program which uses specifically devised physical tests have significantly reduced the number of underdiagnosed Antero Lateral Ligament tear.

13.
J Fluoresc ; 2023 Oct 03.
Article de Anglais | MEDLINE | ID: mdl-37787885

RÉSUMÉ

There are several metal ions that are vital for the growth of the environmental field as well as for the biological field but only up to the maximum limit. If they are present in excess, it could be hazardous for the human health. With the growing technology, a series of various detection techniques are employed in order to recognize those metal ions, some of them include voltammetry, electrochemical methods, inductively couples, etc. However, these techniques are expensive, time consuming, requires large storage, advanced instrumentation, and a skilled person to operate. So, here comes the need of a sensor and it is defined as a miniature device which detects the substance of interest by giving response in the form of energy change. So, from past few decades, many sensors have been formulated for detecting metal ions with some basic characteristics like selectivity, specificity, sensitivity, high accuracy, lower detection limit, and response time. Detecting various metal ions by employing chemosensors involves different techniques such as fluorescence, phosphorescence, chemiluminescence, electrochemical, and colorimetry. The fluorescence technique has certain advantages over the other techniques. This review mainly focuses on the chemosensors that show a signal in the form of fluorescence to detect Al+3, Zn+2, Cu+2, and Fe+3 ions.

14.
Int J Biol Macromol ; 253(Pt 7): 127491, 2023 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-37852396

RÉSUMÉ

In this work, a novel copper nano-magnetite doped carbon aerogel (CXMCA) was created utilizing a simple graft co-polymerization approach with xanthan gum (XG) as a template to tackle the agglomeration problem caused by magnetic nanoparticle magnetism. The results indicated that the XG based CXMCA exhibited outstanding magnetic properties (Ms = 36.52 emu/g) as well as strong catalytic activity for the degradation of cationic and anionic dyes. Among all organic dyes, methylene blue and crystal violet (MB, CV) as cationic dyes, as well as congo red and methyl orange (CR, and MO) as anionic dyes, CXMCA demonstrated an exceptional dye degradation rate (8.06 × 10-3 s-1-1.12 × 10-2 s-1) and was highly competent for cationic dyes with degradation (90 %-98 %) as compared to its unsupported magnetic nanoparticles. The formation of CXMCA catalyst is clearly confirmed by the FTIR, XRD, XPS, VSM, SEM & TEM analyses. We report a very effective xanthan gum-based copper nano-magnetite doped carbon aerogel dye scavenger with application in percentage dye degradation and kinetic investigations, as well as a remarkable reusability assay up to 7 repetition cycles. The findings suggested that using biological macromolecules like xanthan gum as a foundation to generate magnetic aerogels might be a good choice for evaluating environmental aspects.


Sujet(s)
Agents colorants , Cuivre , Agents colorants/composition chimique , Carbone , Oxyde ferrosoferrique
15.
Brachytherapy ; 22(6): 872-881, 2023.
Article de Anglais | MEDLINE | ID: mdl-37722990

RÉSUMÉ

PURPOSE: This study evaluates the outcomes of recurrent brain metastasis treated with resection and brachytherapy using a novel Cesium-131 carrier, termed surgically targeted radiation therapy (STaRT), and compares them to the first course of external beam radiotherapy (EBRT). METHODS: Consecutive patients who underwent STaRT between August 2020 and June 2022 were included. All patients underwent maximal safe resection with pathologic confirmation of viable disease prior to STaRT to 60 Gy to a 5-mm depth from the surface of the resection cavity. Complications were assessed using CTCAE version 5.0. RESULTS: Ten patients with 12 recurrent brain metastases after EBRT (median 15.5 months, range: 4.9-44.7) met the inclusion criteria. The median BED10Gy90% and 95% were 132.2 Gy (113.9-265.1 Gy) and 116.0 Gy (96.8-250.6 Gy), respectively. The median maximum point dose BED10Gy for the target was 1076.0 Gy (range: 120.7-1478.3 Gy). The 6-month and 1-year local control rates were 66.7% and 33.3% for the prior EBRT course; these rates were 100% and 100% for STaRT, respectively (p < 0.001). At a median follow-up of 14.5 months, there was one instance of grade two radiation necrosis. Surgery-attributed complications were observed in two patients including pseudomeningocele and minor headache. CONCLUSIONS: STaRT with Cs-131 presents an alternative approach for operable recurrent brain metastases and was associated with superior local control than the first course of EBRT in this series. Our initial clinical experience shows that STaRT is associated with a high local control rate, modest surgical complication rate, and low radiation necrosis risk in the reirradiation setting.


Sujet(s)
Curiethérapie , Tumeurs du cerveau , Humains , Radio-isotopes du césium/usage thérapeutique , Curiethérapie/méthodes , Tumeurs du cerveau/radiothérapie , Nécrose/étiologie
17.
J Lab Physicians ; 15(2): 259-263, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37323604

RÉSUMÉ

Objective Indian hospitals (especially government-run public sector hospitals) have a nonexistent antimicrobial stewardship program (AMSP). After successfully initiating AMSPs in tertiary care hospitals of India, the Indian Council of Medical Research envisages implementing AMSP in secondary care hospitals. This study is about the baseline data on antibiotic consumption in secondary care hospitals. Materials and Methods It was a prospective longitudinal observational chart review type of study. Baseline data on antibiotic consumption was captured by a 24-hour point prevalence study of antibiotic usage and bacterial culture rate. The prescribed antibiotics were classified according to the World Health Organization (WHO) Access, Watch, and Reserve classification. All data were collated in Microsoft Excel and summarized as percentages. Results Out of the 864 patients surveyed, overall antibiotic usage was 78.9% (71.5% in low-priority areas vs. 92.2% in high-priority areas). Most of the antibiotic usage was empirical with an extremely low bacterial culture rate (21.9%). Out of the prescribed drugs, 53.1% were from the WHO watch category and 5.5% from the reserve category. Conclusion Even after 5 years of the launch of the national action plan on AMR (NAP-AMR) of India, AMSP is still non-existent in small- and medium-level hospitals in urban cities. The importance of trained microbiologists in the health care system is identified as a fulcrum in combating antimicrobial resistance (AMR); however, their absence in government-run district hospitals is a matter of grave concern and needs to be addressed sooner than later.

18.
Anal Chim Acta ; 1272: 341502, 2023 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-37355334

RÉSUMÉ

Carbon quantum dots (CQDs) have emerged as a potential fluorescent probe in bio/analytical chemistry in the present decade. The optical characteristics of CQDs may be tuned by their functional groups, which can also be used to selectively produce stable bonds with target molecules. Along with them, ionic liquids (ILs) are now demonstrating their important relevance in the field of pharmaceuticals for the creation of potent therapeutics. In the article, we have discussed the use of high fluorescent ILs-decorated-CQDs (CQDs-IM@OTf) as a straightforward and quick-acting fluorescence probe for sensitive and precise hemoglobin (Hb) determination with minimum detectability of 6.7 nM. The proposed mechanism behind this involves static mode of quenching which leads to the formation of a ground state complex [CQDs-IM@OTf-Hb complex] between the Hb protein and the drug. Despite the fact that Hb can quench the fluorescence of CQDs due to the inner filter effect (IFE) of the protein, which effects both the excitation and emission spectra of the CQDs, the addition of H2O2 improved the sensitivity of Hb detection. The present assay predicated on Hb interaction with H2O2, which produces reactive oxygen species such as hydroxyl (OH.) and superoxide (O2.-) radicals under heme degradation and/or iron release from Hb. The subsequent reaction of hydroxyl radicals with CQDs, which acts as a strong oxidising agent, causes a high fluorescence quenching. The designed fluorescence probe was used to measure Hb in the concentration range of 3-90 nM with a precise detection limit of 0.33 nM. The quantification of hemoglobin (Hb) in diluted human blood samples is done using this observation.


Sujet(s)
Liquides ioniques , Boîtes quantiques , Humains , Colorants fluorescents/composition chimique , Carbone/composition chimique , Boîtes quantiques/composition chimique , Peroxyde d'hydrogène/composition chimique , Hémoglobines , Radical hydroxyle
19.
Nanoscale ; 15(20): 9179-9186, 2023 May 25.
Article de Anglais | MEDLINE | ID: mdl-37145162

RÉSUMÉ

We report the observation of enhanced interfacial two-component superconductivity possessing a dominant triplet component in nonmagnetic CoSi2/TiSi2 superconductor/normal-metal planar heterojunctions. This is accomplished through the detection of odd-frequency spin-triplet even-parity Cooper pairs in the diffusive normal-metal component of T-shaped proximity junctions. We show that by modifying the diffusivity of the normal-metal part, the transition temperature enhancement can be tuned by a factor of up to 2.3 while the upper critical field increases by up to a factor of 20. Our data suggest that the C49 phase of TiSi2, which is stabilized in confined geometries, underlies this enhancement. These findings are addressed via a Ginzburg-Landau model and the quasi-classical theory. We also relate our findings to the enigmatic 3-K phase reported in Sr2 RuO4.

20.
Cureus ; 15(4): e37800, 2023 Apr.
Article de Anglais | MEDLINE | ID: mdl-37214059

RÉSUMÉ

Introduction Bloodstream infection (BSI) and subsequent sepsis are life-threatening medical conditions. The onset of antimicrobial resistance and subsequent multi-drug resistant organisms (MDRO) significantly increase healthcare-associated expenditure with adverse clinical outcomes. The present study was undertaken to identify the trends of BSI in community settings in secondary care hospitals (smaller private hospitals and district hospitals) in the state of Madhya Pradesh in Central India with the support of the Indian Council of Medical Research (ICMR) and National Health Mission, Madhya Pradesh. Methodology The present study was a prospective, longitudinal observational chart review type of study. The study was carried out at 10 secondary care hospitals (eight smaller private hospitals and two government district hospitals) nominated by the State Government as part of the ICMR Antimicrobial Resistance Surveillance and Research Network (AMRSN). The hospitals were nominated depending on the availability of a microbiology laboratory and a full-time microbiologist. Result A total of 6202 blood samples were received from patients with suspected BSI, out of which 693 samples were positive for aerobic culture. Among these, 621 (89.6%) showed bacterial growth and 72 (10.3%) grew Candida species (spp). Out of the 621 bacterial growth samples, Gram-negative bacteria were 406 (65.3%) and Gram-positive bacteria were 215 (34.6%). Among the Gram-negative isolates (406), the predominant isolate was Escherichia coli (115; 28.3%) followed by Klebsiella pneumoniae (109; 26.8%), Pseudomonas aeruginosa (61; 15%), Salmonella spp. (52; 12.8%), Acinetobacter spp. (47; 11.6%) and the other Enterobacter spp. (22; 5.4%). Among the Gram-positive isolates (215), the predominant isolate was Staphylococcus aureus (178; 82.8%) followed by Enterococcus spp. (37; 17.2%). Among the Escherichia coli, third-generation cephalosporin resistance was identified in 77.6%, piperacillin-tazobactam resistance in 45.2%, carbapenem resistance in 23.5% and colistin resistance in 16.5% of cases. Among the Klebsiella pneumoniae, third-generation cephalosporin resistance was identified in 80.7%, piperacillin-tazobactam resistance in 72.8%, carbapenem resistance in 63.3% and colistin resistance in 14% of cases. Among the Pseudomonas aeruginosa, ceftazidime resistance was identified in 61.2%, piperacillin-tazobactam resistance in 55%, carbapenem resistance in 32.8%, and colistin resistance in 38.3% of cases. Among the Acinetobacter spp., piperacillin-tazobactam resistance was identified in 72.7%, carbapenem resistance in 72.3%, and colistin resistance in 9.3% cases. While analyzing the antibiogram for Staphylococcus aureus isolates, methicillin resistance (MRSA) was seen in 70.3% of cases, followed by vancomycin resistance (VRSA) in 8% of cases and linezolid resistance in 8.1%. Among the Enterococcus spp. isolates, linezolid resistance was found in 13.5%, vancomycin resistance (VRE) in 21.6%, and teicoplanin resistance in 29.7% of cases. Conclusion In conclusion, the first-ever study to identify the risk of high-end antibiotics causing significant drug resistance in secondary and tertiary care settings has highlighted the urgent need for more randomized control studies and proactive measures from healthcare authorities and serves as a beacon for future research efforts and underscores the importance of implementing antibiograms to combat the growing threat of antibiotic resistance.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE