Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 135
Filtrer
2.
Cell Biol Int ; 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38837523

RÉSUMÉ

Platelets are essential component of circulation that plays a major role in hemostasis and thrombosis. During activation and its demise, platelets release platelet-derived microvesicles, with lysophosphatidylcholine (LPC) being a prominent component in their lipid composition. LPC, an oxidized low-density lipoprotein, is involved in cellular metabolism, but its higher level is implicated in pathologies like atherosclerosis, diabetes, and inflammatory disorders. Despite this, its impact on platelet function remains relatively unexplored. To address this, we studied LPC's effects on washed human platelets. A multimode plate reader was employed to measure reactive oxygen species and intracellular calcium using H2DCF-DA and Fluo-4-AM, respectively. Flow cytometry was utilized to measure phosphatidylserine expression, mitochondrial membrane potential (ΔΨm), and mitochondrial permeability transition pore (mPTP) formation using FITC-Annexin V, JC-1, and CoCl2/calcein-AM, respectively. Additionally, platelet morphology and its ultrastructure were observed via phase contrast and electron microscopy. Sonoclot and light transmission aggregometry were employed to examine fibrin formation and platelet aggregation, respectively. The findings demonstrate that LPC induced oxidative stress and increased intracellular calcium in platelets, resulting in increased phosphatidylserine expression and reduced ΔΨm. LPC triggered caspase-independent platelet death and mPTP opening via cytosolic and mitochondrial calcium, along with microvesiculation and reduced platelet counts. LPC increased the platelet's size, adopting a balloon-shaped morphology, causing membrane fragmentation and releasing its cellular contents, while inducing a pro-coagulant phenotype with increased fibrin formation and reduced integrin αIIbß3 activation. Conclusively, this study reveals LPC-induced oxidative stress and calcium-mediated platelet death, necrotic in nature with pro-coagulant properties, potentially impacting inflammation and repair mechanisms during vascular injury.

3.
J Physiol Biochem ; 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38865050

RÉSUMÉ

Mitochondrial functionality and its regulation are tightly controlled through a balanced crosstalk between the nuclear and mitochondrial DNA interactions. Epigenetic signatures like methylation, hydroxymethylation and miRNAs have been reported in mitochondria. In addition, epigenetic signatures encoded by nuclear DNA are also imported to mitochondria and regulate the gene expression dynamics of the mitochondrial genome. Alteration in the interplay of these epigenetic modifications results in the pathogenesis of various disorders like neurodegenerative, cardiovascular, metabolic disorders, cancer, aging and senescence. These modifications result in higher ROS production, increased mitochondrial copy number and disruption in the replication process. In addition, various miRNAs are associated with regulating and expressing important mitochondrial gene families like COX, OXPHOS, ND and DNMT. Epigenetic changes are reversible and therefore therapeutic interventions like changing the target modifications can be utilized to repair or prevent mitochondrial insufficiency by reversing the changed gene expression. Identifying these mitochondrial-specific epigenetic signatures has the potential for early diagnosis and treatment responses for many diseases caused by mitochondrial dysfunction. In the present review, different mitoepigenetic modifications have been discussed in association with the development of various diseases by focusing on alteration in gene expression and dysregulation of specific signaling pathways. However, this area is still in its infancy and future research is warranted to draw better conclusions.

4.
Mol Neurobiol ; 2024 May 16.
Article de Anglais | MEDLINE | ID: mdl-38753128

RÉSUMÉ

Epilepsy is a devastating neurological disorder mainly associated with impaired synchronic discharge that leads to sensory, motor, and psychomotor impairments. Till now, about 30 anti-seizure medications (ASMs) have been approved for the management of epilepsy, yet one-third of individuals still have uncontrollable epilepsy and develop resistance. Drug resistance epilepsy (DRE) is defined as the condition where two ASMs fail to control the seizure in epileptic patients. The leading cause of the resistance was the extended use of ASMs. According to various studies, alterations in some genes and their expressions, along with specific metabolic impairments, are suggested to be associated with ASMs resistance and DRE pathophysiology. Several factors aid in the pathophysiology of DRE, such as alterations in protein-encoding genes such as neurotransmitter receptors, drug transporters, ion channels, and drug targets. Furthermore, the altered metabolite levels of metabolites implicated in neurotransmitter signaling, energetic pathways, oxidative stress, and neuroinflammatory signaling differentiate the epileptic patient from the DRE patient. Various DRE biomarkers can be identified using the "integrated omics approach," which includes the study of genomics, transcriptomics, and metabolomics. The current review has been compiled to understand the pathophysiological mechanisms of DRE by focusing on genomics, transcriptomics, and metabolomics. An effort has also been made to identify the therapeutic targets based on identifying significant markers by a multi-omics approach. This has the potential to develop novel therapeutic interventions in the future.

5.
Mol Neurobiol ; 2024 Mar 27.
Article de Anglais | MEDLINE | ID: mdl-38532241

RÉSUMÉ

Prolonged hyperglycemic conditions in type 2 diabetes mellitus (T2DM) cause pathological and functional damage to many organs and tissues, including the kidneys, retina, skin, and neuronal tissues, resulting in the development of microvascular diabetic complications. The altered renin angiotensin aldosterone system (RAAS) pathway has been reported to play an important role in the development of insulin resistance in T2DM and associated complications. The current study was carried out to evaluate the association of risk factors and altered expression of RAAS genes in T2DM patients without complications and T2DM patients with complications (retinopathy, nephropathy, and neuropathy). Four hundred and twenty subjects including 140 healthy controls, 140 T2DM patients with diabetic complications, and 140 T2DM patients without diabetic complications were included in the study. Risk factors associated with the development of T2DM and diabetic complications were evaluated. Further, expression analysis of RAAS genes (AGT, ACE, ACE2, and AGT1R) was carried out using qRTPCR in healthy controls, T2DM patients with complications, and T2DM patients without complications. Various risk factors like urban background, higher BMI, alcoholism, smoking, and family history of diabetes among others were found to be associated with the development of T2DM as well as diabetic complications. The expression level of AGT, ACE, and AGT1R was found to be upregulated whereas ACE2 was found to be downregulated in T2DM patients with complications and T2DM patients without complications as compared to controls. Altered expression of the studied genes of RAAS pathway is associated with the development of microvascular diabetic complications.

6.
MedComm (2020) ; 5(4): e469, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38525108

RÉSUMÉ

Motor proteins, encoded by Kinesin superfamily (KIF) genes, are critical for brain development and plasticity. Increasing studies reported KIF's roles in neurodevelopmental disorders. Here, a 6 years and 3 months-old Chinese boy with markedly symptomatic epilepsy, intellectual disability, brain atrophy, and psychomotor retardation was investigated. His parents and younger sister were phenotypically normal and had no disease-related family history. Whole exome sequencing identified a novel heterozygous in-frame deletion (c.265_267delTCA) in exon 3 of the KIF5C in the proband, resulting in the removal of evolutionarily highly conserved p.Ser90, located in its ATP-binding domain. Sanger sequencing excluded the proband's parents and family members from harboring this variant. The activity of ATP hydrolysis in vitro was significantly reduced as predicted. Immunofluorescence studies showed wild-type KIF5C was widely distributed throughout the cytoplasm, while mutant KIF5C was colocalized with microtubules. The live-cell imaging of the cargo-trafficking assay revealed that mutant KIF5C lost the peroxisome-transporting ability. Drosophila models also confirmed p.Ser90del's essential role in nervous system development. This study emphasized the importance of the KIF5C gene in intracellular cargo-transport as well as germline variants that lead to neurodevelopmental disorders and might enable clinicians for timely and accurate diagnosis and disease management in the future.

7.
Article de Anglais | MEDLINE | ID: mdl-38243986

RÉSUMÉ

BACKGROUND: Alzheimer's disease is a neurodegenerative disorder characterized by severe cognitive, behavioral, and psychological symptoms, such as dementia, cognitive decline, apathy, and depression. There are no accurate methods to diagnose the disease or proper therapeutic interventions to treat AD. Therefore, there is a need for novel diagnostic methods and markers to identify AD efficiently before its onset. Recently, there has been a rise in the use of imaging techniques like Magnetic Resonance Imaging (MRI) and functional Magnetic Resonance Imaging (fMRI) as diagnostic approaches in detecting the structural and functional changes in the brain, which help in the early and accurate diagnosis of AD. In addition, these changes in the brain have been reported to be affected by variations in genes involved in different pathways involved in the pathophysiology of AD. METHODOLOGY: A literature review was carried out to identify studies that reported the association of genetic variants with structural and functional changes in the brain in AD patients. Databases like PubMed, Google Scholar, and Web of Science were accessed to retrieve relevant studies. Keywords like 'fMRI', 'Alzheimer's', 'SNP', and 'imaging' were used, and the studies were screened using different inclusion and exclusion criteria. RESULTS: 15 studies that found an association of genetic variations with structural and functional changes in the brain were retrieved from the literature. Based on this, 33 genes were identified to play a role in the development of disease. These genes were mainly involved in neurogenesis, cell proliferation, neural differentiation, inflammation and apoptosis. Few genes like FAS, TOM40, APOE, TRIB3 and SIRT1 were found to have a high association with AD. In addition, other genes that could be potential candidates were also identified. CONCLUSION: Imaging genetics is a powerful tool in diagnosing and predicting AD and has the potential to identify genetic biomarkers and endophenotypes associated with the development of the disorder.

8.
Clin. transl. oncol. (Print) ; 26(1): 1-15, jan. 2024.
Article de Anglais | IBECS | ID: ibc-229143

RÉSUMÉ

MicroRNAs (miRNAs) negatively affect gene expression by binding to their specific mRNAs resulting in either mRNA destruction or translational repression. The aberrant expression of various miRNAs has been associated with a number of human cancer. Oncogenic or tumor-suppressor miRNAs regulate a variety of pathways involved in the development of breast cancer (BC), including cell proliferation, apoptosis, metastasis, cancer recurrence, and chemoresistance. Variations in miRNA-encoding genes and their target genes lead to dysregulated gene expression resulting in the development and progression of BC. The various therapeutic approaches to treat the disease include chemotherapy, radiation therapy, surgical removal, hormone therapy, chemotherapy, and targeted biological therapy. The purpose of the current review is to explore the genetic variations in tumor-suppressor miRNA-encoding genes and their target genes in association with the disease development and prognosis. The therapeutic interventions targeting the variants for better disease outcomes have also been discussed (AU)


Sujet(s)
Humains , Femelle , Tumeurs du sein/génétique , Tumeurs du sein/thérapie , Régulation de l'expression des gènes tumoraux , Variation génétique , Gènes suppresseurs de tumeur , microARN/génétique , microARN/métabolisme , Récidive tumorale locale/génétique
9.
Clin Transl Oncol ; 26(1): 1-15, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37093457

RÉSUMÉ

MicroRNAs (miRNAs) negatively affect gene expression by binding to their specific mRNAs resulting in either mRNA destruction or translational repression. The aberrant expression of various miRNAs has been associated with a number of human cancer. Oncogenic or tumor-suppressor miRNAs regulate a variety of pathways involved in the development of breast cancer (BC), including cell proliferation, apoptosis, metastasis, cancer recurrence, and chemoresistance. Variations in miRNA-encoding genes and their target genes lead to dysregulated gene expression resulting in the development and progression of BC. The various therapeutic approaches to treat the disease include chemotherapy, radiation therapy, surgical removal, hormone therapy, chemotherapy, and targeted biological therapy. The purpose of the current review is to explore the genetic variations in tumor-suppressor miRNA-encoding genes and their target genes in association with the disease development and prognosis. The therapeutic interventions targeting the variants for better disease outcomes have also been discussed.


Sujet(s)
Tumeurs du sein , microARN , Humains , Femelle , microARN/génétique , microARN/métabolisme , Tumeurs du sein/thérapie , Tumeurs du sein/traitement médicamenteux , Récidive tumorale locale/génétique , Gènes suppresseurs de tumeur , Variation génétique , Régulation de l'expression des gènes tumoraux
10.
Mol Neurobiol ; 61(7): 4804-4833, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38135854

RÉSUMÉ

Migraine is a complex neurovascular disorder that is characterized by severe behavioral, sensory, visual, and/or auditory symptoms. It has been labeled as one of the ten most disabling medical illnesses in the world by the World Health Organization (Aagaard et al Sci Transl Med 6(237):237ra65, 2014). According to a recent report by the American Migraine Foundation (Shoulson et al Ann Neurol 25(3):252-9, 1989), around 148 million people in the world currently suffer from migraine. On the basis of presence of aura, migraine is classified into two major subtypes: migraine with aura (Aagaard et al Sci Transl Med 6(237):237ra65, 2014) and migraine without aura. (Aagaard K et al Sci Transl Med 6(237):237ra65, 2014) Many complex genetic mechanisms have been proposed in the pathophysiology of migraine but specific pathways associated with the different subtypes of migraine have not yet been explored. Various approaches including candidate gene association studies (CGAS) and genome-wide association studies (Fan et al Headache: J Head Face Pain 54(4):709-715, 2014). have identified the genetic markers associated with migraine and its subtypes. Several single nucleotide polymorphisms (Kaur et al Egyp J Neurol, Psychiatry Neurosurg 55(1):1-7, 2019) within genes involved in ion homeostasis, solute transport, synaptic transmission, cortical excitability, and vascular function have been associated with the disorder. Currently, the diagnosis of migraine is majorly behavioral with no focus on the genetic markers and thereby the therapeutic intervention specific to subtypes. Therefore, there is a need to explore genetic variants significantly associated with MA and MO as susceptibility markers in the diagnosis and targets for therapeutic interventions in the specific subtypes of migraine. Although the proper characterization of pathways based on different subtypes is yet to be studied, this review aims to make a first attempt to compile the information available on various genetic variants and the molecular mechanisms involved with the development of MA and MO. An attempt has also been made to suggest novel candidate genes based on their function to be explored by future research.


Sujet(s)
Prédisposition génétique à une maladie , Variation génétique , Migraines , Humains , Migraines/génétique , Migraines/physiopathologie , Variation génétique/génétique , Étude d'association pangénomique
11.
Crit Rev Oncol Hematol ; 194: 104250, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38143047

RÉSUMÉ

Cancer is a significant cause of death after cardiovascular disease. The genomic, epigenetic and environmental factors have been found to be the risk factor for the disease. The most important genes that develop cancer are oncogenes and tumor suppressor genes. Among oncogenes, KRAS has emerged as a significant player in the development of many cancers. Dysregulation of the RAS signaling pathway either on account of mutation in significant genes involved in the pathway or aberrant expression of different miRNAs targeting these genes including KRAS. The focus is also on the alterations in 3'UTR of the KRAS gene sequence as well as the changes in the miRNA encoding genes especially the one targeting the KRAS gene. Efforts are also being put in to target the dysregulated KRAS gene as a therapeutic approach to treat different cancers. However, there are some challenges like resistance to KRAS inhibitors that need to be addressed.


Sujet(s)
microARN , Tumeurs , Humains , microARN/génétique , Régions 3' non traduites , Protéines proto-oncogènes p21(ras)/génétique , Transformation cellulaire néoplasique/génétique , Carcinogenèse/génétique , Mutation , Transduction du signal/génétique , Tumeurs/génétique , Tumeurs/thérapie
13.
Ann Indian Acad Neurol ; 26(4): 543-548, 2023.
Article de Anglais | MEDLINE | ID: mdl-37970241

RÉSUMÉ

Background: ID-Migraine is an established screening tool for migraine. Translation and validation in more languages can increase its reach and scope. Aim: To translate and validate ID-Migraine for screening migraine patients in two North-Indian vernacular languages, that is, Hindi and Punjabi. Methods: ID Migraine was translated into Hindi and Punjabi. Subjects with headaches in outpatient clinics were administered the questionnaire according to their preferred language of choice and referenced clinical evaluations, performed by an experienced neurologist, based on current the ICHD-3 diagnostic criteria. Results: One hundred subjects with complaints of headaches and 60 healthy controls were recruited after informed consent. Of the 100 subjects with headaches, 73 (73%) screened positive with a translated version of ID-Migraine, and 60 (60%) were eventually diagnosed with migraine without aura. The sensitivity of the Hindi version of ID-Migraine was 94% (95% confidence intervals, 79% to 99%); specificity, 56% (95% CI, 31% to 78%); positive predictive value, 79% (95% CI, 69% to 86%) and negative predictive value, 83% (95% CI, 55% to 95%). The Punjabi version demonstrated a sensitivity of 86% (95% CI, 68% to 96%); specificity, 43% (95% CI, 23% to 66%); PPV, 68% (95% CI, 58% to 76%); and NPV, 69% (95% CI, 44% to 86%). Conclusion: The translated versions of ID-Migraine demonstrated high sensitivity and fair specificity for screening migraine in Indian subjects who speak and understand Hindi and Punjabi.

14.
Mol Neurobiol ; 2023 Nov 22.
Article de Anglais | MEDLINE | ID: mdl-37989980

RÉSUMÉ

Depression is a complex psychiatric disorder influenced by various genetic and environmental factors. Strong evidence has established the contribution of genetic factors in depression through twin studies and the heritability rate for depression has been reported to be 37%. Genetic studies have identified genetic variations associated with an increased risk of developing depression. Imaging genetics is an integrated approach where imaging measures are combined with genetic information to explore how specific genetic variants contribute to brain abnormalities. Neuroimaging studies allow us to examine both structural and functional abnormalities in individuals with depression. This review has been designed to study the correlation of the significant genetic variants with different regions of neural activity, connectivity, and structural alteration in the brain as detected by imaging techniques to understand the scope of biomarkers in depression. This might help in developing novel therapeutic interventions targeting specific genetic pathways or brain circuits and the underlying pathophysiology of depression based on this integrated approach can be established at length.

15.
Mol Neurobiol ; 60(11): 6424-6440, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37453995

RÉSUMÉ

Platelets play a significant role in the pathophysiology of ischemic stroke since they are involved in the formation of intravascular thrombus after erosion or rupture of the atherosclerotic plaques. Platelet (PLT) count and mean platelet volume (MPV) are the two significant parameters that affect the functions of platelets. In the current study, MPV and PLT count was evaluated using flow cytometry and a cell counter. SonoClot analysis was carried out to evaluate activated clot timing (ACT), clot rate (CR), and platelet function (PF). Genotyping was carried out using GSA and Sanger sequencing, and expression analysis was performed using RT-PCR. In silico analysis was carried out using the GROMACS tool and UNAFold. The interaction of significant proteins with other proteins was predicted using the STRING database. Ninety-six genes were analyzed, and a significant association of THPO (rs6141) and ARHGEF3 (rs1354034) was observed with the disease and its subtypes. Altered genotypes were associated significantly with increased MPV, decreased PLT count, and CR. Expression analysis revealed a higher expression in patients bearing the variant genotypes of both genes. In silico analysis revealed that mutation in the THPO gene leads to the reduced compactness of protein structure. mRNA encoded by mutated ARHGEF3 gene increases the half-life of mRNA. The two significant proteins interact with many other proteins, especially the ones involved in platelet activation, aggregation, erythropoiesis, megakaryocyte maturation, and cytoskeleton rearrangements, suggesting that they could be important players in the determination of MPV values. In conclusion, the current study demonstrated the role of higher MPV affected by genetic variation in the development of IS and its subtypes. The results of the current study also indicate that higher MPV can be used as a biomarker for the disease and altered genotypes, and higher MPV can be targeted for better therapeutic outcomes.


Sujet(s)
Accident vasculaire cérébral ischémique , Thrombose , Humains , Volume plaquettaire moyen , Numération des plaquettes , Plaquettes , Génomique
16.
Curr Protein Pept Sci ; 24(6): 503-517, 2023.
Article de Anglais | MEDLINE | ID: mdl-37282635

RÉSUMÉ

Trehalose, a disaccharide molecule of natural origin, is known for its diverse biological applications, like in drug development, research application, natural scaffold, stem cell preservation, food, and various other industries. This review has discussed one such diverse molecule 'trehalose aka mycose', and its diverse biological applications with respect to therapeutics. Due to its inertness and higher stability at variable temperatures, it has been developed as a preservative to store stem cells, and later, it has been found to have anticancer properties. Trehalose has recently been associated with modulating cancer cell metabolism, diverse molecular processes, neuroprotective effect, and so on. This article describes the development of trehalose as a cryoprotectant and protein stabilizer as well as a dietary component and therapeutic agent against various diseases. The article discusses its role in diseases via modulation of autophagy, various anticancer pathways, metabolism, inflammation, aging and oxidative stress, cancer metastasis and apoptosis, thus highlighting its diverse biological potential.


Sujet(s)
Stress oxydatif , Tréhalose , Tréhalose/pharmacologie , Tréhalose/métabolisme , Cellules souches/métabolisme , Autophagie
17.
Regen Med ; 18(7): 573-590, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-37199246

RÉSUMÉ

Treatment of osteoarthritic patients requires the development of morphologically and mechanically complex hyaline cartilage at the injury site. A tissue engineering approach toward differentiating mesenchymal stem cells into articular chondrocytes has been developed to overcome the drawbacks of conventional therapeutic and surgical procedures. To imitate the native micro and macro environment of articular chondrocytes, cell culture parameters such as oxygen concentration, mechanical stress, scaffold design, and growth factor signalling cascade regulation must be addressed. This review aims to illuminate the path toward developing tissue engineering approaches, accommodating these various parameters and the role these parameters play in regulating chondrogenesis for better articular cartilage development to treat osteoarthritis effectively.


Osteoarthritis is a common problem where the protective layer of cartilage on the joints wears away. It's difficult to treat with current methods. However, stem cell therapy is a promising alternative that has been researched a lot recently. Stem cells are special cells that can change into different types of tissue, including cartilage. Scientists are trying to figure out how to get these stem cells to grow into cartilage effectively. They are also trying to understand how stem cells find the right place in the body to go and do their job. By modifying the genes of stem cells and using special materials and growth factors, scientists hope to improve the effectiveness of stem cell therapy for osteoarthritis.


Sujet(s)
Cartilage articulaire , Cellules souches mésenchymateuses , Arthrose , Humains , Chondrocytes , Différenciation cellulaire , Ingénierie tissulaire/méthodes , Arthrose/thérapie , Chondrogenèse
18.
Med Oncol ; 40(6): 174, 2023 May 11.
Article de Anglais | MEDLINE | ID: mdl-37170010

RÉSUMÉ

Oncogenic metabolic reprogramming impacts the abundance of key metabolites that regulate signaling and epigenetics. Metabolic vulnerability in the cancer cell is evident from the Warburg effect. The research on metabolism in the progression and survival of breast cancer (BC) is under focus. Oncogenic signal activation and loss of tumor suppressor are important regulators of tumor cell metabolism. Several intrinsic and extrinsic factors contribute to metabolic reprogramming. The molecular mechanisms underpinning metabolic reprogramming in BC are extensive and only partially defined. Various signaling pathways involved in the metabolism play a significant role in the modulation of BC. Notably, PI3K/AKT/mTOR pathway, lactate-ERK/STAT3 signaling, loss of the tumor suppressor Ras, Myc, oxidative stress, activation of the cellular hypoxic response and acidosis contribute to different metabolic reprogramming phenotypes linked to enhanced glycolysis. The alterations in mitochondrial genes have also been elaborated upon along with their functional implications. The outcome of these active research areas might contribute to the development of novel therapeutic interventions and the remodeling of known drugs.


Sujet(s)
Tumeurs , Phosphatidylinositol 3-kinases , Humains , Phosphatidylinositol 3-kinases/métabolisme , Gènes de mitochondrie , Tumeurs/anatomopathologie , Transduction du signal/génétique , Glycolyse/génétique
19.
Clin. transl. oncol. (Print) ; 25(5): 1218-1241, mayo 2023. ilus
Article de Anglais | IBECS | ID: ibc-219508

RÉSUMÉ

Breast cancer (BC) is one of the most prevalent types of cancer in women. Despite advancement in early detection and efficient treatment, recurrence and metastasis continue to pose a significant risk to the life of BC patients. Brain metastasis (BM) reported in 17–20 percent of BC patients is considered as a major cause of mortality and morbidity in these patients. BM includes various steps from primary breast tumor to secondary tumor formation. Various steps involved are primary tumor formation, angiogenesis, invasion, extravasation, and brain colonization. Genes involved in different pathways have been reported to be associated with BC cells metastasizing to the brain. ADAM8 gene, EN1 transcription factor, WNT, and VEGF signaling pathway have been associated with primary breast tumor; MMP1, COX2, XCR4, PI3k/Akt, ERK and MAPK pathways in angiogenesis; Noth, CD44, Zo-1, CEMIP, S0X2 and OLIG2 are involved in invasion, extravasation and colonization, respectively. In addition, the blood–brain barrier is also a key factor in BM. Dysregulation of cell junctions, tumor microenvironment and loss of function of microglia leads to BBB disruption ultimately resulting in BM. Various therapeutic strategies are currently used to control the BM in BC. Oncolytic virus therapy, immune checkpoint inhibitors, mTOR-PI3k inhibitors and immunotherapy have been developed to target various genes involved in BM in BC. In addition, RNA interference (RNAi) and CRISPR/Cas9 are novel interventions in the field of BCBM where research to validate these and clinical trials are being carried out. Gaining a better knowledge of metastasis biology is critical for establishing better treatment methods and attaining long-term therapeutic efficacies against BC. The current review has been compiled with an aim to evaluate the role of various genes and signaling pathways involved in multiple steps of BM in BC(AU)


Sujet(s)
Humains , Femelle , Tumeurs du cerveau , Tumeurs du sein/secondaire , Protéines ADAM/métabolisme , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/anatomopathologie , Tumeurs du cerveau/génétique , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/thérapie , Tumeurs du sein/génétique , Tumeurs du sein/métabolisme , Tumeurs du sein/thérapie , Transduction du signal/génétique , Microenvironnement tumoral
20.
Clin Transl Oncol ; 25(5): 1218-1241, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-36897508

RÉSUMÉ

Breast cancer (BC) is one of the most prevalent types of cancer in women. Despite advancement in early detection and efficient treatment, recurrence and metastasis continue to pose a significant risk to the life of BC patients. Brain metastasis (BM) reported in 17-20 percent of BC patients is considered as a major cause of mortality and morbidity in these patients. BM includes various steps from primary breast tumor to secondary tumor formation. Various steps involved are primary tumor formation, angiogenesis, invasion, extravasation, and brain colonization. Genes involved in different pathways have been reported to be associated with BC cells metastasizing to the brain. ADAM8 gene, EN1 transcription factor, WNT, and VEGF signaling pathway have been associated with primary breast tumor; MMP1, COX2, XCR4, PI3k/Akt, ERK and MAPK pathways in angiogenesis; Noth, CD44, Zo-1, CEMIP, S0X2 and OLIG2 are involved in invasion, extravasation and colonization, respectively. In addition, the blood-brain barrier is also a key factor in BM. Dysregulation of cell junctions, tumor microenvironment and loss of function of microglia leads to BBB disruption ultimately resulting in BM. Various therapeutic strategies are currently used to control the BM in BC. Oncolytic virus therapy, immune checkpoint inhibitors, mTOR-PI3k inhibitors and immunotherapy have been developed to target various genes involved in BM in BC. In addition, RNA interference (RNAi) and CRISPR/Cas9 are novel interventions in the field of BCBM where research to validate these and clinical trials are being carried out. Gaining a better knowledge of metastasis biology is critical for establishing better treatment methods and attaining long-term therapeutic efficacies against BC. The current review has been compiled with an aim to evaluate the role of various genes and signaling pathways involved in multiple steps of BM in BC. The therapeutic strategies being used currently and the novel ones being explored to control BM in BC have also been discussed at length.


Sujet(s)
Tumeurs du cerveau , Tumeurs du sein , Humains , Femelle , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/anatomopathologie , Tumeurs du sein/génétique , Tumeurs du sein/thérapie , Tumeurs du sein/métabolisme , Phosphatidylinositol 3-kinases/métabolisme , Tumeurs du cerveau/génétique , Tumeurs du cerveau/thérapie , Tumeurs du cerveau/métabolisme , Transduction du signal/génétique , Microenvironnement tumoral , Protéines membranaires/métabolisme , Protéines ADAM/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE