Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 63
Filtrer
1.
Front Robot AI ; 11: 1355409, 2024.
Article de Anglais | MEDLINE | ID: mdl-38933084

RÉSUMÉ

Objectives: We recently introduced a frameless, navigated, robot-driven laser tool for depth electrode implantation as an alternative to frame-based procedures. This method has only been used in cadaver and non-recovery studies. This is the first study to test the robot-driven laser tool in an in vivo recovery animal study. Methods: A preoperative computed tomography (CT) scan was conducted to plan trajectories in sheep specimens. Burr hole craniotomies were performed using a frameless, navigated, robot-driven laser tool. Depth electrodes were implanted after cut-through detection was confirmed. The electrodes were cut at the skin level postoperatively. Postoperative imaging was performed to verify accuracy. Histopathological analysis was performed on the bone, dura, and cortex samples. Results: Fourteen depth electrodes were implanted in two sheep specimens. Anesthetic protocols did not show any intraoperative irregularities. One sheep was euthanized on the same day of the procedure while the other sheep remained alive for 1 week without neurological deficits. Postoperative MRI and CT showed no intracerebral bleeding, infarction, or unintended damage. The average bone thickness was 6.2 mm (range 4.1-8.0 mm). The angulation of the planned trajectories varied from 65.5° to 87.4°. The deviation of the entry point performed by the frameless laser beam ranged from 0.27 mm to 2.24 mm. The histopathological analysis did not reveal any damage associated with the laser beam. Conclusion: The novel robot-driven laser craniotomy tool showed promising results in this first in vivo recovery study. These findings indicate that laser craniotomies can be performed safely and that cut-through detection is reliable.

2.
J Neurol ; 271(7): 4249-4257, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38619597

RÉSUMÉ

BACKGROUND: We aimed to analyze potentially prognostic factors which could have influence on postoperative seizure, neuropsychological and psychiatric outcome in a cohort of patients with mesial temporal lobe epilepsy (MTLE) due to hippocampal sclerosis (HS) after selective amygdalohippocampectomy (SAHE) via transsylvian approach. METHODS: Clinical variables of 171 patients with drug-resistant MTLE with HS (88 females) who underwent SAHE between 1994 and 2019 were evaluated using univariable and multivariable logistic regression models, to investigate which of the explanatory parameters can best predict the outcome. RESULTS: At the last available follow-up visit 12.3 ± 6.3 years after surgery 114 patients (67.9%) were seizure-free. Left hemispheric MTLE was associated with worse postoperative seizure outcome at first year after surgery (OR = 0.54, p = 0.01), female sex-with seizure recurrence at years 2 (OR = 0.52, p = 0.01) and 5 (OR = 0.53, p = 0.025) and higher number of preoperative antiseizure medication trials-with seizure recurrence at year 2 (OR = 0.77, p = 0.0064), whereas patients without history of traumatic brain injury had better postoperative seizure outcome at first year (OR = 2.08, p = 0.0091). All predictors lost their predictive value in long-term course. HS types had no prognostic influence on outcome. Patients operated on right side performed better in verbal memory compared to left (VLMT 1-5 p < 0.001, VLMT 7 p = 0.001). Depression occurred less frequently in seizure-free patients compared to non-seizure-free patients (BDI-II Z = - 2.341, p = 0.019). CONCLUSIONS: SAHE gives an improved chance of achieving good postoperative seizure, psychiatric and neuropsychological outcome in patients with in MTLE due to HS. Predictors of short-term outcome don't predict long-term outcome.


Sujet(s)
Amygdale (système limbique) , Épilepsie temporale , Hippocampe , Humains , Femelle , Épilepsie temporale/chirurgie , Mâle , Adulte , Hippocampe/chirurgie , Amygdale (système limbique)/chirurgie , Adulte d'âge moyen , Jeune adulte , Sclérose/chirurgie , Épilepsie pharmacorésistante/chirurgie , Résultat thérapeutique , Études de suivi , Crises épileptiques/chirurgie , Crises épileptiques/étiologie , Procédures de neurochirurgie/effets indésirables , Études rétrospectives
4.
Neuropediatrics ; 55(3): 209-212, 2024 06.
Article de Anglais | MEDLINE | ID: mdl-38286424

RÉSUMÉ

Biallelic variants in PTRHD1 have been associated with autosomal recessive intellectual disability, spasticity, and juvenile parkinsonism, with few reported cases. Here, we present the clinical and genetic findings of a female of Austrian origin exhibiting infantile neurodevelopmental abnormalities, intellectual disability, and childhood-onset parkinsonian features, consistent with the established phenotypic spectrum. Notably, she developed genetic generalized epilepsy at age 4, persisting into adulthood. Using diagnostic exome sequencing, we identified a homozygous missense variant (c.365G > A, p.(Arg122Gln)) in PTRHD1 (NM_001013663). In summary, our findings not only support the existing link between biallelic PTRHD1 variants and parkinsonism with neurodevelopmental abnormalities but also suggest a potential extension of the phenotypic spectrum to include generalized epilepsy.


Sujet(s)
Épilepsie généralisée , Déficience intellectuelle , Mutation faux-sens , Syndromes parkinsoniens , Humains , Femelle , Déficience intellectuelle/génétique , Épilepsie généralisée/génétique , Syndromes parkinsoniens/génétique , Syndromes parkinsoniens/complications , Homozygote , Enfant d'âge préscolaire
5.
J Neurol ; 271(2): 804-818, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37805665

RÉSUMÉ

OBJECTIVE: Recently, the 7 Tesla (7 T) Epilepsy Task Force published recommendations for 7 T magnetic resonance imaging (MRI) in patients with pharmaco-resistant focal epilepsy in pre-surgical evaluation. The objective of this study was to implement and evaluate this consensus protocol with respect to both its practicability and its diagnostic value/potential lesion delineation surplus effect over 3 T MRI in the pre-surgical work-up of patients with pharmaco-resistant focal onset epilepsy. METHODS: The 7 T MRI protocol consisted of T1-weighted, T2-weighted, high-resolution-coronal T2-weighted, fluid-suppressed, fluid-and-white-matter-suppressed, and susceptibility-weighted imaging, with an overall duration of 50 min. Two neuroradiologists independently evaluated the ability of lesion identification, the detection confidence for these identified lesions, and the lesion border delineation at 7 T compared to 3 T MRI. RESULTS: Of 41 recruited patients > 12 years of age, 38 were successfully measured and analyzed. Mean detection confidence scores were non-significantly higher at 7 T (1.95 ± 0.84 out of 3 versus 1.64 ± 1.19 out of 3 at 3 T, p = 0.050). In 50% of epilepsy patients measured at 7 T, additional findings compared to 3 T MRI were observed. Furthermore, we found improved border delineation at 7 T in 88% of patients with 3 T-visible lesions. In 19% of 3 T MR-negative cases a new potential epileptogenic lesion was detected at 7 T. CONCLUSIONS: The diagnostic yield was beneficial, but with 19% new 7 T over 3 T findings, not major. Our evaluation revealed epilepsy outcomes worse than ILAE Class 1 in two out of the four operated cases with new 7 T findings.


Sujet(s)
Épilepsies partielles , Épilepsie , Substance blanche , Humains , Adulte , Consensus , Épilepsie/imagerie diagnostique , Épilepsie/chirurgie , Épilepsies partielles/imagerie diagnostique , Épilepsies partielles/chirurgie , Imagerie par résonance magnétique/méthodes , Substance blanche/anatomopathologie
6.
Neurology ; 100(18): e1852-e1865, 2023 05 02.
Article de Anglais | MEDLINE | ID: mdl-36927882

RÉSUMÉ

BACKGROUND AND OBJECTIVES: The efficacy of deep brain stimulation of the anterior nucleus of the thalamus (ANT DBS) in patients with drug-resistant epilepsy (DRE) was demonstrated in the double-blind Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy randomized controlled trial. The Medtronic Registry for Epilepsy (MORE) aims to understand the safety and longer-term effectiveness of ANT DBS therapy in routine clinical practice. METHODS: MORE is an observational registry collecting prospective and retrospective clinical data. Participants were at least 18 years old, with focal DRE recruited across 25 centers from 13 countries. They were followed for at least 2 years in terms of seizure frequency (SF), responder rate (RR), health-related quality of life (Quality of Life in Epilepsy Inventory 31), depression, and safety outcomes. RESULTS: Of the 191 patients recruited, 170 (mean [SD] age of 35.6 [10.7] years, 43% female) were implanted with DBS therapy and met all eligibility criteria. At baseline, 38% of patients reported cognitive impairment. The median monthly SF decreased by 33.1% from 15.8 at baseline to 8.8 at 2 years (p < 0.0001) with 32.3% RR. In the subgroup of 47 patients who completed 5 years of follow-up, the median monthly SF decreased by 55.1% from 16 at baseline to 7.9 at 5 years (p < 0.0001) with 53.2% RR. High-volume centers (>10 implantations) had 42.8% reduction in median monthly SF by 2 years in comparison with 25.8% in low-volume center. In patients with cognitive impairment, the reduction in median monthly SF was 26.0% by 2 years compared with 36.1% in patients without cognitive impairment. The most frequently reported adverse events were changes (e.g., increased frequency/severity) in seizure (16%), memory impairment (patient-reported complaint, 15%), depressive mood (patient-reported complaint, 13%), and epilepsy (12%). One definite sudden unexpected death in epilepsy case was reported. DISCUSSION: The MORE registry supports the effectiveness and safety of ANT DBS therapy in a real-world setting in the 2 years following implantation. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that ANT DBS reduces the frequency of seizures in patients with drug-resistant focal epilepsy. TRIAL REGISTRATION INFORMATION: MORE ClinicalTrials.gov Identifier: NCT01521754, first posted on January 31, 2012.


Sujet(s)
Noyaux antérieurs du thalamus , Stimulation cérébrale profonde , Épilepsie pharmacorésistante , Épilepsie , Humains , Femelle , Enfant , Adolescent , Mâle , Stimulation cérébrale profonde/effets indésirables , Qualité de vie , Études rétrospectives , Études prospectives , Thalamus , Épilepsie/étiologie , Épilepsie pharmacorésistante/thérapie , Crises épileptiques/étiologie , Enregistrements
7.
Epilepsia ; 64(3): 705-717, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36529714

RÉSUMÉ

OBJECTIVE: Anterior temporal lobectomy (ATL) and transsylvian selective amygdalohippocampectomy (tsSAHE) are effective treatment strategies for intractable temporal lobe epilepsy but may cause visual field deficits (VFDs) by damaging the optic radiation (OpR). Due to the OpR's considerable variability and because it is indistinguishable from surrounding tissue without further technical guidance, it is highly vulnerable to iatrogenic injury. This imaging study uses a multimodal approach to assess visual outcomes after epilepsy surgery. METHODS: We studied 62 patients who underwent ATL (n = 32) or tsSAHE (n = 30). Analysis of visual outcomes was conducted in four steps, including the assessment of (1) perimetry outcome (VFD incidence/extent, n = 44/40), (2) volumetric OpR tractography damage (n = 55), and the (3) relation of volumetric OpR tractography damage and perimetry outcome (n = 35). Furthermore, (4) fixel-based analysis (FBA) was performed to assess micro- and macrostructural changes within the OpR following surgery (n = 36). RESULTS: Altogether, 56% of all patients had postoperative VFDs (78.9% after ATL, 36.36% after tsSAHE, p = .011). VFDs and OpR tractography damage tended to be more severe within the ATL group (ATL vs. tsSAHE, integrity of contralateral upper quadrant: 65% vs. 97%, p = .002; OpR tractography damage: 69.2 mm3 vs. 3.8 mm3 , p = .002). Volumetric OpR tractography damage could reliably predict VFD incidence (86% sensitivity, 78% specificity) and could significantly explain VFD extent (R2  = .47, p = .0001). FBA revealed a more widespread decline of fibre cross-section within the ATL group. SIGNIFICANCE: In the context of controversial visual outcomes following epilepsy surgery, this study provides clinical as well as neuroimaging evidence for a higher risk and greater severity of postoperative VFDs after ATL compared to tsSAHE. Volumetric OpR tractography damage is a feasible parameter to reliably predict this morbidity in both treatment groups and may ultimately support personalized planning of surgical candidates. Advanced diffusion analysis tools such as FBA offer a structural explanation of surgically induced visual pathway damage, allowing noninvasive quantification and visualization of micro- and macrostructural tract affection.


Sujet(s)
Lobectomie temporale antérieure , Épilepsie temporale , Humains , Lobectomie temporale antérieure/méthodes , Troubles de la vision/étiologie , Épilepsie temporale/chirurgie , Champs visuels , Neuroimagerie , Résultat thérapeutique , Hippocampe/chirurgie
8.
Front Psychiatry ; 13: 966721, 2022.
Article de Anglais | MEDLINE | ID: mdl-36276308

RÉSUMÉ

Introduction: People with epilepsy (PWE) have a higher prevalence of psychiatric disorders. Some individuals with drug-resistant epilepsy might benefit from surgical interventions. The aim of this study was to perform an assessment of psychiatric comorbidities with a follow-up period of 12 months in patients with drug-resistant epilepsy, comparing those who underwent surgery to those who did not. Material and methods: We assessed psychiatric comorbidities at baseline, after 4 months and after 12 months. Psychiatric symptoms and diagnoses were assessed using SCID-Interview, Hamilton Rating Scale for Depression, Beck-Depression Inventory, Hamilton Anxiety Rating Scale, Prodromal-Questionnaire and the Global Assessment of Functioning Scale. Results: Twenty-five patients were included in the study, 12 underwent surgery, 11 were esteemed as being neurologically unqualified for surgery and two refused surgery. Patients in the no-surgery group were significantly older, reported more substance use, had significantly higher levels of anxiety and were more often diagnosed with a personality disorder. Age and levels of anxiety were significant predictors of being in the surgery or the no-surgery group. The described differences between surgery and no-surgery patients did not change significantly over the follow-up period. Discussion: These data point toward a higher expression of baseline psychiatric symptoms in drug-resistant PWE without surgery. Further studies are warranted to further elucidate these findings and to clarify potential psychotropic effects of epilepsy itself, drug-resistant epilepsy and of epilepsy surgery and their impact on psychopathology. Clinically, it seems highly relevant to include psychiatrists in an interdisciplinary state-of-the-art perioperative management of drug-resistant PWE.

9.
J Clin Med ; 11(19)2022 Sep 26.
Article de Anglais | MEDLINE | ID: mdl-36233535

RÉSUMÉ

Neurological complications after heart surgery are associated with tremendous morbidity and mortality. Nonconvulsive status epilepticus (NCSE), which can only be verified by EEG, may cause secondary brain damage. Its frequency and its impact on outcomes after cardiac surgery is still unclear. We collected the neurological files and clinical data of all our patients after heart surgery who, in the course of their ICU stay, had been seen by a neurologist who ordered an EEG. Within 18 months, 1457 patients had cardiac surgery on cardiopulmonary bypass. EEG was requested for 89 patients. Seizures were detected in 39 patients and NCSE was detected in 11 patients. Open heart surgery was performed in all 11 NSCE patients, of whom eight showed concomitant brain insults. None had a history of epilepsy. Despite the inhibition of seizure activity with antiseizure medication, clinical improvement was only noted in seven NCSE patients, three of whom were in cerebral performance category 2 and four in category 3 at hospital discharge. The four patients without neurological benefit subsequently died in the ICU. The occurrence of NCSE after open cardiac surgery is significant and frequently associated with brain injury. It seems prudent to perform EEG studies early to interrupt seizure activity and mitigate secondary cerebral injury.

10.
J Neurosurg Pediatr ; 29(6): 700-710, 2022 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-35276657

RÉSUMÉ

OBJECTIVE: The goal of this study was to evaluate the feasibility, benefit, and safety of awake brain surgery (ABS) and intraoperative language mapping in children and adolescents with structural epilepsies. Whereas ABS is an established method to monitor language function in adults intraoperatively, reports of ABS in children are scarce. METHODS: A retrospective chart review of pediatric patients ≤ 18 years of age who underwent ABS and cortical language mapping for supratentorial tumors and nontumoral epileptogenic lesions between 2008 and 2019 was conducted. The authors evaluated the global intellectual and specific language performance by using detailed neuropsychological testing, the patient's intraoperative compliance, results of intraoperative language mapping assisted by electrocorticography (ECoG), and postsurgical language development and seizure outcomes. Descriptive statistics were used for this study, with a statistical significance of p < 0.05. RESULTS: Eleven children (7 boys) with a median age of 13 years (range 10-18 years) underwent ABS for a lesion in close vicinity to cortical language areas as defined by structural and functional MRI (left hemisphere in 9 children, right hemisphere in 2). Patients were neurologically intact but experiencing seizures; these were refractory to therapy in 9 patients. Compliance during the awake phase was high in 10 patients and low in 1 patient. Cortical mapping identified eloquent language areas in 6/10 (60%) patients and was concordant in 3/8 (37.5%), discordant in 3/8 (37.5%), and unclear in 2/8 (25%) patients compared to preoperative functional MRI. Stimulation-induced seizures occurred in 2 patients and could be interrupted easily. ECoG revealed that afterdischarge potentials (ADP) were involved in 5/9 (56%) patients with speech disturbances during stimulation. None of these patients harbored postoperative language dysfunction. Gross-total resection was achieved in 10/11 (91%) patients, and all were seizure free after a median follow-up of 4.3 years. Neuropsychological testing using the Wechsler Intelligence Scale for Children and the verbal learning and memory test showed an overall nonsignificant trend toward an immediate postoperative deterioration followed by an improvement to above preoperative levels after 1 year. CONCLUSIONS: ABS is a valuable technique in selected pediatric patients with lesions in language areas. An interdisciplinary approach, careful patient selection, extensive preoperative training of patients, and interpretation of intraoperative ADP are pivotal to a successful surgery.


Sujet(s)
Tumeurs du cerveau , Mâle , Adulte , Adolescent , Humains , Enfant , Tumeurs du cerveau/chirurgie , Études rétrospectives , Vigilance , Cartographie cérébrale/méthodes , Crises épileptiques/chirurgie , Encéphale/chirurgie , Craniotomie/méthodes
11.
PLoS One ; 17(2): e0264349, 2022.
Article de Anglais | MEDLINE | ID: mdl-35192676

RÉSUMÉ

PURPOSE: Impairment of cognitive functions is commonly observed in temporal lobe epilepsy (TLE). The aim of this study was to assess visuospatial memory functions and memory-related networks using an adapted version of Roland's Hometown Walking (RHWT) functional MRI (fMRI) task in patients with TLE. METHODS: We used fMRI to study activation patterns based on a visuospatial memory paradigm in 32 TLE patients (9 right; 23 left) and also within subgroups of lesional and non-lesional TLE. To test for performance, a correlational analysis of fMRI activation patterns and out-of-scanner neuropsychological visuospatial memory testing was performed. Additionally, we assessed memory-related networks using functional connectivity (FC). RESULTS: Greater contralateral than ipsilateral mesiotemporal (parahippocampal gyrus/hippocampus) activation was observed in left (n = 23)/right (n = 9) TLE. In lesional left TLE (n = 17), significant activations were seen in right more than left mesiotemporal areas (parahippocampal gyrus), while non-lesional left TLE patients (n = 6) showed significant bilateral (left>right) activations in mesiotemporal structures (parahippocampal gyrus). In left TLE, visuospatial cognitive testing correlated with fMRI activations in left (parahippocampal gyrus) and right mesiotemporal structures (hippocampus), characterized by greater fMRI activation being associated with better memory scores. In right TLE, higher scores in visuospatial memory testing were associated with greater fMRI activations in left and right insular regions. FC patterns of memory-related networks differ in right and left TLE. CONCLUSION: While TLE in general leads to asymmetrical mesiotemporal activation, lesion-induced and non-lesional TLE patients reveal different memory fMRI activation patterns. In right TLE, insular regions try to compensate for impaired right mesiotemporal structures during the performance of visuospatial tasks. Underlying functional visuospatial memory networks differ in right and left TLE.


Sujet(s)
Épilepsie temporale/physiopathologie , Mémoire spatiale , Adolescent , Adulte , Enfant , Cognition , Épilepsie temporale/imagerie diagnostique , Femelle , Humains , Imagerie par résonance magnétique , Mâle , Adulte d'âge moyen , Perception de l'espace , Perception visuelle
12.
J Adv Nurs ; 78(7): 2004-2014, 2022 Jul.
Article de Anglais | MEDLINE | ID: mdl-34837405

RÉSUMÉ

AIMS: To find out which variables may be associated with comfort of patients in an epilepsy monitoring unit. DESIGN: Exploratory, quantitative study design. METHODS: Data were collected from October 2018 to November 2019 in Austria and Southern Germany. A total of 267 patients of 10 epilepsy centres completed the Epilepsy Monitoring Unit Comfort Questionnaire which is based on Kolcaba's General Comfort Questionnaire. Secondary data analysis were conducted by using descriptive statistics and an exploratory model building approach, including different linear regression models and several sensitivity analyses. RESULTS: Total comfort scores ranged from 83 to 235 points. Gender, occupation and centre turned out to be possible influential variables. On average, women had a total comfort score 4.69 points higher than men, and retired persons 28.2 points higher than high school students ≥18 years. Comfort scores of younger patients were lower than those of older patients. However, age did not show a statistically significant effect. The same could be observed in marital status and educational levels. CONCLUSION: When implementing comfort measures, nurses must be aware of variables which could influence the intervention negatively. Especially, high school students ≥18 years should be supported by epilepsy specialist nurses, in order to reduce uncertainty, anxiety and discomfort. But, since the identified variables account only for a small proportion of the inter-individual variability in comfort scores, further studies are needed to find out additional relevant aspects and to examine centre-specific effects more closely. IMPACT: Nurses ensure patient comfort during a hospital stay. However, there are variables that may impair the effectiveness of the nursing measures. Our study showed that the experience of comfort was highly individual and could be explained by sociodemographic variables only to a limited extent. Nurses must be aware that additional factors, such as the situation in the individual setting, may be relevant.


Sujet(s)
Épilepsie , Unités hospitalières , Femelle , Humains , Mâle , Monitorage physiologique , Confort du patient , Enquêtes et questionnaires
13.
Seizure ; 87: 25-29, 2021 Apr.
Article de Anglais | MEDLINE | ID: mdl-33677401

RÉSUMÉ

OBJECTIVE: To further delineate the clinical and genetic spectrum of epileptic and neurodevelopmental conditions associated with variants in STX1B. METHODS: We screened our diagnostic in-house database (comprising >20,000 exome sequencing datasets) for pathogenic and likely pathogenic variants inSTX1B. The detected cases were phenotyped in detail, and the findings were compared to previously published case reports. RESULTS: We identified four unrelated individuals with pathogenic or likely pathogenic variants in STX1B (one missense and three loss-of-function variants). All patients displayed epileptic phenotypes, including epileptiform discharges on electroencephalography (without apparent seizures), developmental and epileptic encephalopathy and focal epilepsy. Three of the four patients had developmental delay. Febrile seizures occurred in two individuals. One patient with focal epilepsy underwent epilepsy surgery without lasting improvement. The neuropathological workup of brain tissue revealed a mild malformation of cortical development without alterations of cortical lamination or dysplastic neurons. CONCLUSIONS: Our findings confirm the wide clinical range ofSTX1B-related epileptic conditions and highlight the necessity of genetic testing prior to epilepsy surgery in cases with monogenic epilepsy. The identification of loss-of-function variants in very differently affected individuals suggests that no clear genotype-phenotype correlation can be established.


Sujet(s)
Épilepsie généralisée , Épilepsie , Électroencéphalographie , Épilepsie/génétique , Épilepsie généralisée/génétique , Humains , Phénotype , Crises épileptiques , Syntaxine-1
14.
Clin Neurophysiol ; 132(2): 404-411, 2021 02.
Article de Anglais | MEDLINE | ID: mdl-33450563

RÉSUMÉ

OBJECTIVE: To study hippocampal integration within task-positive and task-negative language networks and the impact of a diseased left and right hippocampus on the language connectome in temporal lobe epilepsy (TLE). METHODS: We used functional magnetic resonance imaging (fMRI) to study a homogenous group of 32 patients with TLE (17 left) and 14 healthy controls during a verb-generation task. We performed functional connectivity analysis and quantified alterations within the language connectome and evaluated disruptions of the functional dissociation along the anterior-posterior axis of the hippocampi. RESULTS: Connectivity analysis revealed significant differences between left and right TLE compared to healthy controls. Left TLE showed widespread impairment of task-positive language networks, while right TLE showed less pronounced alterations. Particularly right TLE showed altered connectivity for cortical regions that were part of the default mode network (DMN). Left TLE showed a disturbed functional dissociation pattern along the left hippocampus to left and right inferior frontal language regions, while left and right TLE revealed an altered dissociation pattern along the right hippocampus to regions associated with the DMN. CONCLUSIONS: Our results showed an impaired hippocampal integration into active language and the default mode networks, which both may contribute to language impairment in TLE. SIGNIFICANCE: Our results emphasize the direct role of the left hippocampus in language processing, and the potential role of the right hippocampus as a modulator between DMN and task-positive networks.


Sujet(s)
Connectome , Épilepsie temporale/physiopathologie , Hippocampe/physiopathologie , Langage , Adolescent , Adulte , Femelle , Hippocampe/imagerie diagnostique , Humains , Imagerie par résonance magnétique , Mâle , Adulte d'âge moyen
15.
J Nucl Med ; 62(6): 871-879, 2021 06 01.
Article de Anglais | MEDLINE | ID: mdl-33246982

RÉSUMÉ

This work set out to develop a motion-correction approach aided by conditional generative adversarial network (cGAN) methodology that allows reliable, data-driven determination of involuntary subject motion during dynamic 18F-FDG brain studies. Methods: Ten healthy volunteers (5 men/5 women; mean age ± SD, 27 ± 7 y; weight, 70 ± 10 kg) underwent a test-retest 18F-FDG PET/MRI examination of the brain (n = 20). The imaging protocol consisted of a 60-min PET list-mode acquisition contemporaneously acquired with MRI, including MR navigators and a 3-dimensional time-of-flight MR angiography sequence. Arterial blood samples were collected as a reference standard representing the arterial input function (AIF). Training of the cGAN was performed using 70% of the total datasets (n = 16, randomly chosen), which was corrected for motion using MR navigators. The resulting cGAN mappings (between individual frames and the reference frame [55-60 min after injection]) were then applied to the test dataset (remaining 30%, n = 6), producing artificially generated low-noise images from early high-noise PET frames. These low-noise images were then coregistered to the reference frame, yielding 3-dimensional motion vectors. Performance of cGAN-aided motion correction was assessed by comparing the image-derived input function (IDIF) extracted from a cGAN-aided motion-corrected dynamic sequence with the AIF based on the areas under the curves (AUCs). Moreover, clinical relevance was assessed through direct comparison of the average cerebral metabolic rates of glucose (CMRGlc) values in gray matter calculated using the AIF and the IDIF. Results: The absolute percentage difference between AUCs derived using the motion-corrected IDIF and the AIF was (1.2% + 0.9%). The gray matter CMRGlc values determined using these 2 input functions differed by less than 5% (2.4% + 1.7%). Conclusion: A fully automated data-driven motion-compensation approach was established and tested for 18F-FDG PET brain imaging. cGAN-aided motion correction enables the translation of noninvasive clinical absolute quantification from PET/MR to PET/CT by allowing the accurate determination of motion vectors from the PET data itself.


Sujet(s)
Encéphale/imagerie diagnostique , Fluorodésoxyglucose F18 , Traitement d'image par ordinateur/méthodes , Mouvement , , Tomographie par émission de positons , Humains , Imagerie par résonance magnétique
16.
J Neurol Surg A Cent Eur Neurosurg ; 82(2): 125-129, 2021 Mar.
Article de Anglais | MEDLINE | ID: mdl-33278827

RÉSUMÉ

OBJECTIVE: Depth electrode implantation for invasive monitoring in epilepsy surgery has become a standard procedure. We describe a new frameless stereotactic intervention using robot-guided laser beam for making precise bone channels for depth electrode placement. METHODS: A laboratory investigation on a head cadaver specimen was performed using a CT scan planning of depth electrodes in various positions. Precise bone channels were made by a navigated robot-driven laser beam (erbium:yttrium aluminum garnet [Er:YAG], 2.94-µm wavelength,) instead of twist drill holes. Entry point and target point precision was calculated using postimplantation CT scans and comparison to the preoperative trajectory plan. RESULTS: Frontal, parietal, and occipital bone channels for bolt implantation were made. The occipital bone channel had an angulation of more than 60 degrees to the surface. Bolts and depth electrodes were implanted solely guided by the trajectory given by the precise bone channels. The mean depth electrode length was 45.5 mm. Entry point deviation was 0.73 mm (±0.66 mm SD) and target point deviation was 2.0 mm (±0.64 mm SD). Bone channel laser time was ∼30 seconds per channel. Altogether, the implantation time was ∼10 to 15 minutes per electrode. CONCLUSION: Navigated robot-assisted laser for making precise bone channels for depth electrode implantation in epilepsy surgery is a promising new, exact and straightforward implantation technique and may have many advantages over twist drill hole implantation.


Sujet(s)
Craniotomie/méthodes , Électrodes implantées , Épilepsie/chirurgie , Interventions chirurgicales robotisées/méthodes , Techniques stéréotaxiques , Cadavre , Humains , Imagerie tridimensionnelle , Neuronavigation/méthodes , Tomodensitométrie/méthodes
18.
J Neurosurg ; 134(6): 1694-1702, 2020 07 03.
Article de Anglais | MEDLINE | ID: mdl-32619977

RÉSUMÉ

OBJECTIVE: Epilepsy surgery is the recommended treatment option for patients with drug-resistant temporal lobe epilepsy (TLE). This method offers a good chance of seizure freedom but carries a considerable risk of postoperative language impairment. The extremely variable neurocognitive profiles in surgical epilepsy patients cannot be fully explained by extent of resection, fiber integrity, or current task-based functional MRI (fMRI). In this study, the authors aimed to investigate pathology- and surgery-triggered language organization in TLE by using fMRI activation and network analysis as well as considering structural and neuropsychological measures. METHODS: Twenty-eight patients with unilateral TLE (16 right, 12 left) underwent T1-weighted imaging, diffusion tensor imaging, and task-based language fMRI pre- and postoperatively (n = 15 anterior temporal lobectomy, n = 11 selective amygdalohippocampectomy, n = 2 focal resection). Twenty-two healthy subjects served as the control cohort. Functional connectivity, activation maps, and laterality indices for language dominance were analyzed from fMRI data. Postoperative fractional anisotropy values of 7 major tracts were calculated. Naming, semantic, and phonematic verbal fluency scores before and after surgery were correlated with imaging parameters. RESULTS: fMRI network analysis revealed widespread, bihemispheric alterations in language architecture that were not captured by activation analysis. These network changes were found preoperatively and proceeded after surgery with characteristic patterns in the left and right TLEs. Ipsilesional fronto-temporal connectivity decreased in both left and right TLE. In left TLE specifically, preoperative atypical language dominance predicted better postoperative verbal fluency and naming function. In right TLE, left frontal language dominance correlated with good semantic verbal fluency before and after surgery, and left fronto-temporal language laterality predicted good naming outcome. Ongoing seizures after surgery (Engel classes ID-IV) were associated with naming deterioration irrespective of seizure side. Functional findings were not explained by the extent of resection or integrity of major white matter tracts. CONCLUSIONS: Functional connectivity analysis contributes unique insight into bihemispheric remodeling processes of language networks after epilepsy surgery, with characteristic findings in left and right TLE. Presurgical contralateral language recruitment is associated with better postsurgical language outcome in left and right TLE.


Sujet(s)
Épilepsie temporale/imagerie diagnostique , Langage , Réseau nerveux/imagerie diagnostique , Soins postopératoires/méthodes , Soins préopératoires/méthodes , Lobe temporal/imagerie diagnostique , Adolescent , Adulte , Lobectomie temporale antérieure/méthodes , Études de cohortes , Épilepsie temporale/chirurgie , Femelle , Humains , Imagerie par résonance magnétique/méthodes , Mâle , Adulte d'âge moyen , Réseau nerveux/chirurgie , Études rétrospectives , Lobe temporal/chirurgie , Jeune adulte
19.
Front Neurosci ; 14: 252, 2020.
Article de Anglais | MEDLINE | ID: mdl-32269510

RÉSUMÉ

In the past, determination of absolute values of cerebral metabolic rate of glucose (CMRGlc) in clinical routine was rarely carried out due to the invasive nature of arterial sampling. With the advent of combined PET/MR imaging technology, CMRGlc values can be obtained non-invasively, thereby providing the opportunity to take advantage of fully quantitative data in clinical routine. However, CMRGlc values display high physiological variability, presumably due to fluctuations in the intrinsic activity of the brain at rest. To reduce CMRGlc variability associated with these fluctuations, the objective of this study was to determine whether functional connectivity measures derived from resting-state fMRI (rs-fMRI) could be used to correct for these fluctuations in intrinsic brain activity. METHODS: We studied 10 healthy volunteers who underwent a test-retest dynamic [18F]FDG-PET study using a fully integrated PET/MR system (Siemens Biograph mMR). To validate the non-invasive derivation of an image-derived input function based on combined analysis of PET and MR data, arterial blood samples were obtained. Using the arterial input function (AIF), parametric images representing CMRGlc were determined using the Patlak graphical approach. Both directed functional connectivity (dFC) and undirected functional connectivity (uFC) were determined between nodes in six major networks (Default mode network, Salience, L/R Executive, Attention, and Sensory-motor network) using either a bivariate-correlation (R coefficient) or a Multi-Variate AutoRegressive (MVAR) model. In addition, the performance of a regional connectivity measure, the fractional amplitude of low frequency fluctuations (fALFF), was also investigated. RESULTS: The average intrasubject variability for CMRGlc values between test and retest was determined as (14 ±8%) with an average inter-subject variability of 25% at test and 15% at retest. The average CMRGlc value (umol/100 g/min) across all networks was 39 ±10 at test and increased slightly to 43 ±6 at retest. The R, MVAR and fALFF coefficients showed relatively large test-retest variability in comparison to the inter-subjects variability, resulting in poor reliability (intraclass correlation in the range of 0.11-0.65). More importantly, no significant relationship was found between the R coefficients (for uFC), MVAR coefficients (for dFC) or fALFF and corresponding CMRGlc values for any of the six major networks. DISCUSSION: Measurement of functional connectivity within established brain networks did not provide a means to decrease the inter- or intrasubject variability of CMRGlc values. As such, our results indicate that connectivity measured derived from rs-fMRI acquired contemporaneously with PET imaging are not suited for correction of CMRGlc variability associated with intrinsic fluctuations of resting-state brain activity. Thus, given the observed substantial inter- and intrasubject variability of CMRGlc values, the relevance of absolute quantification for clinical routine is presently uncertain.

20.
J Med Genet ; 57(9): 624-633, 2020 09.
Article de Anglais | MEDLINE | ID: mdl-32086284

RÉSUMÉ

BACKGROUND: The genetic architecture of non-acquired focal epilepsies (NAFEs) becomes increasingly unravelled using genome-wide sequencing datasets. However, it remains to be determined how this emerging knowledge can be translated into a diagnostic setting. To bridge this gap, we assessed the diagnostic outcomes of exome sequencing (ES) in NAFE. METHODS: 112 deeply phenotyped patients with NAFE were included in the study. Diagnostic ES was performed, followed by a screen to detect variants of uncertain significance (VUSs) in 15 well-established focal epilepsy genes. Explorative gene prioritisation was used to identify possible novel candidate aetiologies with so far limited evidence for NAFE. RESULTS: ES identified pathogenic or likely pathogenic (ie, diagnostic) variants in 13/112 patients (12%) in the genes DEPDC5, NPRL3, GABRG2, SCN1A, PCDH19 and STX1B. Two pathogenic variants were microdeletions involving NPRL3 and PCDH19. Nine of the 13 diagnostic variants (69%) were found in genes of the GATOR1 complex, a potentially druggable target involved in the mammalian target of rapamycin (mTOR) signalling pathway. In addition, 17 VUSs in focal epilepsy genes and 6 rare variants in candidate genes (MTOR, KCNA2, RBFOX1 and SCN3A) were detected. Five patients with reported variants had double hits in different genes, suggesting a possible (oligogenic) role of multiple rare variants. CONCLUSION: This study underscores the molecular heterogeneity of NAFE with GATOR1 complex genes representing the by far most relevant genetic aetiology known to date. Although the diagnostic yield is lower compared with severe early-onset epilepsies, the high rate of VUSs and candidate variants suggests a further increase in future years.


Sujet(s)
Épilepsies partielles/génétique , Protéines d'activation de la GTPase/génétique , Prédisposition génétique à une maladie , Adolescent , Adulte , Sujet âgé , Enfant , Enfant d'âge préscolaire , Épilepsies partielles/diagnostic , Épilepsies partielles/anatomopathologie , Exome/génétique , Femelle , Variation génétique/génétique , Humains , Nourrisson , Mâle , Adulte d'âge moyen , Complexes multiprotéiques/génétique , Mutation/génétique , Phénotype , Protéines de répression/génétique , Transduction du signal/génétique , , Jeune adulte
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE