Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 28
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Development ; 150(2)2023 01 15.
Article de Anglais | MEDLINE | ID: mdl-36692218

RÉSUMÉ

The first characterised FUSE Binding Protein family member, FUBP1, binds single-stranded DNA to activate MYC transcription. Psi, the sole FUBP protein in Drosophila, binds RNA to regulate P-element and mRNA splicing. Our previous work revealed pro-growth functions for Psi, which depend, in part, on transcriptional activation of Myc. Genome-wide functions for FUBP family proteins in transcriptional control remain obscure. Here, through the first genome-wide binding and expression profiles obtained for a FUBP family protein, we demonstrate that, in addition to being required to activate Myc to promote cell growth, Psi also directly binds and activates stg to couple growth and cell division. Thus, Psi knockdown results in reduced cell division in the wing imaginal disc. In addition to activating these pro-proliferative targets, Psi directly represses transcription of the growth inhibitor tolkin (tok, a metallopeptidase implicated in TGFß signalling). We further demonstrate tok overexpression inhibits proliferation, while tok loss of function increases mitosis alone and suppresses impaired cell division caused by Psi knockdown. Thus, Psi orchestrates growth through concurrent transcriptional activation of the pro-proliferative genes Myc and stg, in combination with repression of the growth inhibitor tok.


Sujet(s)
Protéines de Drosophila , Drosophila , Protéines de liaison à l'ARN , Animaux , Division cellulaire , Prolifération cellulaire , Drosophila/métabolisme , Protéines de Drosophila/métabolisme , Protéines proto-oncogènes c-myc/métabolisme , Protéines de liaison à l'ARN/métabolisme , Activation de la transcription
2.
Sci Rep ; 12(1): 21634, 2022 12 14.
Article de Anglais | MEDLINE | ID: mdl-36517509

RÉSUMÉ

Intronic polymorphic TOMM40 variants increasing TOMM40 mRNA expression are strongly correlated to late onset Alzheimer's Disease. The gene product, hTomm40, encoded in the APOE gene cluster, is a core component of TOM, the translocase that imports nascent proteins across the mitochondrial outer membrane. We used Drosophila melanogaster eyes as an in vivo model to investigate the relationship between elevated Tom40 (the Drosophila homologue of hTomm40) expression and neurodegeneration. Here we provide evidence that an overabundance of Tom40 in mitochondria invokes caspase-dependent cell death in a dose-dependent manner, leading to degeneration of the primarily neuronal eye tissue. Degeneration is contingent on the availability of co-assembling TOM components, indicating that an increase in assembled TOM is the factor that triggers apoptosis and degeneration in a neural setting. Eye death is not contingent on inner membrane translocase components, suggesting it is unlikely to be a direct consequence of impaired import. Another effect of heightened Tom40 expression is upregulation and co-association of a mitochondrial oxidative stress biomarker, DmHsp22, implicated in extension of lifespan, providing new insight into the balance between cell survival and death. Activation of regulated death pathways, culminating in eye degeneration, suggests a possible causal route from TOMM40 polymorphisms to neurodegenerative disease.


Sujet(s)
Maladies neurodégénératives , Protéines de Saccharomyces cerevisiae , Animaux , Protéines de transport de la membrane mitochondriale/métabolisme , Protéines de transport membranaire/métabolisme , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Maladies neurodégénératives/génétique , Maladies neurodégénératives/métabolisme , Mitochondries/génétique , Mitochondries/métabolisme , Apoptose/génétique , Protéines de transport/métabolisme , Protéines mitochondriales/génétique , Protéines mitochondriales/métabolisme , Transport des protéines , Protéines de Saccharomyces cerevisiae/métabolisme
3.
Int J Mol Sci ; 21(20)2020 Oct 20.
Article de Anglais | MEDLINE | ID: mdl-33092025

RÉSUMÉ

The MYC family of transcriptional regulators play significant roles in animal development, including the renewal and maintenance of stem cells. Not surprisingly, given MYC's capacity to promote programs of proliferative cell growth, MYC is frequently upregulated in cancer. Although members of the MYC family are upregulated in nervous system tumours, the mechanisms of how elevated MYC promotes stem cell-driven brain cancers is unknown. If we are to determine how increased MYC might contribute to brain cancer progression, we will require a more complete understanding of MYC's roles during normal brain development. Here, we evaluate evidence for MYC family functions in neural stem cell fate and brain development, with a view to better understand mechanisms of MYC-driven neural malignancies.


Sujet(s)
Encéphale/métabolisme , Protéines proto-oncogènes c-myc/génétique , Cellules souches/métabolisme , Animaux , Encéphale/croissance et développement , Tumeurs du cerveau/génétique , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/anatomopathologie , Cycle cellulaire/génétique , Prolifération cellulaire/génétique , Évolution de la maladie , Régulation de l'expression des gènes au cours du développement , Humains , Protéines proto-oncogènes c-myc/métabolisme
4.
Development ; 147(11)2020 06 11.
Article de Anglais | MEDLINE | ID: mdl-32527935

RÉSUMÉ

Here, we report novel tumour suppressor activity for the Drosophila Argonaute family RNA-binding protein AGO1, a component of the miRNA-dependent RNA-induced silencing complex (RISC). The mechanism for growth inhibition does not, however, involve canonical roles as part of the RISC; rather, AGO1 controls cell and tissue growth by functioning as a direct transcriptional repressor of the master regulator of growth, Myc. AGO1 depletion in wing imaginal discs drives a significant increase in ribosome biogenesis, nucleolar expansion and cell growth in a manner dependent on Myc abundance. Moreover, increased Myc promoter activity and elevated Myc mRNA in AGO1-depleted animals requires RNA polymerase II transcription. Further support for transcriptional AGO1 functions is provided by physical interaction with the RNA polymerase II transcriptional machinery (chromatin remodelling factors and Mediator Complex), punctate nuclear localisation in euchromatic regions and overlap with Polycomb Group transcriptional silencing loci. Moreover, significant AGO1 enrichment is observed on the Myc promoter and AGO1 interacts with the Myc transcriptional activator Psi. Together, our data show that Drosophila AGO1 functions outside of the RISC to repress Myc transcription and inhibit developmental cell and tissue growth.This article has an associated 'The people behind the papers' interview.


Sujet(s)
Protéines Argonaute/métabolisme , Protéines de liaison à l'ADN/métabolisme , Protéines de Drosophila/métabolisme , Drosophila/métabolisme , Facteurs de transcription/métabolisme , Animaux , Animal génétiquement modifié/métabolisme , Protéines Argonaute/antagonistes et inhibiteurs , Protéines Argonaute/génétique , Protéines de liaison à l'ADN/antagonistes et inhibiteurs , Protéines de liaison à l'ADN/génétique , Drosophila/croissance et développement , Protéines de Drosophila/antagonistes et inhibiteurs , Protéines de Drosophila/génétique , Larve/métabolisme , microARN/métabolisme , Mutagenèse dirigée , Régions promotrices (génétique) , Interférence par ARN , RNA polymerase II/génétique , RNA polymerase II/métabolisme , ARN messager/métabolisme , Protéines de liaison à l'ARN/antagonistes et inhibiteurs , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/métabolisme , Ribosomes/métabolisme , Facteurs de transcription/antagonistes et inhibiteurs , Facteurs de transcription/génétique , Transcription génétique , Ailes d'animaux/croissance et développement , Ailes d'animaux/physiologie
5.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118713, 2020 07.
Article de Anglais | MEDLINE | ID: mdl-32246948

RÉSUMÉ

WD40-Repeat Protein 62 (WDR62) is required to maintain neural and glial cell populations during embryonic brain growth. Although elevated expression of WDR62 is frequently associated with several tumour types, potential effects of excess WDR62 on proliferative growth remain undefined. Here, we demonstrate that glia specific overexpression of WDR62 in Drosophila larval brains resulted in increased cell size, over-proliferation and increased brain volume, without overt disruption of tissue organization. We further demonstrate WDR62 promoted over-proliferation and brain overgrowth by activating AURKA and pAKT signalling to increase MYC function in glial cells. Together these data suggest WDR62 normally functions in the glial lineage to activate oncogenic signalling networks, promoting proliferation and brain overgrowth.


Sujet(s)
Aurora kinase A/génétique , Protéines de liaison à l'ADN/génétique , Protéines de Drosophila/génétique , Protéines de tissu nerveux/génétique , Facteurs de transcription/génétique , Animaux , Encéphale/croissance et développement , Encéphale/métabolisme , Prolifération cellulaire/génétique , Drosophila/génétique , Drosophila/croissance et développement , Neurogenèse/génétique , Névroglie/métabolisme , Protéines proto-oncogènes c-akt/génétique , Transduction du signal/génétique , Appareil du fuseau/génétique
6.
Bioessays ; 40(4): e1700235, 2018 04.
Article de Anglais | MEDLINE | ID: mdl-29504137

RÉSUMÉ

Emerging evidence suggests that DNA topology plays an instructive role in cell fate control through regulation of gene expression. Transcription produces torsional stress, and the resultant supercoiling of the DNA molecule generates an array of secondary structures. In turn, local DNA architecture is harnessed by the cell, acting within sensory feedback mechanisms to mediate transcriptional output. MYC is a potent oncogene, which is upregulated in the majority of cancers; thus numerous studies have focused on detailed understanding of its regulation. Dissection of regulatory regions within the MYC promoter provided the first hint that intimate feedback between DNA topology and associated DNA remodeling proteins is critical for moderating transcription. As evidence of such regulation is also found in the context of many other genes, here we expand on the prototypical example of the MYC promoter, and also explore DNA architecture in a genome-wide context as a global mechanism of transcriptional control.


Sujet(s)
Régions promotrices (génétique)/génétique , Protéines proto-oncogènes c-myc/métabolisme , Régulation de l'expression des gènes tumoraux/génétique , Humains , Conformation d'acide nucléique
7.
G3 (Bethesda) ; 7(8): 2497-2509, 2017 08 07.
Article de Anglais | MEDLINE | ID: mdl-28611255

RÉSUMÉ

In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila "cell polarity" eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the "nutrient sensing" kinases Salt Inducible Kinase 2 and 3 (SIK2 and 3) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development.


Sujet(s)
Polarité de la cellule/génétique , Protéines de Drosophila/génétique , Drosophila melanogaster/génétique , Épistasie , Épithélium/métabolisme , Gènes d'insecte , Dépistage génétique , Interférence par ARN , Animaux , Protéines de Drosophila/métabolisme , Femelle , Gene Ontology , Gènes modificateurs , Mâle , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Taille d'organe/génétique , Transduction du signal/génétique , Protéines suppresseurs de tumeurs/génétique , Protéines suppresseurs de tumeurs/métabolisme , Ailes d'animaux/anatomie et histologie
8.
Stem Cell Reports ; 9(1): 32-41, 2017 07 11.
Article de Anglais | MEDLINE | ID: mdl-28625535

RÉSUMÉ

The second most commonly mutated gene in primary microcephaly (MCPH) patients is wd40-repeat protein 62 (wdr62), but the relative contribution of WDR62 function to the growth of major brain lineages is unknown. Here, we use Drosophila models to dissect lineage-specific WDR62 function(s). Interestingly, although neural stem cell (neuroblast)-specific depletion of WDR62 significantly decreased neuroblast number, brain size was unchanged. In contrast, glial lineage-specific WDR62 depletion significantly decreased brain volume. Moreover, loss of function in glia not only decreased the glial population but also non-autonomously caused neuroblast loss. We further demonstrated that WDR62 controls brain growth through lineage-specific interactions with master mitotic signaling kinase, AURKA. Depletion of AURKA in neuroblasts drives brain overgrowth, which was suppressed by WDR62 co-depletion. In contrast, glial-specific depletion of AURKA significantly decreased brain volume, which was further decreased by WDR62 co-depletion. Thus, dissecting relative contributions of MCPH factors to individual neural lineages will be critical for understanding complex diseases such as microcephaly.


Sujet(s)
Aurora kinase A/métabolisme , Encéphale/croissance et développement , Protéines de Drosophila/métabolisme , Drosophila/croissance et développement , Protéines de tissu nerveux/métabolisme , Névroglie/métabolisme , Cartes d'interactions protéiques , Animaux , Aurora kinase A/génétique , Encéphale/métabolisme , Drosophila/génétique , Drosophila/métabolisme , Protéines de Drosophila/génétique , Techniques de knock-down de gènes , Mitose , Protéines de tissu nerveux/génétique , Névroglie/cytologie
9.
Genes (Basel) ; 8(4)2017 Apr 11.
Article de Anglais | MEDLINE | ID: mdl-28398229

RÉSUMÉ

The transcription factor and cell growth regulator MYC is potently oncogenic and estimated to contribute to most cancers. Decades of attempts to therapeutically target MYC directly have not resulted in feasible clinical applications, and efforts have moved toward indirectly targeting MYC expression, function and/or activity to treat MYC-driven cancer. A multitude of developmental and growth signaling pathways converge on the MYC promoter to modulate transcription through their downstream effectors. Critically, even small increases in MYC abundance (<2 fold) are sufficient to drive overproliferation; however, the details of how oncogenic/growth signaling networks regulate MYC at the level of transcription remain nebulous even during normal development. It is therefore essential to first decipher mechanisms of growth signal-stimulated MYC transcription using in vivo models, with intact signaling environments, to determine exactly how these networks are dysregulated in human cancer. This in turn will provide new modalities and approaches to treat MYC-driven malignancy. Drosophila genetic studies have shed much light on how complex networks signal to transcription factors and enhancers to orchestrate Drosophila MYC (dMYC) transcription, and thus growth and patterning of complex multicellular tissue and organs. This review will discuss the many pathways implicated in patterning MYC transcription during development and the molecular events at the MYC promoter that link signaling to expression. Attention will also be drawn to parallels between mammalian and fly regulation of MYC at the level of transcription.

10.
Transcription ; 8(3): 185-192, 2017 05 27.
Article de Anglais | MEDLINE | ID: mdl-28301294

RÉSUMÉ

Drosophila genetic studies demonstrate that cell and tissue growth regulation is a primary developmental function of P-element somatic inhibitor (Psi), the sole ortholog of FUBP family RNA/DNA-binding proteins. Psi achieves growth control through interaction with Mediator, observations that should put to rest controversy surrounding Pol II transcriptional functions for these KH domain proteins.


Sujet(s)
Helicase , Protéines de Drosophila , Protéines nucléaires , Protéines de liaison à l'ARN , Animaux , Helicase/génétique , Helicase/métabolisme , Drosophila , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Protéines nucléaires/génétique , Protéines nucléaires/métabolisme , Domaines protéiques , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/métabolisme
11.
Gene ; 612: 36-48, 2017 May 15.
Article de Anglais | MEDLINE | ID: mdl-27989772

RÉSUMÉ

Transcription of the ribosomal RNA genes (rDNA) by RNA polymerase I (Pol I) is a major control step for ribosome synthesis and is tightly linked to cellular growth. However, the question of whether this process is modulated primarily at the level of transcription initiation or elongation is controversial. Studies in markedly different cell types have identified either initiation or elongation as the major control point. In this study, we have re-examined this question in NIH3T3 fibroblasts using a combination of metabolic labeling of the 47S rRNA, chromatin immunoprecipitation analysis of Pol I and overexpression of the transcription initiation factor Rrn3. Acute manipulation of growth factor levels altered rRNA synthesis rates over 8-fold without changing Pol I loading onto the rDNA. In fact, robust changes in Pol I loading were only observed under conditions where inhibition of rDNA transcription was associated with chronic serum starvation or cell cycle arrest. Overexpression of the transcription initiation factor Rrn3 increased loading of Pol I on the rDNA but failed to enhance rRNA synthesis in either serum starved, serum treated or G0/G1 arrested cells. Together these data suggest that transcription elongation is rate limiting for rRNA synthesis. We propose that transcription initiation is required for rDNA transcription in response to cell cycle cues, whereas elongation controls the dynamic range of rRNA synthesis output in response to acute growth factor modulation.


Sujet(s)
Cycle cellulaire , Division cellulaire , RNA polymerase I/génétique , Transcription génétique , Animaux , Souris , Cellules NIH 3T3
12.
Stem Cell Reports ; 7(6): 1152-1163, 2016 12 13.
Article de Anglais | MEDLINE | ID: mdl-27974223

RÉSUMÉ

The Drosophila testis has been fundamental to understanding how stem cells interact with their endogenous microenvironment, or niche, to control organ growth in vivo. Here, we report the identification of two independent alleles for the highly conserved tumor suppressor gene, Retinoblastoma-family protein (Rbf), in a screen for testis phenotypes in X chromosome third-instar lethal alleles. Rbf mutant alleles exhibit overproliferation of spermatogonial cells, which is phenocopied by the molecularly characterized Rbf11 null allele. We demonstrate that Rbf promotes cell-cycle exit and differentiation of the somatic and germline stem cells of the testes. Intriguingly, depletion of Rbf specifically in the germline does not disrupt stem cell differentiation, rather Rbf loss of function in the somatic lineage drives overproliferation and differentiation defects in both lineages. Together our observations suggest that Rbf in the somatic lineage controls germline stem cell renewal and differentiation non-autonomously via essential roles in the microenvironment of the germline lineage.


Sujet(s)
Lignage cellulaire , Protéines de Drosophila/métabolisme , Drosophila melanogaster/cytologie , Drosophila melanogaster/métabolisme , Protéine du rétinoblastome/métabolisme , Spermatogenèse , Cellules souches/cytologie , Testicule/cytologie , Facteurs de transcription/métabolisme , Animaux , Différenciation cellulaire , Prolifération cellulaire , Cellules germinales/cytologie , Cellules germinales/métabolisme , Larve , Mâle , Mutation/génétique , Niche de cellules souches , Cellules souches/métabolisme
13.
Nucleic Acids Res ; 44(16): 7646-58, 2016 09 19.
Article de Anglais | MEDLINE | ID: mdl-27207882

RÉSUMÉ

Despite two decades of research, the major function of FBP-family KH domain proteins during animal development remains controversial. The literature is divided between RNA processing and transcriptional functions for these single stranded nucleic acid binding proteins. Using Drosophila, where the three mammalian FBP proteins (FBP1-3) are represented by one ortholog, Psi, we demonstrate the primary developmental role is control of cell and tissue growth. Co-IP-mass spectrometry positioned Psi in an interactome predominantly comprised of RNA Polymerase II (RNA Pol II) transcriptional machinery and we demonstrate Psi is a potent transcriptional activator. The most striking interaction was between Psi and the transcriptional mediator (MED) complex, a known sensor of signaling inputs. Moreover, genetic manipulation of MED activity modified Psi-dependent growth, which suggests Psi interacts with MED to integrate developmental growth signals. Our data suggest the key target of the Psi/MED network in controlling developmentally regulated tissue growth is the transcription factor MYC. As FBP1 has been implicated in controlling expression of the MYC oncogene, we predict interaction between MED and FBP1 might also have implications for cancer initiation and progression.


Sujet(s)
Protéines de Drosophila/métabolisme , Drosophila melanogaster/croissance et développement , Drosophila melanogaster/métabolisme , Complexe médiateur/métabolisme , Morphogenèse , Protéines proto-oncogènes c-myc/métabolisme , Animaux , Drosophila melanogaster/cytologie , Drosophila melanogaster/génétique , Techniques de knock-down de gènes , Cellules HeLa , Humains , Protéines nucléaires , Régions promotrices (génétique)/génétique , Liaison aux protéines , Sous-unités de protéines/métabolisme , RNA polymerase II/métabolisme , Protéines de liaison à l'ARN , Transcription génétique
14.
Cell Cycle ; 15(3): 413-24, 2016.
Article de Anglais | MEDLINE | ID: mdl-26713495

RÉSUMÉ

Mitotic spindle organization is regulated by centrosomal kinases that potentiate recruitment of spindle-associated proteins required for normal mitotic progress including the microcephaly protein WD40-repeat protein 62 (WDR62). WDR62 functions underlie normal brain development as autosomal recessive mutations and wdr62 loss cause microcephaly. Here we investigate the signaling interactions between WDR62 and the mitotic kinase Aurora A (AURKA) that has been recently shown to cooperate to control brain size in mice. The spindle recruitment of WDR62 is closely correlated with increased levels of AURKA following mitotic entry. We showed that depletion of TPX2 attenuated WDR62 localization at spindle poles indicating that TPX2 co-activation of AURKA is required to recruit WDR62 to the spindle. We demonstrated that AURKA activity contributed to the mitotic phosphorylation of WDR62 residues Ser49 and Thr50 and phosphorylation of WDR62 N-terminal residues was required for spindle organization and metaphase chromosome alignment. Our analysis of several MCPH-associated WDR62 mutants (V65M, R438H and V1314RfsX18) that are mislocalized in mitosis revealed that their interactions and phosphorylation by AURKA was substantially reduced consistent with the notion that AURKA is a key determinant of WDR62 spindle recruitment. Thus, our study highlights the role of AURKA signaling in the spatiotemporal control of WDR62 at spindle poles where it maintains spindle organization.


Sujet(s)
Aurora kinase A/métabolisme , Protéines de tissu nerveux/métabolisme , Appareil du fuseau/métabolisme , Animaux , Systèmes CRISPR-Cas/génétique , Protéines du cycle cellulaire/antagonistes et inhibiteurs , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Lignée cellulaire , Ségrégation des chromosomes , Cellules HeLa , Humains , Métaphase , Souris , Microscopie de fluorescence , Protéines associées aux microtubules/antagonistes et inhibiteurs , Protéines associées aux microtubules/génétique , Protéines associées aux microtubules/métabolisme , Protéines de tissu nerveux/génétique , Protéines nucléaires/antagonistes et inhibiteurs , Protéines nucléaires/génétique , Protéines nucléaires/métabolisme , Phosphorylation , Interférence par ARN , Petit ARN interférent/métabolisme , Transduction du signal
15.
Cell Signal ; 27(10): 2045-53, 2015 Oct.
Article de Anglais | MEDLINE | ID: mdl-26215099

RÉSUMÉ

Increased rates of ribosome biogenesis and biomass accumulation are fundamental properties of rapidly growing and dividing malignant cells. The MYC oncoprotein drives growth predominantly via its ability to upregulate the ribosome biogenesis program, in particular stimulating the activity of the RNA Polymerase I (Pol I) machinery to increase ribosomal RNA (rRNA) transcription. Although MYC function is known to be highly dependent on the cellular signalling context, the pathways interacting with MYC to regulate transcription of ribosomal genes (rDNA) in vivo in response to growth factor status, nutrient availability and cellular stress are only beginning to be understood. To determine factors critical to MYC-dependent stimulation of rDNA transcription in vivo, we performed a transient expression screen for known oncogenic signalling pathways in Drosophila. Strikingly, from the broad range of pathways tested, we found that ribosomal protein S6 Kinase (S6K) activity, downstream of the TOR pathway, was the only factor rate-limiting for the rapid induction of rDNA transcription due to transiently increased MYC. Further, we demonstrated that one of the mechanism(s) by which MYC and S6K cooperate is through coordinate activation of the essential Pol I transcription initiation factor TIF-1A (RRN 3). As Pol I targeted therapy is now in phase 1 clinical trials in patients with haematological malignancies, including those driven by MYC, these data suggest that therapies dually targeting Pol I transcription and S6K activity may be effective in treating MYC-driven tumours.


Sujet(s)
ADN ribosomique/génétique , Drosophila melanogaster/génétique , Protéines proto-oncogènes c-myc/physiologie , Ribosomal Protein S6 Kinases/physiologie , Transcription génétique , Animaux , Nucléole/enzymologie , Nucléole/ultrastructure , Yeux composés des arthropodes/enzymologie , Yeux composés des arthropodes/ultrastructure , ADN ribosomique/métabolisme , Drosophila melanogaster/métabolisme , Protéines nucléaires/métabolisme , Glandes salivaires/enzymologie , Glandes salivaires/ultrastructure , Facteurs de transcription/métabolisme
16.
Nat Commun ; 6: 7404, 2015 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-26074141

RÉSUMÉ

Nucleotide excision DNA repair (NER) pathway mutations cause neurodegenerative and progeroid disorders (xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD)), which are inexplicably associated with (XP) or without (CS/TTD) cancer. Moreover, cancer progression occurs in certain patients, but not others, with similar C-terminal mutations in the XPB helicase subunit of transcription and NER factor TFIIH. Mechanisms driving overproliferation and, therefore, cancer associated with XPB mutations are currently unknown. Here using Drosophila models, we provide evidence that C-terminally truncated Hay/XPB alleles enhance overgrowth dependent on reduced abundance of RNA recognition motif protein Hfp/FIR, which transcriptionally represses the MYC oncogene homologue, dMYC. The data demonstrate that dMYC repression and dMYC-dependent overgrowth in the Hfp hypomorph is further impaired in the C-terminal Hay/XPB mutant background. Thus, we predict defective transcriptional repression of MYC by the Hfp orthologue, FIR, might provide one mechanism for cancer progression in XP/CS.


Sujet(s)
Prolifération cellulaire/génétique , Protéines de liaison à l'ADN/génétique , Protéines de Drosophila/génétique , Facteurs d'échange de nucléotides guanyliques/génétique , Facteurs de transcription/génétique , Animaux , Immunoprécipitation de la chromatine , Helicase/génétique , Drosophila melanogaster , Régulation de l'expression des gènes , Immunohistochimie , Mutation , Transcription génétique , Xeroderma pigmentosum/génétique
17.
Genetics ; 196(2): 443-53, 2014 Feb.
Article de Anglais | MEDLINE | ID: mdl-24336747

RÉSUMÉ

The essential zinc finger protein ASCIZ (also known as ATMIN, ZNF822) plays critical roles during lung organogenesis and B cell development in mice, where it regulates the expression of dynein light chain (DYNLL1/LC8), but its functions in other species including invertebrates are largely unknown. Here we report the identification of the Drosophila ortholog of ASCIZ (dASCIZ) and show that loss of dASCIZ function leads to pronounced mitotic delays with centrosome and spindle positioning defects during development, reminiscent of impaired dynein motor functions. Interestingly, similar mitotic and developmental defects were observed upon knockdown of the DYNLL/LC8-type dynein light chain Cutup (Ctp), and dASCIZ loss-of-function phenotypes could be suppressed by ectopic Ctp expression. Consistent with a genetic function of dASCIZ upstream of Ctp, we show that loss of dASCIZ led to reduced endogenous Ctp mRNA and protein levels and dramatically reduced Ctp-LacZ reporter gene activity in vivo, indicating that dASCIZ regulates development and mitosis as a Ctp transcription factor. We speculate that the more severe mitotic defects in the absence of ASCIZ in flies compared to mice may be due to redundancy with a second, ASCIZ-independent, Dynll2 gene in mammals in contrast to a single Ctp gene in Drosophila. Altogether, our data demonstrate that ASCIZ is an evolutionary highly conserved transcriptional regulator of dynein light-chain levels and a novel regulator of mitosis in flies.


Sujet(s)
Drosophila/génétique , Drosophila/métabolisme , Dynéines/génétique , Régulation de l'expression des gènes , Mitose , Doigts de zinc/physiologie , Animaux , Apoptose/génétique , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Dynéines/métabolisme , Femelle , Techniques de knock-down de gènes , Larve/génétique , Larve/métabolisme , Mâle , Organogenèse/génétique , Phénotype , Interférence par ARN , Appareil du fuseau/génétique , Appareil du fuseau/métabolisme , Ailes d'animaux/croissance et développement
18.
BMC Dev Biol ; 13: 28, 2013 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-23848468

RÉSUMÉ

BACKGROUND: Ecdysone triggers transcriptional changes via the ecdysone receptor (EcR) to coordinate developmental programs of apoptosis, cell cycle and differentiation. Data suggests EcR affects cell cycle gene expression indirectly and here we identify Wingless as an intermediary factor linking EcR to cell cycle. RESULTS: We demonstrate EcR patterns cell cycle across the presumptive Drosophila wing margin by constraining wg transcription to modulate CycB expression, but not the previously identified Wg-targets dMyc or Stg. Furthermore co-knockdown of Wg restores CycB patterning in EcR knockdown clones. Wg is not a direct target of EcR, rather we demonstrate that repression of Wg by EcR is likely mediated by direct interaction between the EcR-responsive zinc finger transcription factor Crol and the wg promoter. CONCLUSIONS: Thus we elucidate a critical mechanism potentially connecting ecdysone with patterning signals to ensure correct timing of cell cycle exit and differentiation during margin wing development.


Sujet(s)
Cycle cellulaire , Cycline B/métabolisme , Protéines de Drosophila/génétique , Drosophila/métabolisme , Récepteurs aux stéroïdes/métabolisme , Récepteurs aux stéroïdes/physiologie , Protéine Wnt1/génétique , Animaux , Ailes d'animaux/métabolisme
19.
Adv Exp Med Biol ; 786: 269-85, 2013.
Article de Anglais | MEDLINE | ID: mdl-23696362

RÉSUMÉ

The Myc family proteins are key regulators of animal growth and development, which have critical roles in modulating stem cell behaviour. Since the identification of the oncogenic potential of c-Myc in the early 1980s the mammalian Myc family, which is comprised of c-Myc, N-Myc, and L-Myc, has been studied extensively. dMyc, the only Drosophila member of the Myc gene family, is orthologous to the mammalian c-Myc oncoprotein. Here we discuss key studies addressing the function of the Myc family in stem cell behaviour in both Drosophila Models and mammalian systems.


Sujet(s)
Protéines de liaison à l'ADN/génétique , Protéines de Drosophila/génétique , Drosophila melanogaster/génétique , Régulation de l'expression des gènes au cours du développement , Cellules souches/métabolisme , Facteurs de transcription/génétique , Animaux , Différenciation cellulaire , Prolifération cellulaire , Transformation cellulaire néoplasique/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de Drosophila/métabolisme , Drosophila melanogaster/croissance et développement , Drosophila melanogaster/métabolisme , Cellules épithéliales/cytologie , Cellules épithéliales/métabolisme , Cellules souches hématopoïétiques/cytologie , Cellules souches hématopoïétiques/métabolisme , Mammifères , microARN/génétique , microARN/métabolisme , Cellules souches neurales/cytologie , Cellules souches neurales/métabolisme , Phase S , Transduction du signal , Cellules souches/cytologie , Facteurs de transcription/métabolisme
20.
Cells ; 1(4): 1182-96, 2012 Dec 05.
Article de Anglais | MEDLINE | ID: mdl-24710550

RÉSUMÉ

Animal growth requires coordination of cell growth and cell cycle progression with developmental signaling. Loss of cell cycle control is extremely detrimental, with reduced cycles leading to impaired organ growth and excessive proliferation, potentially resulting in tissue overgrowth and driving tumour initiation. Due to the high level of conservation between the cell cycle machinery of Drosophila and humans, the appeal of the fly model continues to be the means with which we can use sophisticated genetics to provide novel insights into mammalian growth and cell cycle control. Over the last decade, there have been major additions to the genetic toolbox to study development in Drosophila. Here we discuss some of the approaches available to investigate the potent growth and cell cycle properties of the Drosophila counterparts of prominent cancer genes, with a focus on the c-Myc oncoprotein and the tumour suppressor protein FIR (Hfp in flies), which behaves as a transcriptional repressor of c-Myc.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...