Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 22
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Proc Natl Acad Sci U S A ; 120(7): e2215230120, 2023 02 14.
Article de Anglais | MEDLINE | ID: mdl-36749722

RÉSUMÉ

The dorsal (DS) and ventral striatum (VS) receive dopaminergic projections that control motor functions and reward-related behavior. It remains poorly understood how dopamine release dynamics across different temporal scales in these regions are coupled to behavioral outcomes. Here, we employ the dopamine sensor dLight1.3b together with multiregion fiber photometry and machine learning-based analysis to decode dopamine dynamics across the striatum during self-paced exploratory behavior in mice. Our data show a striking coordination of rapidly fluctuating signal in the DS, carrying information across dopamine levels, with a slower signal in the VS, consisting mainly of slow-paced transients. Importantly, these release dynamics correlated with discrete behavioral motifs, such as turns, running, and grooming on a subsecond-to-minute time scale. Disruption of dopamine dynamics with cocaine caused randomization of action selection sequencing and disturbance of DS-VS coordination. The data suggest that distinct dopamine dynamics of DS and VS jointly encode behavioral sequences during unconstrained activity with DS modulating the stringing together of actions and VS the signal to initiate and sustain the selected action.


Sujet(s)
Cocaïne , Striatum ventral , Souris , Animaux , Dopamine , Récompense
2.
Cell Rep ; 40(13): 111431, 2022 09 27.
Article de Anglais | MEDLINE | ID: mdl-36170827

RÉSUMÉ

The nanoscopic organization and regulation of individual molecular components in presynaptic varicosities of neurons releasing modulatory volume neurotransmitters like dopamine (DA) remain largely elusive. Here we show, by application of several super-resolution microscopy techniques to cultured neurons and mouse striatal slices, that the DA transporter (DAT), a key protein in varicosities of dopaminergic neurons, exists in the membrane in dynamic equilibrium between an inward-facing nanodomain-localized and outward-facing unclustered configuration. The balance between these configurations is inversely regulated by excitatory drive and DA D2 autoreceptor activation in a manner dependent on Ca2+ influx via N-type voltage-gated Ca2+ channels. The DAT nanodomains contain tens of transporters molecules and overlap with nanodomains of PIP2 (phosphatidylinositol-4,5-bisphosphate) but show little overlap with D2 autoreceptor, syntaxin-1, and clathrin nanodomains. The data reveal a mechanism for rapid alterations of nanoscopic DAT distribution and show a striking link of this to the conformational state of the transporter.


Sujet(s)
Autorécepteurs , Transporteurs de la dopamine , Animaux , Autorécepteurs/métabolisme , Clathrine/métabolisme , Dopamine/métabolisme , Transporteurs de la dopamine/métabolisme , Neurones dopaminergiques/métabolisme , Souris , Phosphatidyl inositols/métabolisme , Protéines Qa-SNARE/métabolisme
4.
JCI Insight ; 6(18)2021 09 22.
Article de Anglais | MEDLINE | ID: mdl-34375312

RÉSUMÉ

Dysfunctional dopaminergic neurotransmission is central to movement disorders and mental diseases. The dopamine transporter (DAT) regulates extracellular dopamine levels, but the genetic and mechanistic link between DAT function and dopamine-related pathologies is not clear. Particularly, the pathophysiological significance of monoallelic missense mutations in DAT is unknown. Here, we use clinical information, neuroimaging, and large-scale exome-sequencing data to uncover the occurrence and phenotypic spectrum of a DAT coding variant, DAT-K619N, which localizes to the critical C-terminal PSD-95/Discs-large/ZO-1 homology-binding motif of human DAT (hDAT). We identified the rare but recurrent hDAT-K619N variant in exome-sequenced samples of patients with neuropsychiatric diseases and a patient with early-onset neurodegenerative parkinsonism and comorbid neuropsychiatric disease. In cell cultures, hDAT-K619N displayed reduced uptake capacity, decreased surface expression, and accelerated turnover. Unilateral expression in mouse nigrostriatal neurons revealed differential effects of hDAT-K619N and hDAT-WT on dopamine-directed behaviors, and hDAT-K619N expression in Drosophila led to impairments in dopamine transmission with accompanying hyperlocomotion and age-dependent disturbances of the negative geotactic response. Moreover, cellular studies and viral expression of hDAT-K619N in mice demonstrated a dominant-negative effect of the hDAT-K619N mutant. Summarized, our results suggest that hDAT-K619N can effectuate dopamine dysfunction of pathological relevance in a dominant-negative manner.


Sujet(s)
Transporteurs de la dopamine/génétique , Transporteurs de la dopamine/métabolisme , Dopamine/métabolisme , Troubles mentaux/génétique , Neurones/métabolisme , Syndromes parkinsoniens/génétique , Adulte , Animaux , Comportement animal , Transport biologique , Cellules cultivées , Bases de données génétiques , Drosophila , Exome , Femelle , Humains , Hypocinésie/imagerie diagnostique , Hypocinésie/génétique , Hypocinésie/métabolisme , Mâle , Troubles mentaux/métabolisme , Mésencéphale/métabolisme , Souris , Adulte d'âge moyen , Activité motrice/génétique , Mutation , Syndromes parkinsoniens/imagerie diagnostique , Syndromes parkinsoniens/métabolisme , Phénotype , Transmission synaptique , Tomographie par émission monophotonique , Transfection
5.
EMBO Mol Med ; 12(6): e11248, 2020 06 08.
Article de Anglais | MEDLINE | ID: mdl-32352640

RÉSUMÉ

Maladaptive plasticity involving increased expression of AMPA-type glutamate receptors is involved in several pathologies, including neuropathic pain, but direct inhibition of AMPARs is associated with side effects. As an alternative, we developed a cell-permeable, high-affinity (~2 nM) peptide inhibitor, Tat-P4 -(C5)2 , of the PDZ domain protein PICK1 to interfere with increased AMPAR expression. The affinity is obtained partly from the Tat peptide and partly from the bivalency of the PDZ motif, engaging PDZ domains from two separate PICK1 dimers to form a tetrameric complex. Bivalent Tat-P4 -(C5)2 disrupts PICK1 interaction with membrane proteins on supported cell membrane sheets and reduce the interaction of AMPARs with PICK1 and AMPA-receptor surface expression in vivo. Moreover, Tat-P4 -(C5)2 administration reduces spinal cord transmission and alleviates mechanical hyperalgesia in the spared nerve injury model of neuropathic pain. Taken together, our data reveal Tat-P4 -(C5)2 as a novel promising lead for neuropathic pain treatment and expand the therapeutic potential of bivalent inhibitors to non-tandem protein-protein interaction domains.


Sujet(s)
Névralgie , Domaines PDZ , Protéines de transport/métabolisme , Humains , Névralgie/traitement médicamenteux , Protéines nucléaires/métabolisme , Récepteur de l'AMPA/métabolisme
6.
Cell ; 181(2): 410-423.e17, 2020 04 16.
Article de Anglais | MEDLINE | ID: mdl-32187527

RÉSUMÉ

Memories are believed to be encoded by sparse ensembles of neurons in the brain. However, it remains unclear whether there is functional heterogeneity within individual memory engrams, i.e., if separate neuronal subpopulations encode distinct aspects of the memory and drive memory expression differently. Here, we show that contextual fear memory engrams in the mouse dentate gyrus contain functionally distinct neuronal ensembles, genetically defined by the Fos- or Npas4-dependent transcriptional pathways. The Fos-dependent ensemble promotes memory generalization and receives enhanced excitatory synaptic inputs from the medial entorhinal cortex, which we find itself also mediates generalization. The Npas4-dependent ensemble promotes memory discrimination and receives enhanced inhibitory drive from local cholecystokinin-expressing interneurons, the activity of which is required for discrimination. Our study provides causal evidence for functional heterogeneity within the memory engram and reveals synaptic and circuit mechanisms used by each ensemble to regulate the memory discrimination-generalization balance.


Sujet(s)
Peur/physiologie , Mémoire/physiologie , Neurones/métabolisme , Animaux , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Encéphale/physiologie , Gyrus denté/physiologie , Interneurones/physiologie , Mâle , Souris , Souris de lignée C57BL , Neurones/physiologie , Protéines proto-oncogènes c-fos/métabolisme
7.
Article de Anglais | MEDLINE | ID: mdl-30529002

RÉSUMÉ

Attention-deficit/hyperactivity disorder (ADHD) is a psychiatric disorder characterized by inattention, aberrant impulsivity, and hyperactivity. Although the underlying pathophysiology of ADHD remains unclear, dopamine and norepinephrine signaling originating from the ventral tegmental area (VTA) and locus coeruleus (LC) is thought to be critically involved. In this study, we employ Designer Receptor Exclusively Activated by Designer Drugs (DREADDs) together with the mouse 5-Choice Serial Reaction Time Task (5-CSRTT) to investigate the necessary roles of these catecholamines in ADHD-related behaviors, including attention, impulsivity, and motivation. By selective inhibition of tyrosine hydroxylase (TH)-positive VTA dopamine neurons expressing the Gi-coupled DREADD (hM4Di), we observed a marked impairment of effort-based motivation and subsequently speed and overall vigor of responding. At the highest clozapine N-oxide (CNO) dose tested (i.e. 2 mg/kg) to activate hM4Di, we detected a reduction in locomotor activity. DREADD-mediated inhibition of LC norepinephrine neurons reduced attentional performance in a variable stimulus duration test designed to increase task difficulty, specifically by increasing trials omissions, reducing mean score, and visual processing speed. These findings show that VTA dopamine and LC norepinephrine neurons differentially affect attention, impulsive and motivational control. In addition, this study highlights how molecular genetic probing of selective catecholamine circuits can provide valuable insights into the mechanisms underlying ADHD-relevant behaviors.


Sujet(s)
Dopamine/métabolisme , Neurones/métabolisme , Norépinéphrine/métabolisme , Animaux , Attention/effets des médicaments et des substances chimiques , Attention/physiologie , Techniques génétiques , Comportement impulsif/effets des médicaments et des substances chimiques , Comportement impulsif/physiologie , Mâle , Souris de lignée C57BL , Souris transgéniques , Motivation/effets des médicaments et des substances chimiques , Motivation/physiologie , Activité motrice/effets des médicaments et des substances chimiques , Activité motrice/physiologie , Neurones/effets des médicaments et des substances chimiques , Tests neuropsychologiques , Récepteurs de surface cellulaire/génétique , Récepteurs de surface cellulaire/métabolisme , Aire tegmentale ventrale/effets des médicaments et des substances chimiques , Aire tegmentale ventrale/métabolisme
8.
eNeuro ; 5(3)2018.
Article de Anglais | MEDLINE | ID: mdl-29938215

RÉSUMÉ

Dopamine plays a key role in the cellular and behavioral responses to drugs of abuse, but the implication of metabotropic regulatory input to dopaminergic neurons on acute drug effects and subsequent drug-related behavior remains unclear. Here, we used chemogenetics [Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)] to modulate dopamine signaling and activity before cocaine administration in mice. We show that chemogenetic inhibition of dopaminergic ventral tegmental area (VTA) neurons differentially affects locomotor and reward-related behavioral responses to cocaine. Stimulation of Gi-coupled DREADD (hM4Di) expressed in dopaminergic VTA neurons persistently reduced the locomotor response to repeated cocaine injections. An attenuated locomotor response was seen even when a dual-viral vector approach was used to restrict hM4Di expression to dopaminergic VTA neurons projecting to the nucleus accumbens. Surprisingly, despite the attenuated locomotor response, hM4Di-mediated inhibition of dopaminergic VTA neurons did not prevent cocaine sensitization, and the inhibitory effect of hM4Di-mediated inhibition was eliminated after withdrawal. In the conditioned place-preference paradigm, hM4Di-mediated inhibition did not affect cocaine-induced place preference; however, the extinction period was extended. Also, hM4Di-mediated inhibition had no effect on preference for a sugar-based reward over water but impaired motivation to work for the same reward in a touchscreen-based motivational assay. In addition, to support that VTA dopaminergic neurons operate as regulators of reward motivation toward both sugar and cocaine, our data suggest that repeated cocaine exposure leads to adaptations in the VTA that surmount the ability of Gi-signaling to suppress and regulate VTA dopaminergic neuronal activity.


Sujet(s)
Cocaïne/administration et posologie , Neurones dopaminergiques/métabolisme , Sous-unités alpha Gi-Go des protéines G/métabolisme , Locomotion , Récompense , Aire tegmentale ventrale/métabolisme , Animaux , Comportement animal/effets des médicaments et des substances chimiques , Conditionnement classique , Neurones dopaminergiques/effets des médicaments et des substances chimiques , Comportement de recherche de substances , Femelle , Mâle , Souris , Motivation , Transduction du signal , Aire tegmentale ventrale/effets des médicaments et des substances chimiques
9.
Basic Clin Pharmacol Toxicol ; 121(5): 373-381, 2017 Nov.
Article de Anglais | MEDLINE | ID: mdl-28609587

RÉSUMÉ

Attention is a fundamental cognitive process involved in nearly all aspects of life. Abnormal attentional control is a symptom of many neurological disorders, most notably recognized in ADHD (attention deficit hyperactivity disorder). Although attentional performance and its malfunction has been a major area of investigation, it has proven difficult to accurately associate specific neuronal projections, cell types, neurotransmitter systems and receptors with distinct phenotypes owing to its complexity. In this MiniReview, we present a recently invented technology known as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). The DREADD technology is an emerging and transformative method that allows selective manipulation of G protein-coupled receptor (GPCR) signalling, and its broad-ranging usefulness in attention research is now beginning to emerge. We first describe the different DREADDs available and explain how unprecedented specificity of neuronal signalling can be achieved using DREADDs. We next discuss various studies performed in animal models of visual attention, where different brain regions and neuronal populations have been probed by DREADDs. We highlight the interplay between the dopamine (DA) and noradrenaline (NA) catecholamine systems in visual attention and explain why DREADD technology can untangle and help us better understand such complex systems in normal and malfunctioning conditions.


Sujet(s)
Attention/effets des médicaments et des substances chimiques , Conception de médicament , Récepteurs couplés aux protéines G/effets des médicaments et des substances chimiques , Animaux , Attention/physiologie , Trouble déficitaire de l'attention avec hyperactivité/génétique , Trouble déficitaire de l'attention avec hyperactivité/physiopathologie , Encéphale/métabolisme , Modèles animaux de maladie humaine , Dopamine/métabolisme , Humains , Norépinéphrine/métabolisme , Récepteurs couplés aux protéines G/génétique , Transduction du signal
10.
eNeuro ; 4(6)2017.
Article de Anglais | MEDLINE | ID: mdl-29379872

RÉSUMÉ

Chloride ions play an important role in controlling excitability of principal neurons in the central nervous system. When neurotransmitter GABA is released from inhibitory interneurons, activated GABA type A (GABAA) receptors on principal neurons become permeable to chloride. Typically, chloride flows through activated GABAA receptors into the neurons causing hyperpolarization or shunting inhibition, and in turn inhibits action potential (AP) generation. However, in situations when intracellular chloride concentration is increased, chloride ions can flow in opposite direction, depolarize neurons, and promote AP generation. It is generally recognized that altered chloride homeostasis per se has no effect on the AP threshold. Here, we demonstrate that chloride overload of mouse principal CA3 pyramidal neurons not only makes these cells more excitable through GABAA receptor activation but also lowers the AP threshold, further aggravating excitability. This phenomenon has not been described in principal neurons and adds to our understanding of mechanisms regulating neuronal and network excitability, particularly in developing brain and during pathological situations with altered chloride homeostasis. This finding further broadens the spectrum of neuronal plasticity regulated by ionic compositions across the cellular membrane.


Sujet(s)
Potentiels d'action/physiologie , Région CA3 de l'hippocampe/métabolisme , Chlorures/métabolisme , Homéostasie/physiologie , Neurones/métabolisme , Animaux , Femelle , Souris , Optogénétique , Récepteurs GABA-A/métabolisme , Techniques de culture de tissus
11.
Elife ; 52016 Sep 23.
Article de Anglais | MEDLINE | ID: mdl-27661450

RÉSUMÉ

Understanding how the brain captures transient experience and converts it into long lasting changes in neural circuits requires the identification and investigation of the specific ensembles of neurons that are responsible for the encoding of each experience. We have developed a Robust Activity Marking (RAM) system that allows for the identification and interrogation of ensembles of neurons. The RAM system provides unprecedented high sensitivity and selectivity through the use of an optimized synthetic activity-regulated promoter that is strongly induced by neuronal activity and a modified Tet-Off system that achieves improved temporal control. Due to its compact design, RAM can be packaged into a single adeno-associated virus (AAV), providing great versatility and ease of use, including application to mice, rats, flies, and potentially many other species. Cre-dependent RAM, CRAM, allows for the study of active ensembles of a specific cell type and anatomical connectivity, further expanding the RAM system's versatility.

12.
J Neurosci ; 35(26): 9622-31, 2015 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-26134645

RÉSUMÉ

Development of novel disease-modifying treatment strategies for neurological disorders, which at present have no cure, represents a major challenge for today's neurology. Translation of findings from animal models to humans represents an unresolved gap in most of the preclinical studies. Gene therapy is an evolving innovative approach that may prove useful for clinical applications. In animal models of temporal lobe epilepsy (TLE), gene therapy treatments based on viral vectors encoding NPY or galanin have been shown to effectively suppress seizures. However, how this translates to human TLE remains unknown. A unique possibility to validate these animal studies is provided by a surgical therapeutic approach, whereby resected epileptic tissue from temporal lobes of pharmacoresistant patients are available for neurophysiological studies in vitro. To test whether NPY and galanin have antiepileptic actions in human epileptic tissue as well, we applied these neuropeptides directly to human hippocampal slices in vitro. NPY strongly decreased stimulation-induced EPSPs in dentate gyrus and CA1 (up to 30 and 55%, respectively) via Y2 receptors, while galanin had no significant effect. Receptor autoradiographic binding revealed the presence of both NPY and galanin receptors, while functional receptor binding was only detected for NPY, suggesting that galanin receptor signaling may be impaired. These results underline the importance of validating findings from animal studies in human brain tissue, and advocate for NPY as a more appropriate candidate than galanin for future gene therapy trials in pharmacoresistant TLE patients.


Sujet(s)
Épilepsie/anatomopathologie , Galanine/pharmacologie , Hippocampe/effets des médicaments et des substances chimiques , Neuropeptide Y/pharmacologie , Synapses/effets des médicaments et des substances chimiques , Transmission synaptique/effets des médicaments et des substances chimiques , Adolescent , Adulte , Potentiels post-synaptiques excitateurs/effets des médicaments et des substances chimiques , Femelle , Guanosine 5'-O-(3-thiotriphosphate)/pharmacocinétique , Hippocampe/anatomopathologie , Humains , Techniques in vitro , Mâle , Potentiels de membrane/effets des médicaments et des substances chimiques , Protéines associées aux microtubules , Adulte d'âge moyen , Techniques de patch-clamp , Dosage par compétition , Récepteurs à la galanine/métabolisme , Récepteur neuropeptide Y/métabolisme , Isotopes du soufre/pharmacocinétique , Jeune adulte
13.
Nat Neurosci ; 17(8): 1123-9, 2014 Aug.
Article de Anglais | MEDLINE | ID: mdl-24997763

RÉSUMÉ

Optogenetic inhibition of the electrical activity of neurons enables the causal assessment of their contributions to brain functions. Red light penetrates deeper into tissue than other visible wavelengths. We present a red-shifted cruxhalorhodopsin, Jaws, derived from Haloarcula (Halobacterium) salinarum (strain Shark) and engineered to result in red light-induced photocurrents three times those of earlier silencers. Jaws exhibits robust inhibition of sensory-evoked neural activity in the cortex and results in strong light responses when used in retinas of retinitis pigmentosa model mice. We also demonstrate that Jaws can noninvasively mediate transcranial optical inhibition of neurons deep in the brains of awake mice. The noninvasive optogenetic inhibition opened up by Jaws enables a variety of important neuroscience experiments and offers a powerful general-use chloride pump for basic and applied neuroscience.


Sujet(s)
Chimie du cerveau/physiologie , Halobacterium salinarum/physiologie , Halorhodopsines/physiologie , Inhibition nerveuse/physiologie , Neurones/physiologie , Optogénétique/méthodes , Animaux , Souris , Données de séquences moléculaires , Rétine/physiologie
14.
Epilepsia ; 54(1): 1-10, 2013 Jan.
Article de Anglais | MEDLINE | ID: mdl-23106744

RÉSUMÉ

The aim of epilepsy treatment is to achieve complete seizure freedom. Nonetheless, numerous side effects and seizure resistance to antiepileptic drugs (AEDs) affecting about 30-40% of all patients are main unmet needs in today's epileptology. For this reason, novel approaches to treat epilepsy are highly needed. Herein, we highlight recent progress in stem-cell-based and gene transfer-based therapies in epilepsy according to findings in animal models and address their potential clinical application. Multiple therapeutic targets are described, including neuropeptides, neurotrophic factors, and inhibitory neurotransmitters. We also address new molecular-genetic approaches utilizing optogenetic technology. The therapeutic strategies presented herein are predominately aimed toward treatment of partial/focal epilepsies, but could also be envisaged for targeting key seizure propagation areas in the brain. These novel strategies provide proof-of-principle for developing effective treatments for refractory epilepsy in the foreseeable future.


Sujet(s)
Épilepsie/thérapie , Animaux , Épilepsies partielles/génétique , Épilepsies partielles/thérapie , Épilepsie/génétique , Galanine/génétique , Techniques de transfert de gènes , Thérapie génétique , Humains , Facteurs de croissance nerveuse/génétique , Neuropeptide Y/génétique , Transplantation de cellules souches
15.
Neurobiol Dis ; 45(1): 288-96, 2012 Jan.
Article de Anglais | MEDLINE | ID: mdl-21884793

RÉSUMÉ

We recently demonstrated that recombinant adeno-associated viral vector-induced hippocampal overexpression of neuropeptide Y receptor, Y2, exerts a seizure-suppressant effect in kindling and kainate-induced models of epilepsy in rats. Interestingly, additional overexpression of neuropeptide Y in the hippocampus strengthened the seizure-suppressant effect of transgene Y2 receptors. Here we show for the first time that another neuropeptide Y receptor, Y5, can also be overexpressed in the hippocampus. However, unlike Y2 receptor overexpression, transgene Y5 receptors in the hippocampus had no effect on kainate-induced motor seizures in rats. However, combined overexpression of Y5 receptors and neuropeptide Y exerted prominent suppression of seizures. This seizure-suppressant effect of combination gene therapy with Y5 receptors and neuropeptide Y was significantly stronger as compared to neuropeptide Y overexpression alone. These results suggest that overexpression of Y5 receptors in combination with neuropeptide Y could be an alternative approach for more effective suppression of hippocampal seizures.


Sujet(s)
Hippocampe/métabolisme , Embrasement/génétique , Neuropeptide Y/génétique , Récepteur neuropeptide Y/génétique , Crises épileptiques/génétique , Animaux , Acide kaïnique , Embrasement/métabolisme , Mâle , Neurones/métabolisme , Neuropeptide Y/métabolisme , Rats , Rats transgéniques , Rat Wistar , Récepteur neuropeptide Y/métabolisme , Crises épileptiques/induit chimiquement , Crises épileptiques/métabolisme
16.
PLoS One ; 6(3): e17560, 2011 Mar 04.
Article de Anglais | MEDLINE | ID: mdl-21394212

RÉSUMÉ

Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinson's disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D2 autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD.


Sujet(s)
Dopamine/métabolisme , Modèles biologiques , Cellules souches neurales/transplantation , Neurones/transplantation , Optique et photonique/méthodes , Maladie de Parkinson/thérapie , Potentiels d'action/physiologie , Animaux , Forme de la cellule , Channelrhodopsines , Techniques in vitro , Mésencéphale/anatomopathologie , Mésencéphale/physiopathologie , Souris , Cellules souches neurales/cytologie , Neurones/cytologie , Maladie de Parkinson/physiopathologie , Synapses/métabolisme
17.
Brain ; 133(9): 2778-88, 2010 Sep.
Article de Anglais | MEDLINE | ID: mdl-20688813

RÉSUMÉ

Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is predominantly mediated by Y2 receptors, which, together with neuropeptide Y, are upregulated after seizures as a compensatory mechanism. To explore whether such upregulation could prevent seizures, we overexpressed Y2 receptors in the hippocampus using recombinant adeno-associated viral vectors. In two temporal lobe epilepsy models, electrical kindling and kainate-induced seizures, vector-based transduction of Y2 receptor complementary DNA in the hippocampus of adult rats exerted seizure-suppressant effects. Simultaneous overexpression of Y2 and neuropeptide Y had a more pronounced seizure-suppressant effect. These results demonstrate that overexpression of Y2 receptors (alone or in combination with neuropeptide Y) could be an alternative strategy for epilepsy treatment.


Sujet(s)
Thérapie génétique/méthodes , Hippocampe/métabolisme , Récepteur neuropeptide Y/usage thérapeutique , Crises épileptiques/anatomopathologie , Crises épileptiques/thérapie , Analyse de variance , Animaux , Modèles animaux de maladie humaine , Stimulation électrique/effets indésirables , Vecteurs génétiques/physiologie , Guanosine 5'-O-(3-thiotriphosphate)/pharmacocinétique , Acide kaïnique/effets indésirables , Embrasement/génétique , Embrasement/physiologie , Mâle , Liaison aux protéines/génétique , Radiographie/méthodes , Rats , Rat Sprague-Dawley , Rat Wistar , Récepteur neuropeptide Y/génétique , Récepteur neuropeptide Y/métabolisme , Crises épileptiques/étiologie , Isotopes du soufre/pharmacocinétique , Transcription génétique/physiologie
18.
Proc Natl Acad Sci U S A ; 106(29): 12162-7, 2009 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-19581573

RÉSUMÉ

The optogenetic approach to gain control over neuronal excitability both in vitro and in vivo has emerged as a fascinating scientific tool to explore neuronal networks, but it also opens possibilities for developing novel treatment strategies for neurologic conditions. We have explored whether such an optogenetic approach using the light-driven halorhodopsin chloride pump from Natronomonas pharaonis (NpHR), modified for mammalian CNS expression to hyperpolarize central neurons, may inhibit excessive hyperexcitability and epileptiform activity. We show that a lentiviral vector containing the NpHR gene under the calcium/calmodulin-dependent protein kinase IIalpha promoter transduces principal cells of the hippocampus and cortex and hyperpolarizes these cells, preventing generation of action potentials and epileptiform activity during optical stimulation. This study proves a principle, that selective hyperpolarization of principal cortical neurons by NpHR is sufficient to curtail paroxysmal activity in transduced neurons and can inhibit stimulation train-induced bursting in hippocampal organotypic slice cultures, which represents a model tissue of pharmacoresistant epilepsy. This study demonstrates that the optogenetic approach may prove useful for controlling epileptiform activity and opens a future perspective to develop it into a strategy to treat epilepsy.


Sujet(s)
Épilepsie/physiopathologie , Phénomènes optiques , Potentiels d'action/effets des radiations , Animaux , Protéines d'archée/génétique , Protéines d'archée/métabolisme , Membrane cellulaire/métabolisme , Membrane cellulaire/effets des radiations , Régulation de l'expression des gènes/effets des radiations , Hippocampe/physiopathologie , Hippocampe/effets des radiations , Potentiels post-synaptiques inhibiteurs/effets des radiations , Lumière , Souris , Souris de lignée BALB C , Neurones/cytologie , Neurones/effets des radiations , Cellules pyramidales/physiopathologie , Cellules pyramidales/effets des radiations , Récepteurs GABA-A/métabolisme , Transduction du signal , Transduction génétique , Transgènes
19.
Exp Neurol ; 215(2): 328-33, 2009 Feb.
Article de Anglais | MEDLINE | ID: mdl-19038255

RÉSUMÉ

Recently, hippocampal neuropeptide Y (NPY) gene therapy has been shown to effectively suppress both acute and chronic seizures in animal model of epilepsy, thus representing a promising novel antiepileptic treatment strategy, particularly for patients with intractable mesial temporal lobe epilepsy (TLE). However, our previous studies show that recombinant adeno-associated viral (rAAV)-NPY treatment in naive rats attenuates long-term potentiation (LTP) and transiently impairs hippocampal learning process, indicating that negative effect on memory function could be a potential side effect of NPY gene therapy. Here we report how rAAV vector-mediated overexpression of NPY in the hippocampus affects rapid kindling, and subsequently explore how synaptic plasticity and transmission is affected by kindling and NPY overexpression by field recordings in CA1 stratum radiatum of brain slices. In animals injected with rAAV-NPY, we show that rapid kindling-induced hippocampal seizures in vivo are effectively suppressed as compared to rAAV-empty injected (control) rats. Six to nine weeks later, basal synaptic transmission and short-term synaptic plasticity are unchanged after rapid kindling, while LTP is significantly attenuated in vitro. Importantly, transgene NPY overexpression has no effect on short-term synaptic plasticity, and does not further compromise LTP in kindled animals. These data suggest that epileptic seizure-induced impairment of memory function in the hippocampus may not be further affected by rAAV-NPY treatment, and may be considered less critical for clinical application in epilepsy patients already experiencing memory disturbances.


Sujet(s)
Épilepsie/anatomopathologie , Épilepsie/thérapie , Thérapie génétique/méthodes , Hippocampe/effets des médicaments et des substances chimiques , Neuropeptide Y/usage thérapeutique , Analyse de variance , Animaux , Phénomènes biophysiques , Loi du khi-deux , Modèles animaux de maladie humaine , Stimulation électrique/effets indésirables , Électrodes implantées , Électroencéphalographie , Épilepsie/étiologie , Potentiels post-synaptiques excitateurs/effets des médicaments et des substances chimiques , Potentiels post-synaptiques excitateurs/physiologie , Potentialisation à long terme/effets des médicaments et des substances chimiques , Potentialisation à long terme/physiologie , Mâle , Neuropeptide Y/biosynthèse , Neuropeptide Y/génétique , Rats , Rat Sprague-Dawley , Transduction génétique
20.
Mol Cell Neurosci ; 39(2): 229-37, 2008 Oct.
Article de Anglais | MEDLINE | ID: mdl-18652899

RÉSUMÉ

Neuropeptide Y (NPY) gene transduction of the brain using viral vectors in epileptogenic regions can effectively suppress seizures in animals, and is being considered as a promising alternative treatment strategy for epilepsy. Therefore, it is fundamental to understand the detailed mechanisms governing the release and action of transgene NPY in neuronal circuitries. Using whole-cell recordings from subicular neurons, we show that in animals transduced by recombinant adeno-associated viral (rAAV) vector carrying the NPY gene, transgene NPY is released during high-frequency activation of CA1-subicular synapses. Released transgene NPY attenuates excitatory synaptic transmission not only in activated, but also in neighboring, non-activated synapses. Such broad action of transgene NPY may prevent recruitment of excitatory synapses in epileptic activity and could play a key role in limiting the spread and generalization of seizures.


Sujet(s)
Acide glutamique/métabolisme , Hippocampe/physiologie , Potentialisation à long terme/génétique , Neuropeptide Y/génétique , Transgènes/physiologie , Animaux , Animaux nouveau-nés , Arginine/analogues et dérivés , Arginine/pharmacologie , Benzazépines/pharmacologie , Phénomènes biophysiques , Loi du khi-deux , Stimulation électrique/méthodes , Potentiels post-synaptiques excitateurs/physiologie , Femelle , Antagonistes GABA/pharmacologie , Vecteurs génétiques/génétique , Protéines à fluorescence verte/génétique , Hippocampe/cytologie , Techniques in vitro , Potentialisation à long terme/physiologie , Mâle , Neurones/physiologie , Neuropeptide Y/métabolisme , Techniques de patch-clamp/méthodes , Enolase/génétique , Enolase/métabolisme , Picrotoxine/pharmacologie , Rats , Rat Sprague-Dawley , Récepteur neuropeptide Y/antagonistes et inhibiteurs , Tétrodotoxine/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...