Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Preprint de Anglais | medRxiv | ID: ppmedrxiv-21265499

RÉSUMÉ

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global crisis with unprecedented challenges for public health. Vaccinations against SARS-CoV-2 have slowed the incidence of new infections and reduced disease severity. As the time-of-day of vaccination has been reported to influence host immune responses to multiple pathogens, we quantified the influence of SARS-CoV-2 vaccination time, vaccine type, age, sex, and days post-vaccination on anti-Spike antibody responses in healthcare workers. The magnitude of the anti-Spike antibody response associated with the time-of-day of vaccination, vaccine type, participant age, sex, and days post vaccination. These results may be relevant for optimizing SARS-CoV-2 vaccine efficacy.

2.
Preprint de Anglais | medRxiv | ID: ppmedrxiv-21264956

RÉSUMÉ

ObjectiveTo describe the impact of the SARS-CoV-2 pandemic on the incidence of paediatric viral respiratory tract infection in Oxfordshire, UK. MethodsData on paediatric Emergency Department (ED) attendances (0-15 years inclusive), respiratory virus testing, vital signs and mortality at Oxford University Hospitals were summarised using descriptive statistics. ResultsBetween 1-March-2016 and 30-July-2021, 155,056 ED attendances occurred and 7,195 respiratory virus PCRs were performed. Detection of all pathogens was suppressed during the first national lockdown. Rhinovirus and adenovirus rates increased when schools reopened September-December 2020, then fell, before rising in March-May 2021. The usual winter RSV peak did not occur in 2020/21, with an inter-seasonal rise (32/1,000 attendances in 0-3yr olds) in July 2021. Influenza remained suppressed throughout. A higher Paediatric Early Warning Score (PEWS) was seen for attendees with adenovirus during the pandemic compared to pre-pandemic (p=0.04, Mann-Witney U test), no other differences in PEWS were seen. ConclusionsSARS-CoV-2 caused major changes in the incidence of paediatric respiratory viral infection in Oxfordshire, with implications for clinical service demand, testing strategies, timing of palivizumab RSV prophylaxis, and highlighting the need to understand which public health interventions are most effective for preventing respiratory virus infections.

3.
Preprint de Anglais | medRxiv | ID: ppmedrxiv-21259028

RÉSUMÉ

BackgroundDespite robust efforts, patients and staff acquire SARS-CoV-2 infection in hospitals. In this retrospective cohort study, we investigated whether whole-genome sequencing (WGS) could enhance the epidemiological investigation of healthcare-associated SARS-CoV-2 acquisition. Methods and findingsFrom 17-November-2020 to 5-January-2021, 803 inpatients and 329 staff were diagnosed with SARS-CoV-2 infection across four teaching hospitals in Oxfordshire, UK. We classified cases according to epidemiological definitions, sought epidemiological evidence of a potential source for each nosocomial infection, and evaluated if epidemiologically-linked cases had genomic evidence supporting transmission. We compared epidemiological and genomic outbreak identification. Using national epidemiological definitions, 109/803 (14%) inpatient infections were classified as definite/probable nosocomial, 615 (77%) as community-acquired and 79 (10%) as indeterminate. There was strong epidemiological evidence to support definite/probable cases as nosocomial: 107/109 (98%) had a prior-negative PCR in the same hospital stay before testing positive, and 101(93%) shared time and space with known infected patients/staff. Many indeterminate cases were likely infected in hospital: 53/79 (67%) had a prior-negative PCR and 75 (95%) contact with a potential source. 89/615 (11% of all 803 patients) with apparent community-onset had a recent hospital exposure. WGS highlighted SARS-CoV-2 is mainly imported into hospitals: within 764 samples sequenced 607 genomic clusters were identified (>1 SNP distinct). Only 43/607 (7%) clusters contained evidence of onward transmission (subsequent cases within [≤]1 SNP). 20/21 epidemiologically-identified outbreaks contained multiple genomic introductions. Most (80%) nosocomial acquisition occurred in rapid super-spreading events in settings with a mix of COVID-19 and non-COVID-19 patients. Hospitals not routinely admitting COVID-19 patients had low rates of transmission. Undiagnosed/unsequenced individuals prevent genomic data from excluding nosocomial acquisition. ConclusionsOur findings suggest current surveillance definitions underestimate nosocomial acquisition and reveal most nosocomial transmission occurs from a relatively limited number of highly infectious individuals.

4.
Preprint de Anglais | medRxiv | ID: ppmedrxiv-21256571

RÉSUMÉ

It is unclear whether prior endemic coronavirus infections affect COVID-19 severity. Here, we show that in cases of fatal COVID-19, antibody responses to the SARS-COV-2 spike are directed against epitopes shared with endemic beta-coronaviruses in the S2 subunit of the SARS-CoV-2 spike protein. This immune response is associated with the compromised production of a de novo SARS-CoV-2 spike response among individuals with fatal COVID-19 outcomes.

5.
Preprint de Anglais | medRxiv | ID: ppmedrxiv-21254061

RÉSUMÉ

ObjectivesWe investigate determinants of SARS-CoV-2 anti-spike IgG responses in healthcare workers (HCWs) following one or two doses of Pfizer-BioNTech or Oxford-AstraZeneca vaccines. MethodsHCWs participating in regular SARS-CoV-2 PCR and antibody testing were invited for serological testing prior to first and second vaccination, and 4 weeks post-vaccination if receiving a 12-week dosing interval. Quantitative post-vaccination anti-spike antibody responses were measured using the Abbott SARS-CoV-2 IgG II Quant assay (detection threshold: [≥]50 AU/ml). We used multivariable logistic regression to identify predictors of seropositivity and generalised additive models to track antibody responses over time. ResultsVaccine uptake was 80%, but less in lower-paid roles and Black, south Asian and minority ethnic groups. 3570/3610(98.9%) HCWs were seropositive >14 days post-first vaccination and prior to second vaccination, 2706/2720(99.5%) after Pfizer-BioNTech and 864/890(97.1%) following Oxford-AstraZeneca vaccines. Previously infected and younger HCWs were more likely to test seropositive post-first vaccination, with no evidence of differences by sex or ethnicity. All 470 HCWs tested >14 days after second vaccine were seropositive. Quantitative antibody responses were higher after previous infection: median(IQR) >21 days post-first Pfizer-BioNTech 14,604(7644-22,291) AU/ml vs. 1028(564-1985) AU/ml without prior infection (p<0.001). Oxford-AstraZeneca vaccine recipients had lower readings post-first dose compared to Pfizer-BioNTech, with and without previous infection, 10,095(5354-17,096) and 435(203-962) AU/ml respectively (both p<0.001 vs. Pfizer-BioNTech). Antibody responses post-second vaccination were similar to those after prior infection and one vaccine dose. ConclusionsVaccination leads to detectable anti-spike antibodies in nearly all adult HCWs. Whether differences in response impact vaccine efficacy needs further study.

6.
Preprint de Anglais | medRxiv | ID: ppmedrxiv-21253218

RÉSUMÉ

BackgroundNatural and vaccine-induced immunity will play a key role in controlling the SARS-CoV-2 pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity. MethodsIn a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, UK, we investigated the protection from symptomatic and asymptomatic PCR-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role. We estimated protection conferred after one versus two vaccinations and from infections with the B.1.1.7 variant identified using whole genome sequencing. Results13,109 HCWs participated; 8285 received the Pfizer-BioNTech vaccine (1407 two doses) and 2738 the Oxford-AstraZeneca vaccine (49 two doses). Compared to unvaccinated seronegative HCWs, natural immunity and two vaccination doses provided similar protection against symptomatic infection: no HCW vaccinated twice had symptomatic infection, and incidence was 98% lower in seropositive HCWs (adjusted incidence rate ratio 0.02 [95%CI <0.01-0.18]). Two vaccine doses or seropositivity reduced the incidence of any PCR-positive result with or without symptoms by 90% (0.10 [0.02-0.38]) and 85% (0.15 [0.08-0.26]) respectively. Single-dose vaccination reduced the incidence of symptomatic infection by 67% (0.33 [0.21-0.52]) and any PCR-positive result by 64% (0.36 [0.26-0.50]). There was no evidence of differences in immunity induced by natural infection and vaccination for infections with S-gene target failure and B.1.1.7. ConclusionNatural infection resulting in detectable anti-spike antibodies and two vaccine doses both provide robust protection against SARS-CoV-2 infection, including against the B.1.1.7 variant. SummaryNatural infection resulting in detectable anti-spike antibodies and two vaccine doses both provided [≥] 85% protection against symptomatic and asymptomatic SARS-CoV-2 infection in healthcare workers, including against the B.1.1.7 variant. Single dose vaccination reduced symptomatic infection by 67%.

7.
Preprint de Anglais | medRxiv | ID: ppmedrxiv-20234369

RÉSUMÉ

BackgroundIt is critical to understand whether infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) protects from subsequent reinfection. MethodsWe investigated the incidence of SARS-CoV-2 PCR-positive results in seropositive and seronegative healthcare workers (HCWs) attending asymptomatic and symptomatic staff testing at Oxford University Hospitals, UK. Baseline antibody status was determined using anti-spike and/or anti-nucleocapsid IgG assays and staff followed for up to 30 weeks. We used Poisson regression to estimate the relative incidence of PCR-positive results and new symptomatic infection by antibody status, accounting for age, gender and changes in incidence over time. ResultsA total of 12219 HCWs participated and had anti-spike IgG measured, 11052 were followed up after negative and 1246 after positive antibody results including 79 who seroconverted during follow up. 89 PCR-confirmed symptomatic infections occurred in seronegative individuals (0.46 cases per 10,000 days at risk) and no symptomatic infections in those with anti-spike antibodies. Additionally, 76 (0.40/10,000 days at risk) anti-spike IgG seronegative individuals had PCR-positive tests in asymptomatic screening, compared to 3 (0.21/10,000 days at risk) seropositive individuals. Overall, positive baseline anti-spike antibodies were associated with lower rates of PCR-positivity (with or without symptoms) (adjusted rate ratio 0.24 [95%CI 0.08-0.76, p=0.015]). Rate ratios were similar using anti-nucleocapsid IgG alone or combined with anti-spike IgG to determine baseline status. ConclusionsPrior SARS-CoV-2 infection that generated antibody responses offered protection from reinfection for most people in the six months following infection. Further work is required to determine the long-term duration and correlates of post-infection immunity.

8.
Preprint de Anglais | medRxiv | ID: ppmedrxiv-20224824

RÉSUMÉ

BackgroundSARS-CoV-2 IgG antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary. MethodsWe present 6 months of data from a longitudinal seroprevalence study of 3217 UK healthcare workers (HCWs). Serial measurements of IgG antibodies to SARS-CoV-2 nucleocapsid were obtained. Bayesian mixed linear models were used to investigate antibody waning and associations with age, gender, ethnicity, previous symptoms and PCR results. ResultsIn this cohort of working age HCWs, antibody levels rose to a peak at 24 (95% credibility interval, CrI 19-31) days post-first positive PCR test, before beginning to fall. Considering 452 IgG seropositive HCWs over a median of 121 days (maximum 171 days) from their maximum positive IgG titre, the mean estimated antibody half-life was 85 (95%CrI, 81-90) days. The estimated mean time to loss of a positive antibody result was 137 (95%CrI 127-148) days. We observed variation between individuals; higher maximum observed IgG titres were associated with longer estimated antibody half-lives. Increasing age, Asian ethnicity and prior self-reported symptoms were independently associated with higher maximum antibody levels, and increasing age and a positive PCR test undertaken for symptoms with longer antibody half-lives. ConclusionIgG antibody levels to SARS-CoV-2 nucleocapsid wane within months, and faster in younger adults and those without symptoms. Ongoing longitudinal studies are required to track the long-term duration of antibody levels and their association with immunity to SARS-CoV-2 reinfection. SummarySerially measured SARS-CoV-2 anti-nucleocapsid IgG titres from 452 seropositive healthcare workers demonstrate levels fall by half in 85 days. From a peak result, detectable antibodies last a mean 137 days. Levels fall faster in younger adults and following asymptomatic infection.

9.
Preprint de Anglais | medRxiv | ID: ppmedrxiv-20159038

RÉSUMÉ

Thresholds for SARS-CoV-2 antibody assays have typically been determined using samples from symptomatic, often hospitalised, patients. Assay performance following mild/asymptomatic infection is unclear. We assessed IgG responses in asymptomatic healthcare workers with a high pre-test probability of Covid-19, e.g. 807/9292(8.9%) reported loss of smell/taste. The proportion reporting anosmia/ageusia increased at antibody titres below diagnostic thresholds for both an in-house ELISA and the Abbott Architect chemiluminescent microparticle immunoassay (CMIA): 424/903(47%) reported anosmia/ageusia with a positive ELISA, 59/387(13.2%) with high-negative titres, and 324/7943(4.1%) with low-negative results. Adjusting for the proportion of staff reporting anosmia/ageusia suggests the sensitivity of both assays is lower than previously reported: Oxford ELISA 90.8% (95%CI 86.1-92.1%) and Abbott CMIA 80.9% (77.5-84.3%). However, the sensitivity may be lower if some anosmia/ageusia in those with low-negative titres is Covid-19-associated. Samples from individuals with mild/asymptomatic infection should be included in SARS-CoV-2 immunoassay evaluations. Reporting equivocal SARS-CoV-2 antibody results should be considered.

10.
Preprint de Anglais | medRxiv | ID: ppmedrxiv-20135038

RÉSUMÉ

BackgroundPersonal protective equipment (PPE) and social distancing are designed to mitigate risk of occupational SARS-CoV-2 infection in hospitals. Why healthcare workers nevertheless remain at increased risk is uncertain. MethodsWe conducted voluntary Covid-19 testing programmes for symptomatic and asymptomatic staff at a UK teaching hospital using nasopharyngeal PCR testing and immunoassays for IgG antibodies. A positive result by either modality determined a composite outcome. Risk-factors for Covid-19 were investigated using multivariable logistic regression. Results1083/9809(11.0%) staff had evidence of Covid-19 at some time and provided data on potential risk-factors. Staff with a confirmed household contact were at greatest risk (adjusted odds ratio [aOR] 4.63 [95%CI 3.30-6.50]). Higher rates of Covid-19 were seen in staff working in Covid-19-facing areas (21.2% vs. 8.2% elsewhere) (aOR 2.49 [2.00-3.12]). Controlling for Covid-19-facing status, risks were heterogenous across the hospital, with higher rates in acute medicine (1.50 [1.05-2.15]) and sporadic outbreaks in areas with few or no Covid-19 patients. Covid-19 intensive care unit (ICU) staff were relatively protected (0.46 [0.29-0.72]). Positive results were more likely in Black (1.61 [1.20-2.16]) and Asian (1.58 [1.34-1.86]) staff, independent of role or working location, and in porters and cleaners (1.93 [1.25-2.97]). Contact tracing around asymptomatic staff did not lead to enhanced case identification. 24% of staff/patients remained PCR-positive at [≥]6 weeks post-diagnosis. ConclusionsIncreased Covid-19 risk was seen in acute medicine, among Black and Asian staff, and porters and cleaners. A bundle of PPE-related interventions protected staff in ICU.

11.
Preprint de Anglais | medRxiv | ID: ppmedrxiv-20105486

RÉSUMÉ

BackgroundLaboratory diagnosis of SARS-CoV-2 infection (the cause of COVID-19) uses PCR to detect viral RNA (vRNA) in respiratory samples. SARS-CoV-2 RNA has also been detected in other sample types, but there is limited understanding of the clinical or laboratory significance of its detection in blood. MethodsWe undertook a systematic literature review to assimilate the evidence for the frequency of vRNA in blood, and to identify associated clinical characteristics. We performed RT-PCR in serum samples from a UK clinical cohort of acute and convalescent COVID-19 cases (n=212), together with convalescent plasma samples collected by NHS Blood and Transplant (NHSBT) (n=111 additional samples). To determine whether PCR-positive blood samples could pose an infection risk, we attempted virus isolation from a subset of RNA-positive samples. ResultsWe identified 28 relevant studies, reporting SARS-CoV-2 RNA in 0-76% of blood samples; pooled estimate 10% (95%CI 5-18%). Among serum samples from our clinical cohort, 27/212 (12.7%) had SARS-CoV-2 RNA detected by RT-PCR. RNA detection occurred in samples up to day 20 post symptom onset, and was associated with more severe disease (multivariable odds ratio 7.5). Across all samples collected [≥]28 days post symptom onset, 0/143 (0%, 95%CI 0.0-2.5%) had vRNA detected. Among our PCR-positive samples, cycle threshold (ct) values were high (range 33.5-44.8), suggesting low vRNA copy numbers. PCR-positive sera inoculated into cell culture did not produce any cytopathic effect or yield an increase in detectable SARS-CoV-2 RNA. ConclusionsvRNA was detectable at low viral loads in a minority of serum samples collected in acute infection, but was not associated with infectious SARS-CoV-2 (within the limitations of the assays used). This work helps to inform biosafety precautions for handling blood products from patients with current or previous COVID-19.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE