Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Life Sci Alliance ; 6(7)2023 07.
Article de Anglais | MEDLINE | ID: mdl-37130781

RÉSUMÉ

In age-related neurodegenerative diseases, like Alzheimer's and Parkinson's, disease-specific proteins become aggregation-prone and form amyloid-like deposits. Depletion of SERF proteins ameliorates this toxic process in worm and human cell models for diseases. Whether SERF modifies amyloid pathology in mammalian brain, however, has remained unknown. Here, we generated conditional Serf2 knockout mice and found that full-body deletion of Serf2 delayed embryonic development, causing premature birth and perinatal lethality. Brain-specific Serf2 knockout mice, on the other hand, were viable, and showed no major behavioral or cognitive abnormalities. In a mouse model for amyloid-ß aggregation, brain depletion of Serf2 altered the binding of structure-specific amyloid dyes, previously used to distinguish amyloid polymorphisms in the human brain. These results suggest that Serf2 depletion changed the structure of amyloid deposits, which was further supported by scanning transmission electron microscopy, but further study will be required to confirm this observation. Altogether, our data reveal the pleiotropic functions of SERF2 in embryonic development and in the brain and support the existence of modifying factors of amyloid deposition in mammalian brain, which offer possibilities for polymorphism-based interventions.


Sujet(s)
Encéphale , Protéines et peptides de signalisation intracellulaire , Plaque amyloïde , Animaux , Humains , Souris , Peptides bêta-amyloïdes/métabolisme , Encéphale/embryologie , Encéphale/métabolisme , Développement embryonnaire/génétique , Protéines et peptides de signalisation intracellulaire/métabolisme , Souris knockout , Plaque amyloïde/métabolisme
3.
Methods Enzymol ; 658: 191-223, 2021.
Article de Anglais | MEDLINE | ID: mdl-34517947

RÉSUMÉ

Chemical modifications of RNA molecules can affect translation in multiple ways. Therefore, it is critical to understand how their absence changes cellular translation dynamics and in particular codon-specific translation. In this chapter, we discuss the application of ribosome profiling to analyze changes in codon-specific translation and differential translation in Saccharomyces cerevisiae and human cells.


Sujet(s)
Biosynthèse des protéines , ARN de transfert , Codon/génétique , Codon/métabolisme , Humains , ARN messager/génétique , ARN messager/métabolisme , ARN de transfert/génétique , ARN de transfert/métabolisme , Ribosomes/génétique , Ribosomes/métabolisme
4.
Bio Protoc ; 8(20)2018 Oct 20.
Article de Anglais | MEDLINE | ID: mdl-30467549

RÉSUMÉ

C. elegans is widely used to investigate biological processes related to health and disease. To study protein localization, fluorescently-tagged proteins can be used in vivo or immunohistochemistry can be performed in whole worms. Here, we describe a technique to localize a protein of interest at a subcellular level in C. elegans lysates, which can give insight into the location, function and/or toxicity of proteins.

5.
Bio Protoc ; 8(19)2018 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-30450365

RÉSUMÉ

Protein aggregation is a hallmark of several neurodegenerative diseases and is associated with impaired protein homeostasis. This imbalance is caused by the loss of the protein's native conformation, which ultimately results in its aggregation or abnormal localization within the cell. Using a C. elegans model of polyglutamine diseases, we describe in detail the filter retardation assay, a method that captures protein aggregates in a cellulose acetate membrane and allows its detection and quantification by immunoblotting.

6.
Cell Rep ; 24(9): 2287-2299.e4, 2018 08 28.
Article de Anglais | MEDLINE | ID: mdl-30157424

RÉSUMÉ

Dendrite pruning of Drosophila sensory neurons during metamorphosis is induced by the steroid hormone ecdysone through a transcriptional program. In addition, ecdysone activates the eukaryotic initiation factor 4E-binding protein (4E-BP) to inhibit cap-dependent translation initiation. To uncover how efficient translation of ecdysone targets is achieved under these conditions, we assessed the requirements for translation initiation factors during dendrite pruning. We found that the canonical cap-binding complex eIF4F is dispensable for dendrite pruning, but the eIF3 complex and the helicase eIF4A are required, indicating that differential translation initiation mechanisms are operating during dendrite pruning. eIF4A and eIF3 are stringently required for translation of the ecdysone target Mical, and this depends on the 5' UTR of Mical mRNA. Functional analyses indicate that eIF4A regulates eIF3-mRNA interactions in a helicase-dependent manner. We propose that an eIF3-eIF4A-dependent alternative initiation pathway bypasses 4E-BP to ensure adequate translation of ecdysone-induced genes.


Sujet(s)
Protéines de Drosophila/métabolisme , Drosophila/métabolisme , Ecdysone/génétique , Facteur-4E d'initiation eucaryote/génétique , Animaux , Différenciation cellulaire
7.
Nature ; 558(7711): 605-609, 2018 06.
Article de Anglais | MEDLINE | ID: mdl-29925953

RÉSUMÉ

Reprogramming of mRNA translation has a key role in cancer development and drug resistance 1 . However, the molecular mechanisms that are involved in this process remain poorly understood. Wobble tRNA modifications are required for specific codon decoding during translation2,3. Here we show, in humans, that the enzymes that catalyse modifications of wobble uridine 34 (U34) tRNA (U34 enzymes) are key players of the protein synthesis rewiring that is induced by the transformation driven by the BRAF V600E oncogene and by resistance to targeted therapy in melanoma. We show that BRAF V600E -expressing melanoma cells are dependent on U34 enzymes for survival, and that concurrent inhibition of MAPK signalling and ELP3 or CTU1 and/or CTU2 synergizes to kill melanoma cells. Activation of the PI3K signalling pathway, one of the most common mechanisms of acquired resistance to MAPK therapeutic agents, markedly increases the expression of U34 enzymes. Mechanistically, U34 enzymes promote glycolysis in melanoma cells through the direct, codon-dependent, regulation of the translation of HIF1A mRNA and the maintenance of high levels of HIF1α protein. Therefore, the acquired resistance to anti-BRAF therapy is associated with high levels of U34 enzymes and HIF1α. Together, these results demonstrate that U34 enzymes promote the survival and resistance to therapy of melanoma cells by regulating specific mRNA translation.


Sujet(s)
Codon/génétique , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/génétique , Mélanome/traitement médicamenteux , Mélanome/génétique , Biosynthèse des protéines , Animaux , Protéines de transport/composition chimique , Protéines de transport/métabolisme , Lignée cellulaire tumorale , Codon/effets des médicaments et des substances chimiques , Femelle , Humains , Mâle , Complexe-2 cible mécanistique de la rapamycine/métabolisme , Mélanome/anatomopathologie , Mélanome expérimental/traitement médicamenteux , Mélanome expérimental/génétique , Mélanome expérimental/anatomopathologie , Souris , Souris de lignée NOD , Souris SCID , Phosphorylation , Biosynthèse des protéines/effets des médicaments et des substances chimiques , Protéines proto-oncogènes B-raf/antagonistes et inhibiteurs , Protéines proto-oncogènes B-raf/génétique , ARN messager/génétique , ARN messager/métabolisme , ARN de transfert/composition chimique , ARN de transfert/génétique , ARN de transfert/métabolisme , Transduction du signal , Facteurs d'élongation transcriptionnelle , Uridine/composition chimique , Uridine/génétique , Uridine/métabolisme , Vémurafénib/pharmacologie , Vémurafénib/usage thérapeutique , Danio zébré/génétique
8.
Mol Cell ; 65(6): 1096-1108.e6, 2017 Mar 16.
Article de Anglais | MEDLINE | ID: mdl-28306505

RÉSUMÉ

Protein aggregation is associated with age-related neurodegenerative disorders, such as Alzheimer's and polyglutamine diseases. As a causal relationship between protein aggregation and neurodegeneration remains elusive, understanding the cellular mechanisms regulating protein aggregation will help develop future treatments. To identify such mechanisms, we conducted a forward genetic screen in a C. elegans model of polyglutamine aggregation and identified the protein MOAG-2/LIR-3 as a driver of protein aggregation. In the absence of polyglutamine, MOAG-2/LIR-3 regulates the RNA polymerase III-associated transcription of small non-coding RNAs. This regulation is lost in the presence of polyglutamine, which mislocalizes MOAG-2/LIR-3 from the nucleus to the cytosol. We then show biochemically that MOAG-2/LIR-3 can also catalyze the aggregation of polyglutamine-expanded huntingtin. These results suggest that polyglutamine can induce an aggregation-promoting activity of MOAG-2/LIR-3 in the cytosol. The concept that certain aggregation-prone proteins can convert other endogenous proteins into drivers of aggregation and toxicity adds to the understanding of how cellular homeostasis can be deteriorated in protein misfolding diseases.


Sujet(s)
Protéines de Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/enzymologie , Maladies neurodégénératives/enzymologie , Peptides/métabolisme , Agrégats de protéines , Agrégation pathologique de protéines , RNA polymerase III/métabolisme , Facteurs de transcription/métabolisme , Transport nucléaire actif , Animaux , Animal génétiquement modifié , Sites de fixation , Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/génétique , Noyau de la cellule/enzymologie , Cytosol/enzymologie , Modèles animaux de maladie humaine , Maladies neurodégénératives/génétique , Maladies neurodégénératives/anatomopathologie , Régions promotrices (génétique) , Liaison aux protéines , Interférence par ARN , RNA polymerase III/génétique , Petit ARN non traduit/génétique , Petit ARN non traduit/métabolisme , Facteurs de transcription/génétique , Transcription génétique
9.
Cell Mol Life Sci ; 72(21): 4027-47, 2015 Nov.
Article de Anglais | MEDLINE | ID: mdl-26190021

RÉSUMÉ

Protein homeostasis is fundamental for cell function and survival, because proteins are involved in all aspects of cellular function, ranging from cell metabolism and cell division to the cell's response to environmental challenges. Protein homeostasis is tightly regulated by the synthesis, folding, trafficking and clearance of proteins, all of which act in an orchestrated manner to ensure proteome stability. The protein quality control system is enhanced by stress response pathways, which take action whenever the proteome is challenged by environmental or physiological stress. Aging, however, damages the proteome, and such proteome damage is thought to be associated with aging-related diseases. In this review, we discuss the different cellular processes that define the protein quality control system and focus on their role in protein conformational diseases. We highlight the power of using small organisms to model neurodegenerative diseases and how these models can be exploited to discover genetic modulators of protein aggregation and toxicity. We also link findings from small model organisms to the situation in higher organisms and describe how some of the genetic modifiers discovered in organisms such as worms are functionally conserved throughout evolution. Finally, we demonstrate that the non-coding genome also plays a role in maintaining protein homeostasis. In all, this review highlights the importance of protein and RNA homeostasis in neurodegenerative diseases.


Sujet(s)
Maladies neurodégénératives/génétique , Maladies neurodégénératives/métabolisme , Protéines/métabolisme , ARN non traduit/métabolisme , Maladie d'Alzheimer/physiopathologie , Animaux , Caenorhabditis elegans/physiologie , Modèles animaux de maladie humaine , Drosophila , Homéostasie/génétique , Humains , Maladies neurodégénératives/physiopathologie , Maladie de Parkinson/physiopathologie , Conformation des protéines , Pliage des protéines , Protéines/composition chimique , Protéines/génétique , Saccharomyces cerevisiae/physiologie
10.
Biochim Biophys Acta ; 1842(10): 1951-1959, 2014 Oct.
Article de Anglais | MEDLINE | ID: mdl-24525026

RÉSUMÉ

Caenorhabditis elegans comprises unique features that make it an attractive model organism in diverse fields of biology. Genetic screens are powerful to identify genes and C. elegans can be customized to forward or reverse genetic screens and to establish gene function. These genetic screens can be applied to "humanized" models of C. elegans for neurodegenerative diseases, enabling for example the identification of genes involved in protein aggregation, one of the hallmarks of these diseases. In this review, we will describe the genetic screens employed in C. elegans and how these can be used to understand molecular processes involved in neurodegenerative and other human diseases. This article is part of a Special Issue entitled: From Genome to Function.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE