Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Dev Cell ; 40(6): 608-617.e6, 2017 03 27.
Article de Anglais | MEDLINE | ID: mdl-28350991

RÉSUMÉ

Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle.


Sujet(s)
Protéines morphogénétiques osseuses/pharmacologie , Cycle cellulaire/effets des médicaments et des substances chimiques , Dédifférenciation cellulaire/effets des médicaments et des substances chimiques , Membres/physiologie , Cellules musculaires/cytologie , Peptide hydrolases/pharmacologie , Régénération/effets des médicaments et des substances chimiques , Salamandridae/physiologie , Animaux , Bovins , Fibrinolysine/pharmacologie , Cellules HEK293 , Humains , Cellules musculaires/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/métabolisme , Multimérisation de protéines/effets des médicaments et des substances chimiques , Récepteurs de surface cellulaire/métabolisme , Protéines recombinantes/pharmacologie , Phase S/effets des médicaments et des substances chimiques , Sérum/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Protéines Smad/métabolisme , Thrombine/pharmacologie
2.
Nature ; 531(7593): 237-40, 2016 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-26934225

RÉSUMÉ

Identifying key molecules that launch regeneration has been a long-sought goal. Multiple regenerative animals show an initial wound-associated proliferative response that transits into sustained proliferation if a considerable portion of the body part has been removed. In the axolotl, appendage amputation initiates a round of wound-associated cell cycle induction followed by continued proliferation that is dependent on nerve-derived signals. A wound-associated molecule that triggers the initial proliferative response to launch regeneration has remained obscure. Here, using an expression cloning strategy followed by in vivo gain- and loss-of-function assays, we identified axolotl MARCKS-like protein (MLP) as an extracellularly released factor that induces the initial cell cycle response during axolotl appendage regeneration. The identification of a regeneration-initiating molecule opens the possibility of understanding how to elicit regeneration in other animals.


Sujet(s)
Ambystoma mexicanum/physiologie , Membres/physiologie , Protéines et peptides de signalisation intracellulaire/métabolisme , Protéines membranaires/métabolisme , Régénération/physiologie , Ambystoma mexicanum/traumatismes , Amputation traumatique/métabolisme , Animaux , Cycle cellulaire/génétique , Prolifération cellulaire/génétique , Clonage moléculaire , Membres/traumatismes , Humains , Protéines et peptides de signalisation intracellulaire/génétique , Protéines membranaires/génétique , Souris , Données de séquences moléculaires , Fibres musculaires squelettiques/cytologie , Fibres musculaires squelettiques/physiologie , Protéine myristoylée riche en alanine et substrat de la kinase C , Notophthalmus viridescens/génétique , Notophthalmus viridescens/traumatismes , Notophthalmus viridescens/physiologie , Queue/cytologie , Queue/traumatismes , Queue/physiologie , Cicatrisation de plaie/physiologie , Xenopus , Danio zébré
3.
Mech Dev ; 126(1-2): 56-67, 2009.
Article de Anglais | MEDLINE | ID: mdl-18977433

RÉSUMÉ

Amputation of the larval tail of Xenopus injures the notochord, spinal cord, muscle masses, mesenchyme, and epidermis, induces the growth and differentiation of cells in those tissues, and results in tail regeneration. A dorsal incision in the larval tail injures the same tissues and induces cell growth and differentiation, but never results in the formation of any extra appendages. The first sign of tail regeneration is the multilayered wound epidermis and Xwnt-5a expression in the distal region, neither of which is observed in the recovering region after a dorsal incision. To evaluate the role of Xwnt-5a in tail regeneration, Xwnt-5a was overexpressed in the recovering region. When an animal cap injected with Xwnt-5a mRNA was grafted into the dorsal incision, an ectopic protrusion was formed. Morphological and molecular analyses revealed that the protrusion was an ectopic larval tail, which was equivalent to the regenerating tail but different from the tail that develops from the embryonic tail bud. Lineage labeling revealed that the major differentiated structures of the ectopic tail were formed from host cells, suggesting that Xwnt-5a induced host cells to make a complete tail. The ectopic tail was not induced by Xwnt-8 or Xwnt-11, demonstrating the specificity of Xwnt-5a in this process. A pharmacological study showed that JNK signaling is required in tail regeneration. These results support the proposition that Xwnt-5a plays an instructive role in larval tail regeneration via Wnt/JNK signaling.


Sujet(s)
Régénération , Transduction du signal , Queue/traumatismes , Queue/métabolisme , Protéines de type Wingless/métabolisme , Protéines de Xénope/métabolisme , Xenopus laevis/métabolisme , Animaux , Animal génétiquement modifié , Régulation de l'expression des gènes , JNK Mitogen-Activated Protein Kinases/antagonistes et inhibiteurs , JNK Mitogen-Activated Protein Kinases/métabolisme , Larve/génétique , Larve/métabolisme , Inhibiteurs de protéines kinases/pharmacologie , Transduction du signal/effets des médicaments et des substances chimiques , Protéines de type Wingless/génétique , Protéine Wnt-5a , Protéines de Xénope/génétique , Xenopus laevis/génétique
4.
Dev Growth Differ ; 50(2): 109-20, 2008 Feb.
Article de Anglais | MEDLINE | ID: mdl-18211586

RÉSUMÉ

Tail regeneration in urodeles is dependent on the spinal cord (SC), but it is believed that anuran larvae regenerate normal tails without the SC. To evaluate the precise role of the SC in anuran tail regeneration, we developed a simple operation method to ablate the SC completely and minimize the damage to the tadpole using Xenopus laevis. The SC-ablated tadpole regenerated a twisted and smaller tail. These morphological abnormalities were attributed to defects in the notochord (NC), as the regenerated NC in the SC-ablated tail was short, slim and twisted. The SC ablation never affected the early steps of the regeneration, including closure of the amputated surface with epidermis and accumulation of the NC precursor cells. The proliferation rate of the NC precursor cells, however, was reduced, and NC cell maturation was retarded in the SC-ablated tail. These results show that the SC has an essential role in the normal tail regeneration of Xenopus larvae, especially in the proliferation and differentiation of the NC cells. Gene expression analysis and implantation of a bead soaked with growth factor showed that fibroblast growth factor-2 and -10 were involved in the signaling molecules, which were expressed in the SC and stimulated growth of the NC cells.


Sujet(s)
Régénération , Moelle spinale/physiologie , Queue/physiologie , Xenopus laevis/physiologie , Animaux , Différenciation cellulaire , Prolifération cellulaire , Facteurs de croissance fibroblastique/physiologie , Régulation de l'expression des gènes au cours du développement , Hybridation in situ , Larve , Chorde/cytologie , Chorde/physiologie , RT-PCR , Moelle spinale/anatomie et histologie
5.
Dev Growth Differ ; 46(1): 97-105, 2004 Feb.
Article de Anglais | MEDLINE | ID: mdl-15008858

RÉSUMÉ

The regeneration of the amputated tail of Xenopus laevis larvae is an excellent model system for regeneration research. The wound left by the amputated tail is covered with epidermis within 24 h. Then, the cell number increases near the amputation plane at the notochord, spinal cord and muscle regions. An apparently complete tail with notochord, muscle and spinal cord is regenerated within two weeks. To reveal whether the molecular mechanism underlying the tail regeneration is the same as that in embryonic tail development, the gene expression patterns of the embryonic tail bud and the regenerating tail were compared by in situ hybridization and reverse transcription-polymerase chain reaction. Most genes analyzed were expressed at similar levels in both tissues, whereas two bone morphogenetic protein (BMP)-antagonists, chordin and noggin, were detected only in the embryonic tail bud. The regenerating tail also lacked expression of Xshh in the floor plate and expression of Xdelta-1 in the spinal cord and presomitic mesoderm. These results show that there are some differences in gene expression between the two processes. Furthermore, when the tail of Xenopus larvae is amputated, the regenerating tail has a gene expression pattern similar to the distal portion of the larval tail rather than the embryonic tail bud, suggesting that the cut larval tail does not make a new embryonic tail bud, but rather a new larval tail tip for regeneration.


Sujet(s)
Analyse de profil d'expression de gènes , Régulation de l'expression des gènes au cours du développement , Régénération/génétique , Queue/physiologie , Xenopus laevis/embryologie , Animaux , Amorces ADN , Hybridation in situ , RT-PCR , Queue/métabolisme , Xenopus laevis/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE