Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 48
Filtrer
1.
Hortic Res ; 11(7): uhae149, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38994450

RÉSUMÉ

Oomycete secretes a range of RxLR effectors into host cells to manipulate plant immunity by targeting proteins from several organelles. In this study, we report that chloroplast protein StFC-II is hijacked by a pathogen effector to enhance susceptibility. Phytophthora infestans RxLR effector Pi22922 is activated during the early stages of P. infestans colonization. Stable overexpression of Pi22922 in plants suppresses flg22-triggered reactive oxygen species (ROS) burst and enhances leaf colonization by P. infestans. A potato ferrochelatase 2 (FC-II, a nuclear-encoded chloroplast-targeted protein), a key enzyme for heme biosynthesis in chloroplast, was identified as a target of Pi22922 in the cytoplasm. The pathogenicity of Pi22922 in plants is partially dependent on FC-II. Overexpression of StFC-II decreases resistance of potato and Nicotiana benthamiana against P. infestans, and silencing of NbFC-II in N. benthamiana reduces P. infestans colonization. Overexpression of StFC-II increases heme content and reduces chlorophyll content and photosynthetic efficiency in potato leaves. Moreover, ROS accumulation both in chloroplast and cytoplasm is attenuated and defense-related genes are down-regulated in StFC-II overexpression transgenic potato and N. benthamiana leaves. Pi22922 inhibits E3 ubiquitin ligase StCHIP-mediated StFC-II degradation in the cytoplasm and promotes its accumulation in chloroplasts. In summary, this study characterizes a new mechanism that an oomycete RxLR effector suppresses host defenses by promoting StFC-II accumulation in chloroplasts, thereby compromising the host immunity and promoting susceptibility.

2.
New Phytol ; 243(2): 688-704, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38769723

RÉSUMÉ

Potato (Solanum tuberosum) is the fourth largest food crop in the world. Late blight, caused by oomycete Phytophthora infestans, is the most devastating disease threatening potato production. Previous research has shown that StRFP1, a potato Arabidopsis Tóxicos en Levadura (ATL) family protein, positively regulates late blight resistance via its E3 ligase activity. However, the underlying mechanism is unknown. Here, we reveal that StRFP1 is associated with the plasma membrane (PM) and undergoes constitutive endocytic trafficking. Its PM localization is essential for inhibiting P. infestans colonization. Through in vivo and in vitro assays, we investigated that StRFP1 interacts with two sugar transporters StSWEET10c and StSWEET11 at the PM. Overexpression (OE) of StSWEET10c or StSWEET11 enhances P. infestans colonization. Both StSWEET10c and StSWEET11 exhibit sucrose transport ability in yeast, and OE of StSWEET10c leads to an increased sucrose content in the apoplastic fluid of potato leaves. StRFP1 ubiquitinates StSWEET10c and StSWEET11 to promote their degradation. We illustrate a novel mechanism by which a potato ATL protein enhances disease resistance by degrading susceptibility (S) factors, such as Sugars Will Eventually be Exported Transporters (SWEETs). This offers a potential strategy for improving disease resistance by utilizing host positive immune regulators to neutralize S factors.


Sujet(s)
Résistance à la maladie , Phytophthora infestans , Maladies des plantes , Protéines végétales , Solanum tuberosum , Ubiquitin-protein ligases , Maladies des plantes/microbiologie , Résistance à la maladie/génétique , Phytophthora infestans/pathogénicité , Solanum tuberosum/microbiologie , Solanum tuberosum/génétique , Solanum tuberosum/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Membrane cellulaire/métabolisme , Ubiquitination , Régulation de l'expression des gènes végétaux , Saccharose/métabolisme , Feuilles de plante/métabolisme , Feuilles de plante/microbiologie , Liaison aux protéines , Transport des protéines
3.
Physiol Plant ; 176(2): e14293, 2024.
Article de Anglais | MEDLINE | ID: mdl-38641970

RÉSUMÉ

MicroRNAs (miRNAs) are small noncoding RNAs in eukaryotes. Plant endogenous miRNAs play pivotal roles in regulating plant development and defense responses. MicroRNA394 (miR394) has been reported to regulate plant development, abiotic stresses and defense responses. Previous reports showed that miR394 responded to P. infestans inoculation in potato, indicating that miR394 may be involved in defense responses. In this study, we further investigated its role in potato defense against P. infestans. Stable expression of miR394 in tobacco and potato enhances the susceptibility to P. infestans, which is accompanied with the reduced accumulation of ROS and down-regulation of the PTI (pattern-triggered immunity) marker genes. Besides well-known target StLCR, miR394 also targets StA/N-INVE, which encodes a chloroplast Alkaline/Neutral Invertases (A/N-INVE). Both StLCR and StA/N-INVE positively regulate late blight resistance, while miR394 degrades them. Interestingly, StA/N-INVE is located in the chloroplast, indicating that miR394 may manipulate chloroplast immunity. Degradation of StA/N-INVE may affect the chloroplast function and hence lead to the compromised ROS (reactive oxygen species) burst and reduced retrograde signaling from the chloroplast to the nucleus and cytoplasm. In summary, this study provides new information that miR394 targets and degrades StA/N-INVE and StLCR, which are positive regulators, to enhance potato susceptibility to P. infestans.


Sujet(s)
microARN , Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/génétique , Solanum tuberosum/métabolisme , Espèces réactives de l'oxygène/métabolisme , Phytophthora infestans/génétique , Phytophthora infestans/métabolisme , Plantes/métabolisme , microARN/génétique , microARN/métabolisme , Maladies des plantes/génétique , Protéines végétales/génétique , Protéines végétales/métabolisme , Régulation de l'expression des gènes végétaux
4.
Exp Clin Endocrinol Diabetes ; 132(6): 328-335, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38599609

RÉSUMÉ

OBJECTIVES: To investigate the association between liver fibrosis score and diabetic kidney disease (DKD) in type 2 diabetes mellitus (T2DM). METHODS: A total of 897 hospitalized patients with T2DM were included in this study. Each patient completed DKD screening. Logistic regression analysis was used to assess the predictive value of non-alcoholic fatty liver disease fibrosis score (NAFLD-FS) and fibrosis-4 (FIB-4) for the occurrence of DKD and risk for DKD progression, respectively. RESULTS: The prevalence of DKD and risk for its progression significantly increased with increasing NAFLD-FS risk category. DKD prevalence also increased with increasing FIB-4 risk category. Multivariate logistic regression analysis showed that the "high-risk" NAFLD-FS had a significantly higher risk of DKD (odds ratio [OR]: 1.89, 95% confidence interval [CI]: 1.16-3.08) and risk for DKD progression (OR: 2.88, 95% CI: 1.23-6.78), and the "intermediate-risk" FIB-4 had a significantly higher risk of DKD (OR: 1.41, 95% CI: 1.00-1.98). Subgroup analysis showed that the association between NAFLD-FS and FIB-4 and DKD was significant in the female subgroup, whereas the association between the "high-risk" NAFLD-FS and risk for DKD progression was significant in the male subgroup. CONCLUSIONS: NAFLD-FS and FIB-4 are strongly associated with DKD and risk for DKD progression in patients with T2DM. Additionally, sexual dimorphism exists in this association.


Sujet(s)
Diabète de type 2 , Néphropathies diabétiques , Cirrhose du foie , Humains , Mâle , Femelle , Adulte d'âge moyen , Néphropathies diabétiques/épidémiologie , Néphropathies diabétiques/anatomopathologie , Diabète de type 2/complications , Diabète de type 2/épidémiologie , Cirrhose du foie/épidémiologie , Cirrhose du foie/anatomopathologie , Études transversales , Études rétrospectives , Sujet âgé , Stéatose hépatique non alcoolique/épidémiologie , Stéatose hépatique non alcoolique/complications , Stéatose hépatique non alcoolique/anatomopathologie , Adulte , Évolution de la maladie , Hospitalisation/statistiques et données numériques , Indice de gravité de la maladie , Prévalence
5.
Mol Plant ; 17(3): 423-437, 2024 03 04.
Article de Anglais | MEDLINE | ID: mdl-38273657

RÉSUMÉ

Nicotiana tabacum and Nicotiana benthamiana are widely used models in plant biology research. However, genomic studies of these species have lagged. Here we report the chromosome-level reference genome assemblies for N. benthamiana and N. tabacum with an estimated 99.5% and 99.8% completeness, respectively. Sensitive transcription start and termination site sequencing methods were developed and used for accurate gene annotation in N. tabacum. Comparative analyses revealed evidence for the parental origins and chromosome structural changes, leading to hybrid genome formation of each species. Interestingly, the antiviral silencing genes RDR1, RDR6, DCL2, DCL3, and AGO2 were lost from one or both subgenomes in N. benthamiana, while both homeologs were kept in N. tabacum. Furthermore, the N. benthamiana genome encodes fewer immune receptors and signaling components than that of N. tabacum. These findings uncover possible reasons underlying the hypersusceptible nature of N. benthamiana. We developed the user-friendly Nicomics (http://lifenglab.hzau.edu.cn/Nicomics/) web server to facilitate better use of Nicotiana genomic resources as well as gene structure and expression analyses.


Sujet(s)
Chromosomes , Nicotiana , Nicotiana/génétique , Gènes de plante , Génomique , Annotation de séquence moléculaire
6.
Mol Breed ; 44(1): 1, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38222974

RÉSUMÉ

Final fruit size of apple (Malus domestica) cultivars is related to both mesocarp cell division and cell expansion during fruit growth, but it is unclear whether the cell division and/or cell enlargement determine most of the differences in fruit size between Malus species. In this study, by using an interspecific hybrid population between Malus asiatica "Zisai Pearl" and Malus domestica cultivar "Red Fuji," we found that the mesocarp cell number was the main causal factor of diversity in fruit size between Malus species. Rapid increase in mesocarp cell number occurred prior to 28 days after anthesis (DAA), while cell size increased gradually after 28 DAA until fruit ripening. Six candidate genes related to auxin signaling or cell cycle were predicted by combining the RNA-seq data and previous QTL data for fruit weight. Two InDels and 10 SNPs in the promoter of a small auxin upregulated RNA gene MdSAUR36 in Zisai Pearl led to a lower promoter activity than that of Red Fuji. One non-synonymous SNP G/T at 379 bp downstream of the ATG codon of MdSAUR36, which was heterozygous in Zisai Pearl, exerted significant genotype effects on fruit weight, length, and width. Transgenic apple calli by over-expressing or RNAi MdSAUR36 confirmed that MdSAUR36 participated in the negative regulation of mesocarp cell division and thus apple fruit size. These results could provide new insights in the molecular mechanism of small fruit size in Malus accession and be potentially used in molecular assisted breeding via interspecific hybridization. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01441-4.

7.
Plant J ; 118(1): 263-276, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38078656

RÉSUMÉ

Small RNAs play important roles in regulation of plant development and response to various stresses. Northern blot is an important technique in small RNA research. Isotope- and biotin- (or digoxigenin) labeled probes are frequently used in small RNA northern blot. However, isotope-based probe is limited by strict environmental regulation and availability in many places in the world while biotin-based probe is usually suffered from low sensitivity. In this study, we developed a T4 DNA polymerase-based method for incorporation of a cluster of 33 biotin-labeled C in small RNA probe (T4BC33 probe). T4BC33 probe reaches similar sensitivity as 32P-labeled probe in dot blot and small RNA northern blot experiments. Addition of locked nucleic acids in T4BC33 probe further enhanced its sensitivity in detecting low-abundance miRNAs. With newly developed northern blot method, expression of miR6027 and miR6149 family members was validated. Northern blot analysis also confirmed the successful application of virus-based miRNA silencing in pepper, knocking down accumulation of Can-miR6027a and Can-miR6149L. Importantly, further analysis showed that knocking-down Can-miR6027a led to upregulation of a nucleotide binding-leucine rich repeat domain protein coding gene (CaRLb1) and increased immunity against Phytophthora capsici in pepper leaves. Our study provided a highly sensitive and convenient method for sRNA research and identified new targets for genetic improvement of pepper immunity against P. capsici.


Sujet(s)
Capsicum , microARN , microARN/génétique , Biotine , Technique de Northern , Isotopes , Capsicum/génétique , Maladies des plantes/génétique
8.
Plant J ; 115(2): 398-413, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-37021636

RÉSUMÉ

The potato's most devastating disease is late blight, which is caused by Phytophthora infestans. Whereas various resistance (R) genes are known, most are typically defeated by this fast-evolving oomycete pathogen. However, the broad-spectrum and durable R8 is a vital gene resource for potato resistance breeding. To support an educated deployment of R8, we embarked on a study on the corresponding avirulence gene Avr8. We overexpressed Avr8 by transient and stable transformation, and found that Avr8 promotes colonization of P. infestans in Nicotiana benthamiana and potato, respectively. A yeast-two-hybrid (Y2H) screen showed that AVR8 interacts with a desumoylating isopeptidase (StDeSI2) of potato. We overexpressed DeSI2 and found that DeSI2 positively regulates resistance to P. infestans, while silencing StDeSI2 downregulated the expression of a set of defense-related genes. By using a specific proteasome inhibitor, we found that AVR8 destabilized StDeSI2 through the 26S proteasome and attenuated early PTI responses. Altogether, these results indicate that AVR8 manipulates desumoylation, which is a new strategy that adds to the plethora of mechanisms that Phytophthora exploits to modulate host immunity, and StDeSI2 provides a new target for durable resistance breeding against P. infestans in potato.


Sujet(s)
Phytophthora infestans , Solanum tuberosum , Amélioration des plantes , Immunité des plantes , Solanum tuberosum/génétique , Maladies des plantes
9.
Plants (Basel) ; 12(3)2023 Jan 19.
Article de Anglais | MEDLINE | ID: mdl-36771544

RÉSUMÉ

sRNAs (small RNAs) play an important role in regulation of plant immunity against a variety of pathogens. In this study, sRNA sequencing analysis was performed to identify miRNAs (microRNAs) during the interaction of potato and Phytophthora infestans. Totally, 171 potato miRNAs were identified, 43 of which were annotated in the miRNA database and 128 were assigned as novel miRNAs in this study. Those potato miRNAs may target 878 potato genes and half of them encode resistance proteins. Fifty-three potato miRNAs may target 194 P. infestans genes. Three potato miRNAs (novel 72, 133, and 140) were predicted to have targets only in the P. infestans genome. miRNAs transient expression and P. infestans inoculation assay showed that miR396, miR166, miR6149-5P, novel133, or novel140 promoted P. infestans colonization, while miR394 inhibited colonization on Nicotiana benthamiana leaves. An artificial miRNA target (amiRNA) degradation experiment demonstrated that miR394 could target both potato gene (PGSC0003DMG400034305) and P. infestans genes. miR396 targets the multicystatin gene (PGSC0003DMG400026899) and miR6149-5p could shear the galactose oxidase F-box protein gene CPR30 (PGSC0003DMG400021641). This study provides new information on the aspect of cross-kingdom immune regulation in potato-P. infestans interaction at the sRNAs regulation level.

10.
J Adv Res ; 42: 149-162, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36513410

RÉSUMÉ

INTRODUCTION: Genomic heterozygosity, self-incompatibility, and rich-in somatic mutations hinder the molecular breeding efficiency of outcrossing plants. OBJECTIVES: We attempted to develop an efficient integrated strategy to identify quantitative trait loci (QTLs) and trait-associated genes, to develop gene markers, and to construct genomics-assisted prediction (GAP) modes. METHODS: A novel protocol, bulked segregant analysis tool for out-crossing species (BSATOS), is presented here, which is characterized by taking full advantage of all segregation patterns (including AB × AB markers) and haplotype information. To verify the effectiveness of the protocol in dealing with the complex traits of outbreeding species, three apple cross populations with 9,654 individuals were adopted. RESULTS: By using BSATOS, 90, 60, and 77 significant QTLs were identified successfully and candidate genes were predicted for apple fruit weight (FW), fruit ripening date (FRD), and fruit soluble solid content (SSC), respectively. The gene-based markers were developed and genotyped for 1,396 individuals in a training population, including 145 Malus accessions and 1,251 F1 plants of the three full-sib families. GAP models were trained using marker genotype effect estimates of the training population. The prediction accuracy was 0.7658, 0.6455, and 0.3758 for FW, FRD, and SSC, respectively. CONCLUSION: The BSATOS and GAP models provided a convenient and efficient methodology for candidate gene mining and molecular breeding in out-crossing plant species. The BSATOS pipeline can be freely downloaded from: https://github.com/maypoleflyn/BSATOS.


Sujet(s)
Malus , Locus de caractère quantitatif , Cartographie chromosomique/méthodes , Marqueurs génétiques , Génomique/méthodes , Malus/génétique , Hérédité multifactorielle , Locus de caractère quantitatif/génétique
11.
J Exp Bot ; 73(19): 6902-6915, 2022 11 02.
Article de Anglais | MEDLINE | ID: mdl-35816329

RÉSUMÉ

Oomycete pathogens secrete hundreds of cytoplasmic RxLR effectors to modulate host immunity by targeting diverse plant proteins. Revealing how effectors manipulate host proteins is pivotal to understanding infection processes and to developing new strategies to control plant disease. Here we show that the Phytophthora infestans RxLR effector Pi22798 interacts in the nucleus with a potato class II knotted-like homeobox (KNOX) transcription factor, StKNOX3. Silencing the ortholog NbKNOX3 in Nicotiana benthamiana reduces host colonization by P. infestans, whereas transient and stable overexpression of StKNOX3 enhances infection. StKNOX3 forms a homodimer which is dependent on its KNOX II domain. The KNOX II domain is also essential for Pi22798 interaction and for StKNOX3 to enhance P. infestans colonization, indicating that StKNOX3 homodimerization contributes to susceptibility. However, critically, the effector Pi22798 promotes StKNOX3 homodimerization, rather than heterodimerization to another KNOX transcription factor StKNOX7. These results demonstrate that the oomycete effector Pi22798 increases pathogenicity by promoting homodimerization specifically of StKNOX3 to enhance susceptibility.


Sujet(s)
Phytophthora infestans , Solanum tuberosum , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Nicotiana/génétique , Nicotiana/métabolisme , Maladies des plantes
12.
Hortic Res ; 2022 Feb 11.
Article de Anglais | MEDLINE | ID: mdl-35147183

RÉSUMÉ

Plant receptor-like kinases (RLKs) regulate many processes in plants. Many RLKs perform significant roles in plant immunity. Lectin receptor-like kinases (LecRLKs) are a large family of RLKs. However, the function of most of LecRLKs is poorly understood. In this study, we show that a potato LecRLK, StLecRK-IV.1, is involved in plant immunity against Phytophthora infestans. As a negative regulator of immunity, StLecRK-IV.1 is down-regulated by P. infestans and activated by abscisic acid (ABA). The transient expression of StLecRK-IV.1 in Nicotiana benthamiana enhanced P. infestans leaf colonization significantly. In contrast, the disease lesion size caused by P. infestans was reduced in Virus-induced gene silencing (VIGS) of StLecRK-IV.1 orthologue in N. benthamiana, NbLecRK-IV.1, as well as in potato plants with stable RNA interference of StLecRK-IV.1. Tetraspanin-8 (StTET8) was identified to be interacting with StLecRK-IV.1 using a membrane yeast-2-hybrid system, which was further verified by co-immunoprecipitation, a luciferase complementation assay, and a bimolecular fluorescence complementary (BiFC) test. StTET8 is a positive immune regulator that restrains P. infestans infection. The co-expression of StLecRK-IV.1 with StTET8 antagonized the positive roles of StTET8 against P. infestans. Moreover, the co-expression of StTET8 with StLecRK-IV.1 affected the stability of StTET8, which was confirmed by a Western blot assay and confocal assay. Taken together, our work firstly revealed that a potato L-type Lectin RLK, StLecRK-IV.1, negatively regulates plant immunity by targeting a positive regulator, StTET8, through affecting its stability.

13.
Plant Sci ; 315: 111149, 2022 Feb.
Article de Anglais | MEDLINE | ID: mdl-35067312

RÉSUMÉ

Programmed cell death plays a crucial role in plant development and disease defense. Here, we report that the expression of StERF3, a potato EAR motif-containing transcription factor, promotes Phytophthora infestans colonization in Nicotiana benthamiana. Transient overexpression of StERF3 induces cell death in N. benthamiana leaves. The substitution of two key amino acids (14th and 19th) in its ERF domain (the DNA binding domain) dramatically altered its cell death-inducing ability. In addition, StERF3△EAR EAR motif-deletion or StERF3AAA mutation abolished the cell death-inducing ability. StERF3 interacted with the co-repressors Topless-related protein 1 (StTPL1) and Topless-related protein 3 (StTPL3) via the EAR motif. Moreover, cell death induced by StERF3 was facilitated by co-expression with StTPL1 or StTPL3. Virus-induced gene silencing (VIGS) of NbTPL1 and NbTPL3 in N. benthamiana compromised the cell death-inducing ability of StERF3. Furthermore, StERF3-induced cell death accompanied with ROS bursts and the upregulation of the respiratory burst oxidase homolog (Rboh) genes NbRbohA and NbRbohC. In addition, several cell death regulator genes, including NbCRTD, NbNCBP, and NbBCPL, and a hypersensitive cell death marker gene Hin1 were upregulated. StERF3 may positively regulate cell death through its EAR motif-mediated transcriptional repressor activity by inhibiting the expression of genes potentially coding the repressor of cell death (CD).


Sujet(s)
Mort cellulaire/génétique , Résistance à la maladie/génétique , Nicotiana/génétique , Nicotiana/microbiologie , Nicotiana/physiologie , Phytophthora infestans/pathogénicité , Facteurs de transcription , Régulation de l'expression des gènes fongiques , Régulation de l'expression des gènes végétaux , Extinction de l'expression des gènes , Gènes de plante , Interactions hôte-parasite
14.
BMC Plant Biol ; 21(1): 582, 2021 Dec 09.
Article de Anglais | MEDLINE | ID: mdl-34886813

RÉSUMÉ

BACKGROUND: The oomycete pathogen secretes many effectors into host cells to manipulate host defenses. For the majority of effectors, the mechanisms related to how they alter the expression of host genes and reprogram defenses are not well understood. In order to investigate the molecular mechanisms governing the influence that the Phytophthora infestans RXLR effector Pi04089 has on host immunity, a comparative transcriptome analysis was conducted on Pi04089 stable transgenic and wild-type potato plants. RESULTS: Potato plants stably expressing Pi04089 were more susceptible to P. infestans. RNA-seq analysis revealed that 658 upregulated genes and 722 downregulated genes were characterized in Pi04089 transgenic lines. A large number of genes involved in the biological process, including many defense-related genes and certain genes that respond to salicylic acid, were suppressed. Moreover, the comparative transcriptome analysis revealed that Pi04089 significantly inhibited the expression of many flg22 (a microbe-associated molecular pattern, PAMP)-inducible genes, including various Avr9/Cf-9 rapidly elicited (ACRE) genes. Four selected differentially expressed genes (StWAT1, StCEVI57, StKTI1, and StP450) were confirmed to be involved in host resistance against P. infestans when they were transiently expressed in Nicotiana benthamiana. CONCLUSION: The P. infestans effector Pi04089 was shown to suppress the expression of many resistance-related genes in potato plants. Moreover, Pi04089 was found to significantly suppress flg22-triggered defense signaling in potato plants. This research provides new insights into how an oomycete effector perturbs host immune responses at the transcriptome level.


Sujet(s)
Régulation de l'expression des gènes végétaux , Phytophthora infestans/immunologie , Maladies des plantes/immunologie , Maladies des plantes/microbiologie , Immunité des plantes , Solanum tuberosum/immunologie , Facteurs de virulence/immunologie , Résistance à la maladie/génétique , Résistance à la maladie/immunologie , Régulation de l'expression des gènes , Végétaux génétiquement modifiés , Solanum tuberosum/génétique , Solanum tuberosum/microbiologie , Transcriptome
15.
New Phytol ; 232(3): 1368-1381, 2021 11.
Article de Anglais | MEDLINE | ID: mdl-34339518

RÉSUMÉ

Knowledge of the evolutionary processes which govern pathogen recognition is critical to understanding durable disease resistance. We determined how Phytophthora infestans effector PiAVR2 is recognised by evolutionarily distinct resistance proteins R2 and Rpi-mcq1. We employed yeast two-hybrid, co-immunoprecipitation, virus-induced gene silencing, transient overexpression, and phosphatase activity assays to investigate the contributions of BSL phosphatases to R2- and Rpi-mcq1-mediated hypersensitive response (R2 HR and Rpi-mcq1 HR, respectively). Silencing PiAVR2 target BSL1 compromises R2 HR. Rpi-mcq1 HR is compromised only when BSL2 and BSL3 are silenced. BSL1 overexpression increases R2 HR and compromises Rpi-mcq1. However, overexpression of BSL2 or BSL3 enhances Rpi-mcq1 and compromises R2 HR. Okadaic acid, which inhibits BSL phosphatase activity, suppresses both recognition events. Moreover, expression of a BSL1 phosphatase-dead (PD) mutant suppresses R2 HR, whereas BSL2-PD and BSL3-PD mutants suppress Rpi-mcq1 HR. R2 interacts with BSL1 in the presence of PiAVR2, but not with BSL2 and BSL3, whereas no interactions were detected between Rpi-mcq1 and BSLs. Thus, BSL1 activity and association with R2 determine recognition of PiAVR2 by R2, whereas BSL2 and BSL3 mediate Rpi-mcq1 perception of PiAVR2. R2 and Rpi-mcq1 utilise distinct mechanisms to detect PiAVR2 based on association with different BSLs, highlighting central roles of these effector targets for both disease and disease resistance.


Sujet(s)
Phytophthora infestans , Solanum tuberosum , Résistance à la maladie/génétique , Maladies des plantes , Protéines végétales/génétique
16.
Theor Appl Genet ; 134(1): 159-169, 2021 Jan.
Article de Anglais | MEDLINE | ID: mdl-33011819

RÉSUMÉ

KEY MESSAGE: Overexpression and virus-induced gene silencing verified BoDFR1 conferred the anthocyanin accumulation in pink-leaved ornamental kale. Leaf color is an essential trait in the important horticultural biennial plant ornamental kale (Brassica oleracea var. acephala). The identity of the gene conferring this striking trait and its mode of inheritance are topics of debate. Based on an analysis of F1, F2, BC1P1, and BC1P2 ornamental kale populations derived from a cross between a pink-leaved P28 and white-leaved D10 line, we determined that the pink leaf trait is controlled by a semi-dominant gene. We cloned two genes potentially involved in anthocyanin biosynthesis in ornamental kale: Bo9g058630 and Bo6g100940. Based on their variation in sequence, we speculated that Bo9g058630, encoding the kale dihydroflavonol-4 reductase (BoDFR1) enzyme, plays a critical role in the development of the pink leaf trait. Indeed, an InDel marker specific for BoDFR1 completely co-segregated with the pink leaf trait in our F2 population. We then generated the 35Spro: DFR-GUS overexpression vector, which we transformed into D10. Overexpression of BoDFR1 indeed restored some anthocyanin accumulation in this white-leaved parental line. In addition, we targeted BoDFR1 in P28 using virus-induced gene silencing. Again, silencing of BoDFR1 resulted in a substantial decrease in anthocyanin accumulation. This work lays the foundation for further exploration of the mechanism underlying anthocyanin accumulation in pink-leaved ornamental kale.


Sujet(s)
Alcohol oxidoreductases/métabolisme , Anthocyanes/biosynthèse , Brassica/enzymologie , Protéines végétales/métabolisme , Alcohol oxidoreductases/génétique , Brassica/génétique , Croisements génétiques , Extinction de l'expression des gènes , Gènes de plante , Marqueurs génétiques , Mutation de type INDEL , Pigmentation/génétique , Feuilles de plante , Protéines végétales/génétique , Végétaux génétiquement modifiés
17.
Plant Genome ; 13(3): e20047, 2020 11.
Article de Anglais | MEDLINE | ID: mdl-33217219

RÉSUMÉ

Apple fruit cover color is an important appearance trait determining fruit quality, high degree of fruit cover color or completely red fruit skin is also the ultimate breeding goal. MdMYB1 has repeatedly been reported as a major gene controlling apple fruit cover color. There are also multiple minor-effect genes affecting degree of fruit cover color (DFC). This study was to identify genome-wide quantitative trait loci (QTLs) and to develop genomics-assisted prediction for apple DFC. The DFC phenotype data of 9,422 hybrids from five full-sib families of Malus asiatica 'Zisai Pearl', M. domestica 'Red Fuji', 'Golden Delicious', and 'Jonathan' were collected in 2014-2017. The phenotype varied considerably among hybrids with the same MdMYB1 genotype. Ten QTLs for DFC were identified using MapQTL and bulked segregant analysis via sequencing. From these QTLs, ten candidate genes were predicted, including MdMYB1 from a year-stable QTL on chromosome 9 of 'Zisai Pearl' and 'Red Fuji'. Then, kompetitive allele-specific polymerase chain reaction (KASP) markers were designed on these candidate genes and 821 randomly selected hybrids were genotyped. The genotype effects of the markers were estimated. MdMYB1-1 (represented by marker H162) exhibited a partial dominant allelic effect on MdMYB1-2 and showed non-allelic epistasis on markers H1245 and G6. Finally, a non-additive QTL-based genomics assisted prediction model was established for DFC. The Pearson's correlation coefficient between the genomic predicted value and the observed phenotype value was 0.5690. These results can be beneficial for apple genomics-assisted breeding and may provide insights for understanding the mechanism of fruit coloration.


Sujet(s)
Malus , Fruit/génétique , Génomique , Malus/génétique , Phénotype , Locus de caractère quantitatif
18.
Plant Commun ; 1(4): 100020, 2020 07 13.
Article de Anglais | MEDLINE | ID: mdl-32715295

RÉSUMÉ

Ubiquitination is a post-translational modification that regulates many processes in plants. Several ubiquitin E3 ligases act as either positive or negative regulators of immunity by promoting the degradation of different substrates. StPUB17 is an E3 ligase that has previously been shown to positively regulate immunity to bacteria, fungi and oomycetes, including the late blight pathogen Phytophthora infestans. Silencing of StPUB17 promotes pathogen colonization and attenuates Cf4/avr4 cell death. Using yeast-2-hybrid and co-immunoprecipitation we identified the putative K-homology (KH) RNA-binding protein (RBP), StKH17, as a candidate substrate for degradation by StPUB17. StKH17 acts as a negative regulator of immunity that promotes P. infestans infection and suppresses specific immune pathways. A KH RBP domain mutant of StKH17 (StKH17GDDG) is no longer able to negatively regulate immunity, indicating that RNA binding is likely required for StKH17 function. As StPUB17 is a known target of the ubiquitin E3 ligase, StPOB1, we reveal an additional step in an E3 ligase regulatory cascade that controls plant defense.


Sujet(s)
Régulation de l'expression des gènes végétaux/immunologie , Nicotiana/génétique , Immunité des plantes/génétique , Protéines végétales/génétique , Ubiquitin-protein ligases/génétique , Mort cellulaire , Protéines végétales/immunologie , Nicotiana/immunologie , Ubiquitin-protein ligases/immunologie , Ubiquitination
19.
Plant Physiol ; 180(4): 2227-2239, 2019 08.
Article de Anglais | MEDLINE | ID: mdl-31217198

RÉSUMÉ

The potato (Solanum tuberosum) blight pathogen Phytophthora infestans delivers Arg-X-Leu-Arg (RXLR) effector proteins into host cells to subvert plant immune responses and promote colonization. We show that transient expression and stable transgenic expression of the RXLR effector Pi22926 in Nicotiana benthamiana promotes leaf colonization by P. infestans. Pi22926 suppresses cell death triggered by coexpression of the Cladosporium fulvum avirulence protein Avr4 and the tomato (Solanum lycopersicum) resistance protein Cf4. Pi22926 interacts with a potato mitogen-activated protein kinase kinase kinase, StMAP3Kß2, in the nucleoplasm. Virus-induced gene silencing (VIGS) of the ortholog NbMAP3Kß2 in N. benthamiana enhances P. infestans colonization and attenuates Cf4/Avr4-induced cell death, indicating that this host protein is a positive regulator of immunity. Cell death induced by Cf4/Avr4 is dependent on NbMAP3Kε and NbMAP3Kß2, indicating that these MAP3Ks function in the same signaling pathway. VIGS of NbMAP3Kß2 does not compromise cell death triggered by overexpression of MAP3Kε. Similarly, VIGS of NbMAP3Kε does not attenuate cell death triggered by MAP3Kß2, demonstrating that these MAP3K proteins function in parallel. In agreement, Pi22926 or another RXLR effector, PexRD2, only suppresses cell death triggered by expression of StMAP3Kß2 or StMAP3Kε, respectively. Our data reveal that two P. infestans effectors, PexRD2 and Pi22926, promote P. infestans colonization by targeting MAP3K proteins that act in parallel in the same signal transduction pathway.


Sujet(s)
Phytophthora infestans/pathogénicité , Protéines végétales/métabolisme , Mort cellulaire/physiologie , Noyau de la cellule/métabolisme , Noyau de la cellule/microbiologie , Solanum lycopersicum/métabolisme , Solanum lycopersicum/microbiologie , Maladies des plantes/microbiologie , Immunité des plantes/physiologie , Feuilles de plante/métabolisme , Feuilles de plante/microbiologie , Protéines végétales/génétique , Transduction du signal/génétique , Transduction du signal/physiologie , Nicotiana/métabolisme , Nicotiana/microbiologie
20.
J Exp Bot ; 70(1): 343-356, 2019 01 01.
Article de Anglais | MEDLINE | ID: mdl-30329083

RÉSUMÉ

Oomycetes such as the potato blight pathogen Phytophthora infestans deliver RXLR effectors into plant cells to manipulate host processes and promote disease. Knowledge of where they localize inside host cells is important in understanding their function. Fifty-two P. infestans RXLR effectors (PiRXLRs) up-regulated during early stages of infection were expressed as fluorescent protein (FP) fusions inside cells of the model host Nicotiana benthamiana. FP-PiRXLR fusions were predominantly nucleo-cytoplasmic, nuclear, or plasma membrane-associated. Some also localized to the endoplasmic reticulum, mitochondria, peroxisomes, or microtubules, suggesting diverse sites of subcellular activity. Seven of the 25 PiRXLRs examined during infection accumulated at sites of haustorium penetration, probably due to co-localization with host target processes; Pi16663 (Avr1), for example, localized to Sec5-associated mobile bodies which showed perihaustorial accumulation. Forty-five FP-RXLR fusions enhanced pathogen leaf colonization when expressed in Nicotiana benthamiana, revealing that their presence was beneficial to infection. Co-expression of PiRXLRs that target and suppress different immune pathways resulted in an additive enhancement of colonization, indicating the potential to study effector combinations using transient expression assays. We provide a broad platform of high confidence P. infestans effector candidates from which to investigate the mechanisms, singly and in combination, by which this pathogen causes disease.


Sujet(s)
Interactions hôte-pathogène , Nicotiana/microbiologie , Phytophthora infestans/pathogénicité , Maladies des plantes/immunologie , Facteurs de virulence/métabolisme , Protéines à fluorescence verte/métabolisme , Maladies des plantes/microbiologie , Régulation positive
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...