Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 42
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Front Cell Infect Microbiol ; 14: 1424554, 2024.
Article de Anglais | MEDLINE | ID: mdl-39220288

RÉSUMÉ

Background: Mycoplasma pneumoniae (MP) is a significant cause of community-acquired pneumonia with high macrolide resistance rates. Various COVID-19 pandemic restrictions have impacted the prevalence of MP. Objective: To assess the changes in the pattern of MP infections among children before, during, and after the COVID-19 pandemic. Methods: A total of 36685 enrolled patients, aged 0-18 years, diagnosed with pneumonia and admitted to Children's Hospital of Chongqing Medical University from January 2019 to December 2023, were retrospectively reviewed in this study. The epidemiological characteristics of pediatric MP infection were analyzed. Results: Among 36685 patients, 7610 (20.74%) tested positive for MP. The highest positive rate was observed among children aged over 6 years (55.06%). There was no gender disparity in MP infection across the three phases of the COVID-19 pandemic. Hospital stays were longest for children during the COVID-19 pandemic (P <0.001). MP infection was most prevalent in the summer (29.64%). The lowest positive rate was observed during the pandemic, with the highest rate found after easing the measures across all age groups (P <0.001). There was a surge in the positive rate of MP in the third year after the COVID-19 pandemic. Regression analyses demonstrated a shift in the age range susceptible to MP infection, with children aged 3.8 to 13.5 years post-pandemic compared to the pre-pandemic range of 5.3 to 15.5 years old. Additionally, the average macrolide resistance rate was 79.84%. We observed a higher resistance rate during the pandemic than in the pre- and post-pandemic phases (P <0.001). Conclusion: The restrictive measures implemented during the COVID-19 pandemic have influenced the spread of MP to some extent and altered demographic and clinical characteristics, such as age, age group, season, length of stay, and macrolide resistance. We recommend continuous surveillance of the evolving epidemiological characteristics of MP infection in the post-pandemic period when restrictions are no longer necessary.


Sujet(s)
COVID-19 , Mycoplasma pneumoniae , Pneumopathie à mycoplasmes , SARS-CoV-2 , Humains , Enfant , COVID-19/épidémiologie , Enfant d'âge préscolaire , Chine/épidémiologie , Femelle , Mâle , Nourrisson , Adolescent , Pneumopathie à mycoplasmes/épidémiologie , Mycoplasma pneumoniae/effets des médicaments et des substances chimiques , Mycoplasma pneumoniae/isolement et purification , Études rétrospectives , Nouveau-né , Prévalence , SARS-CoV-2/isolement et purification , Hospitalisation/statistiques et données numériques , Pandémies , Macrolides/usage thérapeutique , Résistance bactérienne aux médicaments , Antibactériens/usage thérapeutique , Antibactériens/pharmacologie , Enfant hospitalisé/statistiques et données numériques , Saisons , Infections communautaires/épidémiologie , Infections communautaires/microbiologie
2.
Chemistry ; : e202402301, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-39073706

RÉSUMÉ

Tin (Sn)-based materials are expected to realize efficient CO2 electroreduction into formate. Herein, we constructed a heterojunction by depositing Cu on Cu-doped SnS2 nanosheets. During the electrochemical reaction, this heterojunction evolves to a highly active phase of Cu2O@Cu6Sn5 while maintaining its two-dimensional morphology. Specifically, a partial current density of 35 mA cm-2 with an impressive faradaic efficiency of 93% for formate production was achieved over the evolved heterojunction. In situ and ex situ experiments elucidated the formation mechanism of the Cu2O@Cu6Sn5 heterojunction. Cu6Sn5 nanosheets were formed via a stepwise desulfurization process, while Cu2O was generated through its reaction with hydroxyl radicals. This evolved heterojunction with a high electrochemically active surface area synergistically stabilized the *OCHO intermediate, thereby significantly enhancing the selectivity and activity. Our findings provide insight into the structural evolution process and guide the development of selective electrocatalysts for CO2 reduction.

3.
Cell Biochem Biophys ; 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38809352

RÉSUMÉ

Temozolomide (TMZ) stands as the primary chemotherapeutic drug utilized in clinical glioma treatment, particularly for high-grade glioblastoma (GBM). However, the emergence of TMZ resistance in GBM poses a significant hurdle to its clinical efficacy. Our objective was to elucidate the role of deubiquitinating enzymes (DUBs) in GBM cell resistance to TMZ. We employed the broad-spectrum DUBs inhibitor G5 to investigate the function of DUBs in TMZ cytotoxicity against GBM cells. Eighty-two GBM cell lines with specified DUBs knockout were generated and subjected to CCK-8 assays to assess cell proliferation and TMZ resistance. Furthermore, the association between DUBs and TMZ resistance in GBM cells, along with the modulation of autophagic flux, was examined. The pan-DUBs inhibitor G5 demonstrated the ability to induce cell death and enhance TMZ toxicity in GBM cells. Subsequently, we identified potential DUBs involved in regulating GBM cell proliferation and TMZ resistance. The impact of DUBs knockout on TMZ cytotoxicity was found to be associated with their regulation of TMZ-induced autophagy. In summary, our study provides primary insights into the role of DUBs in GBM cell proliferation and TMZ resistance, and contributes to a deeper understanding of the complex function of DUBs genes underlying TMZ resistance in GBM cells.

4.
Nano Lett ; 24(11): 3525-3531, 2024 Mar 20.
Article de Anglais | MEDLINE | ID: mdl-38466128

RÉSUMÉ

Variegation and complexity of polarization relaxation loss in many heterostructured materials provide available mechanisms to seek a strong electromagnetic wave (EMW) absorption performance. Here we construct a unique heterostructured compound that bonds α-Fe2O3 nanosheets of the (110) plane on carbon microtubes (CMTs). Through effective alignment between the Fermi energy level of CMTs and the conduction band position of α-Fe2O3 nanosheets at the interface, we attain substantial polarization relaxation loss via novel atomic valence reversal between Fe(III) ↔ Fe(III-) induced with periodic electron injection from conductive CMTs under EMW irradiation to give α-Fe2O3 nanosheets. Such heterostructured materials possess currently reported minimum reflection loss of -84.01 dB centered at 10.99 GHz at a thickness of 3.19 mm and an effective absorption bandwidth (reflection loss ≤ -10 dB) of 7.17 GHz (10.83-18 GHz) at 2.65 mm. This work provides an effective strategy for designing strong EMW absorbers by combining highly efficient electron injection and atomic valence reversal.

5.
J Colloid Interface Sci ; 663: 825-833, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38447397

RÉSUMÉ

Graphitic carbon nitride (g-C3N4, CN) has garnered considerable attention in the field of photocatalysis due to its favorable band gap and high specific surface area. However, its primary practical limitation lies in the strong radiative recombination of lone pair (LP) electronic states, leading to limited efficiency in separating photogenerated carriers and subsequently diminishing photocatalytic performance. In this study, we devised and synthesized a heterojunction photocatalytic system comprising TiO2 nanosheets supported on modified g-C3N4 (MCN), designated as MCN/TiO2. The presence of CN functional groups on the tri-s-triazine nitrogen captures photogenerated electrons by modifying LP electronic states, resulting in a reduction in the fluorescence emission intensity of g-C3N4. Simultaneously, it forms chemical bonds with the supported TiO2 nanosheets, creating an efficient electron transfer pathway for the accumulation of photogenerated electrons at the active Ti sites. Experimentally, the MCN/TiO2 photocatalytic system exhibited optimal performance in CO2 reduction. The CH4 production rate reached 26.59 µmol g-1 h-1, surpassing that of TiO2 and CN/TiO2 by approximately 8 and 3 times, respectively. Furthermore, this photocatalytic system demonstrated exceptional photostability over five cycles, each lasting 4 h. This research offers a valuable approach for the efficient separation and transfer of photogenerated carriers in composite materials based on g-C3N4.

6.
Poult Sci ; 103(2): 103317, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38160613

RÉSUMÉ

Allometric growth of the forelimb and hindlimb is a widespread phenomenon observed in vertebrates. As a typical precocial bird, ducks exhibit more advanced development of their hindlimbs compared to their forelimbs, enabling them to walk shortly after hatching. This phenomenon is closely associated with the development of long bones in the embryonic stage. However, the molecular mechanism governing the allometric growth of duck forelimb and hindlimb bones is remains elusive. In this study, we employed phenotypic, histological, and gene expression analyses to investigate developmental differences between the humerus (forelimb bone) and tibia/femur (hindlimb bones) in duck embryos. Our results revealed a gradual increase in weight and length disparity between the tibia and humerus from E12 to E28 (embryo age). At E12, endochondral ossification was observed solely in the tibia but not in the humerus. The number of differentially expressed genes (DEGs) gradually increased at H12 vs. T12, H20 vs. T20, and H28 vs. T28 stages consistent with phenotypic variations. A total of 38 DEGs were found across all 3 stages. Protein-protein interaction network analysis demonstrated strong interactions among members of HOXD gene family (HOXD3/8/9/10/11/12), HOXB gene family (HOXB8/9), TBX gene family (TBX4/5/20), HOXA11, SHOX2, and MEIS2. Gene expression profiling indicated higher expression levels for all HOXD genes in the humerus compared to tibia while opposite trends were observed for HOXA/HOXB genes with low or no expression detected in the humerus. These findings suggest distinct roles played by different clusters within HOX gene family during skeletal development regulation of duck embryo's forelimbs versus hind limbs. Notably, TBX4 exhibited high expression levels specifically in tibia whereas TBX5 showed similar patterns exclusively within humerus as seen previously across other species' studies. In summary, this study identified key regulatory genes involved in allometric growth of duck forelimb and hindlimb bones during embryonic development. Skeletal development is a complex physiological process, and further research is needed to elucidate the regulatory role of candidate genes in endochondral ossification.


Sujet(s)
Canards , Transcriptome , Animaux , Canards/génétique , Poulets , Membre thoracique/physiologie , Membre pelvien/physiologie , Facteurs de transcription , Humérus
7.
J Sci Food Agric ; 104(2): 818-828, 2024 Jan 30.
Article de Anglais | MEDLINE | ID: mdl-37683050

RÉSUMÉ

BACKGROUND: Lima bean protein isolate (LPI) is an underutilized plant protein. Similar to other plant proteins, it may display poor emulsification properties. In order to improve its emulsifying properties, one effective approach is using protein and polysaccharide mixtures. This work investigated the structural and emulsifying properties of LPI as well as the development of an LPI/xanthan gum (XG)-stabilized oil-in-water emulsion. RESULTS: The highest protein solubility (84.14%) of LPI was observed and the molecular weights (Mw ) of most LPI subunits were less than 35 kDa. The enhanced emulsifying activity index (15.97 m2 g-1 ) of LPI might be associated with its relatively high protein solubility and more low-Mw subunits (Mw < 35 kDa). The effects of oil volume fraction (ϕ) on droplet size, microstructure, rheological behavior and stability of emulsions were investigated. As ϕ increased from 0.2 to 0.8, the emulsion was arranged from spherical and dispersed oil droplets to polyhedral packing of oil droplets adjacent to each other, while the LPI/XG mixtures changed from particles (in the uncrowded interfacial layer) to lamellae (in the crowded interfacial layer). When ϕ was 0.6, the emulsion was in a transitional state with the coexistence of particles and lamellar structures on the oil droplet surface. The LPI/XG-stabilized emulsions with ϕ values of 0.6-0.8 showed the highest stability during a 14-day storage period. CONCLUSION: This study developed a promising plant-based protein resource, LPI, and demonstrates potential application of LPI/XG as an emulsifying stabilizer in foods. © 2023 Society of Chemical Industry.


Sujet(s)
Phaseolus , Protéines végétales , Émulsions/composition chimique , Protéines végétales/composition chimique , Polyosides bactériens/composition chimique , Eau/composition chimique
9.
Sci Rep ; 13(1): 20939, 2023 11 28.
Article de Anglais | MEDLINE | ID: mdl-38016989

RÉSUMÉ

Because China produces the most crayfish in the world, safe solutions must be improved to mitigate the risks of ongoing heavy metal stressors accumulation. This study aimed to use Saccharomyces cerevisiae as a bioremediation agent to counteract the harmful effect of cadmium (Cd) on crayfish (Procambarus clarkia). Our study used three concentrations of S. cerevisiae on crayfish feed to assess their Cd toxicity remediation effect by measuring total antioxidant capacity (TAC) and the biomarkers related to oxidative stress like malondialdehyde (MDA), protein carbonyl derivates (PCO), and DNA-protein crosslink (DPC). A graphite furnace atomic absorption spectroscopy device was used to determine Cd contents in crayfish. Furthermore, the mRNA expression levels of lysozyme (LSZ), metallothionein (MT), and prophenoloxidase (proPO) were evaluated before and following the addition of S. cerevisiae. The results indicated that S. cerevisae at 5% supplemented in fundamental feed exhibited the best removal effect, and Cd removal rates at days 4th, 8th, 12th, and 21st were 12, 19, 29.7, and 66.45%, respectively, which were significantly higher than the basal diet of crayfish. The addition of S. cerevisiae increased TAC levels. On the other hand, it decreased MDA, PCO, and DPC, which had risen due to Cd exposure. Furthermore, it increased the expression of proPO, which was reduced by Cd exposure, and decreased the expression of LSZ and MT, acting in the opposite direction of Cd exposure alone. These findings demonstrated that feeding S. cerevisiae effectively reduces the Cd from crayfish and could be used to develop Cd-free crayfish-based foods.


Sujet(s)
Cadmium , Saccharomyces cerevisiae , Animaux , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Cadmium/métabolisme , Astacoidea/métabolisme , Hémocytes/métabolisme , Stress oxydatif , Antioxydants/métabolisme
10.
BMC Genomics ; 24(1): 285, 2023 May 26.
Article de Anglais | MEDLINE | ID: mdl-37237371

RÉSUMÉ

BACKGROUND: The genetic locus responsible for duck body size has been fully explained before, but the growth trait-related genetic basis is still waiting to be explored. For example, the genetic site related to growth rate, an important economic trait affecting marketing weight and feeding cost, is still unclear. Here, we performed genome wide association study (GWAS) to identify growth rate-associated genes and mutations. RESULT: In the current study, the body weight data of 358 ducks were recorded every 10 days from hatching to 120 days of age. According to the growth curve, we evaluated the relative and absolute growth rates (RGR and AGR) of 5 stages during the early rapid growth period. GWAS results for RGRs identified 31 significant SNPs on autosomes, and these SNPs were annotated by 24 protein-coding genes. Fourteen autosomal SNPs were significantly associated with AGRs. In addition, 4 shared significant SNPs were identified as having an association with both AGR and RGR, which were Chr2: 11483045 C>T, Chr2: 13750217 G>A, Chr2: 42508231 G>A and Chr2: 43644612 C>T. Among them, Chr2: 11483045 C>T, Chr2: 42508231 G>A, and Chr2: 43644612 C>T were annotated by ASAP1, LYN and CABYR, respectively. ASAP1 and LYN have already been proven to play roles in the growth and development of other species. In addition, we genotyped every duck using the most significant SNP (Chr2: 42508231 G>A) and compared the growth rate difference among each genotype population. The results showed that the growth rates of individuals carrying the Chr2: 42508231 A allele were significantly lower than those without this allele. Moreover, the results of the Mendelian randomization (MR) analysis supported the idea that the growth rate and birth weight had a causal effect on the adult body weight, with the growth rate having a greater effect size. CONCLUSION: In this study, 41 SNPs significantly related to growth rate were identified. In addition, we considered that the ASAP1 and LYN genes are essential candidate genes affecting the duck growth rate. The growth rate also showed the potential to be used as a reliable predictor of adult weight, providing a theoretical reference for preselection.


Sujet(s)
Canards , Étude d'association pangénomique , Humains , Adulte , Animaux , Canards/génétique , Locus de caractère quantitatif , Génotype , Poids/génétique , Polymorphisme de nucléotide simple
11.
J Agric Food Chem ; 71(22): 8317-8331, 2023 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-37249228

RÉSUMÉ

Consumption of fruits and vegetables has been associated with a reduced risk of multiple diseases, such as metabolic disorders. Flavonols are the most ubiquitous flavonoids in fruits and vegetables. However, dietary flavonols exhibit a general low oral bioavailability for their extensive biotransformation mediated by phase II enzymes in enterocytes and liver as well as by microbiota in the gut lumen. In this context, flavonols have brought attention to a paradox between low bioavailability and health-promoting effects. Flavonols are often transformed prior to absorption, which could change their biological activity. Compared to their parent compounds, the corresponding metabolites of flavonols in vivo might exhibit similar or higher intrinsic bioactivities, or perhaps a decreased efficacious effectiveness. Indeed, a growing body of evidence from biological function studies of metabolites supports the positive and significant contribution of in vivo metabolic processes, particularly conversion mediated by gut microbiota, to the health-promoting benefits of flavonols. As such, further understanding of the metabolic fate of flavonols and biological activities of their metabolites as well as the possible impact of microbiota-mediated conversion on the bioactivity is of great significance to guide a rational diet with flavonol-rich fruits and vegetables and/or flavonol-containing functional foods.


Sujet(s)
Flavonols , Microbiome gastro-intestinal , Flavonoïdes/métabolisme , Régime alimentaire , Légumes/métabolisme , Biotransformation
12.
Chembiochem ; 24(1): e202200388, 2023 01 03.
Article de Anglais | MEDLINE | ID: mdl-35977913

RÉSUMÉ

N-Glycosylation is often essential for the structure and function of proteins. However, N-glycosylated proteins from natural sources exhibit considerable heterogeneity in the appended oligosaccharides, bringing daunting challenges to corresponding basic research and therapeutic applications. To address this issue, various synthetic, enzymatic, and chemoenzymatic approaches have been elegantly designed. Utilizing the endoglycosidase-catalyzed transglycosylation method, a single N-acetylglucosamine (N-GlcNAc, analogous to a tree stump) on proteins can be converted to various homogeneous N-glycosylated forms, thereby becoming the focus of research efforts. In this concept article, we briefly introduce the methods that allow the generation of N-GlcNAc and its close analogues on proteins and peptides and highlight the current challenges and opportunities the scientific community is facing.


Sujet(s)
Glycoprotéines , Polyosides , Glycoprotéines/métabolisme , Glycosylation , Polyosides/composition chimique , Oligosaccharides/métabolisme , Glycosidases/métabolisme
13.
Nano Lett ; 22(24): 10018-10024, 2022 12 28.
Article de Anglais | MEDLINE | ID: mdl-36475866

RÉSUMÉ

Reversible regulation of ferroelectric polarization possesses great potentials recently in bionic neural networks. Photoinduced cis-trans isomers have changeable dipole moments, but they cannot be directed to some specific orientation. Here, we construct a host-guest composite structure which consists of a porous ferroelectric metal (Ni)-organic framework [Ni(DPA)2] as host and photoisomer, azobenzene (AZB), as guest molecules. When AZB molecules are embedded in the nanopores of Ni(DPA)2 in the form of a single molecule, polarization strength tunable regulation is realized after ultraviolet irradiation of 365 and 405 nm via cis-trans isomerism transformation of AZB. An intrinsic built-in field originating from the distorted {NiN2O4} octahedra in Ni(DPA)2 directs the dipole moments of AZB to the applied electric field. As a result, the overlapped ferroelectric polarization strength changes with content of cis-AZB after ultraviolet and visible irradiation. Such a connection of ferroelectric Ni(DPA)2 structure with cis-trans isomers provides an important strategy for regulating the ferroelectric polarization strength.


Sujet(s)
Réseaux organométalliques , Isomérie , Lumière , Rayons ultraviolets
14.
ACS Appl Mater Interfaces ; 14(48): 54328-54337, 2022 Dec 07.
Article de Anglais | MEDLINE | ID: mdl-36399665

RÉSUMÉ

Truncated octahedron Cu2O (TOC) has attracted more attention for its suitable band gap and high carrier separation efficiency due to introduction of the facet heterojunction, but its practical drawback is still the instability caused by the irreversible disproportionation reaction (Cu2O → Cu + CuO). Here, we design and fabricate the TOC/Cu-MOF (MOF: metal-organic framework) double-heterojunction structures with different Cu-MOF loadings. The introduced heterojunction between TOC and Cu-MOF not only produces a stable interface Cux+ bonding structure with the electronic states localized within the average collisional diameter of electrons 1.72 nm for TOC/2.1 wt %Cu-MOF as the active sites, but also promotes the surface energy level difference between the (100) and (111) facet heterojunctions. Meanwhile, the bonded Cu-MOF with a narrow bandgap effectively consumes holes by recombination with the photoexcited electrons from Cu-MOF itself. In our experiments, the TOC/Cu-MOF double heterostructure with a loading amount of 2.1 wt % Cu-MOF shows an optimal photocatalytic CO2 reduction performance. The CO evolution rate reaches 23.01 µmol g-1 h-1, which is about 2.01 and 4.47 times larger than those of octahedral and hexahedral Cu2O/Cu-MOF, respectively, and an excellent photostability is shown for four cycles with each cycle lasting for 4 h. Such a double heterostructure provides insight into highly efficient electron transfer and photostability in Cu2O-related composite materials.

15.
Chembiochem ; 23(18): e202200302, 2022 09 16.
Article de Anglais | MEDLINE | ID: mdl-35906721

RÉSUMÉ

Post-translational modifications (PTMs) occurring on lysine residues, especially diverse forms of acylations, have seen rapid growth over the past two decades. Among them, lactylation and ß-hydroxybutyrylation of lysine side-chains are newly identified histone marks and their implications in physiology and diseases have aroused broad research interest. Meanwhile, lysine lipoylation is highly conserved in diverse organisms and well known for its pivotal role in central metabolic pathways. Recent findings in the proteomic profiling of protein lipoylation have nonetheless suggested a pressing need for an extensive investigation. For both basic and applied research, it is necessary to prepare PTM-bearing proteins particularly in a site-specific manner. Herein, we use genetic code expansion to site-specifically generate these lysine PTMs, including lactylation, ß-hydroxybutyrylation and lipoylation in proteins in E. coli and mammalian cells. Notably, using strategies including activity-based selection, screening and rational design, unique pyrrolysyl-tRNA synthetase variants were successfully evolved for each of the three non-canonical amino acids, which enabled efficient production of recombinant proteins. Through encoding these ncAAs, we examined the deacylase activities of mammalian sirtuins to these modifications, and importantly we unfold the lipoamidase activity of several sirtuins.


Sujet(s)
Amino acyl-tRNA synthetases , Sirtuines , Acides aminés/métabolisme , Amino acyl-tRNA synthetases/métabolisme , Animaux , Escherichia coli/génétique , Escherichia coli/métabolisme , Lipoylation , Lysine/métabolisme , Mammifères/métabolisme , Maturation post-traductionnelle des protéines , Protéomique , Protéines recombinantes/génétique , Sirtuines/métabolisme
16.
Materials (Basel) ; 15(11)2022 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-35683246

RÉSUMÉ

Precise evaluation for flexural ultimate capacity of bridges which are subjected to the collision of over-height trucks is essential for making decisions on corresponding maintenance, strengthening or replacement. When the span of a cross-line continuous bridge with a double-box girder was hit by an overly high vehicle, the concrete floor of one girder was severely damaged, and part of the prestressed strands and reinforcements in the girder were broken. After the double-box girder was removed and separated into two single box girders, the ultimate flexural capacity of both box girders was studied by destructive tests, and a comparison was made between the damaged and undamaged girders. Moreover, finite element analysis was conducted to simulate the failure process. The results show that the flexural bearing capacity of the damaged box girder decreased by 33%, but it was still 1.07 times greater than the design bearing capacity, which basically meets the design requirements. Also, the damaged box girder showed a desirable serviceable limit state for three-axle vehicles and five-axle vehicles, but showed an undesirable serviceable limit state for six-axle vehicles. This study shows that repairing or strengthening the damaged span may be better than demolishing and rebuilding the whole superstructure bridge.

17.
Food Res Int ; 156: 111155, 2022 06.
Article de Anglais | MEDLINE | ID: mdl-35651021

RÉSUMÉ

In the current study, the effects of heat-moisture treatment on the ginsenoside contents and ginsenoside compositions such as Rg3, CK and Rb1 etc. were investigated at different temperatures, relative humidities (RHs) and treatment times. Our findings demonstrated that the highest total ginsenoside content was 7.48% after 12 days treatment at temperature 80 °C and RH 75%. Correspondingly, less polar ginsenosides Rg3 and CK were accumulated increasingly from 0.88 mg/g and 0.84 mg/g to 7.30 mg/g and 15.08 mg/g, respectively, during heat-moisture treatment. Compared to the ginsenoside extracts of untreated ginseng (UGE), the ginsenoside extracts of heat-moisture treated ginseng (HMGE) exerted better scavenging activities of 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation (ABTS+), and hydroxyl (OH) radicals, as well as higher cytotoxicity efficiency against HepG2. In addition, HMGE promoted cell apoptosis by up-regulating the related protein expression, especially the caspase-3, caspase-9, and poly (ADP-ribose) polymerase (PARP). Therefore, the cytotoxicity of HMGE against HepG2 cells may be due to the mitochondrial apoptosis pathway induced by up-regulated caspase. These results strongly proved the promising prospect of HMGE as functional food or ingredient in nourishing or disease chemoprevention.


Sujet(s)
Ginsénosides , Panax , Ginsénosides/pharmacologie , Cellules HepG2 , Température élevée , Humains , Panax/composition chimique , Extraits de plantes
18.
Molecules ; 27(7)2022 Mar 25.
Article de Anglais | MEDLINE | ID: mdl-35408510

RÉSUMÉ

The exploitation of mineral resources may cause the environmental release of radionuclides and their introduction in the human trophic chain, affecting public health in the short and long term. A case study of the environmental radiation impact from coal mining and germanium processing was carried out in southwest China. The coal mines contain germanium and uranium and have been exploited for more than 40 years. The farmlands around the site of the coal mining and germanium processing have been contaminated by the solid waste and mine water to some extent since then. Samples of crops were collected from contaminated farmlands in the research area. The research area covers a radius of 5 km, in which there are two coal mines. 210Pb and 210Po were analyzed as the key radionuclides during the monitoring program. The average activity concentrations of 210Pb and 210Po in the crops were 1.38 and 1.32 Bq/kg in cereals, 4.07 and 2.19 Bq/kg in leafy vegetables and 1.63 and 1.32 Bq/kg in root vegetables. The annual effective doses due to the ingestion of 210Pb and 210Po in consumed crops were estimated for adult residents living in the research area. The average annual effective dose was 0.336 mSv/a, the minimum was 0.171 mSv/a and the maximum was 0.948 mSv/a. The results show that the crops grown on contaminated farmland contained an enhanced level of radioactivity concentration. The ingestion doses of local residents in the research area were significantly higher than the average level of 0.112 mSv/a in China, and the world average level of 0.042 mSv/a through 210Pb and 210Po in crop intake, respectively.


Sujet(s)
Industrie minière charbon , Germanium , Adulte , Charbon , Produits agricoles , Consommation alimentaire , Humains , Plomb , Polonium , Radio-isotopes/analyse
19.
Angew Chem Int Ed Engl ; 61(19): e202116545, 2022 05 02.
Article de Anglais | MEDLINE | ID: mdl-35225420

RÉSUMÉ

Protein glycosylation plays critical roles in many biological processes. However, the fundamental study and application of glycobiology are hindered by the heterogeneousness of oligosaccharides in natural glycoproteins and the difficulty in constructing glycoproteins of human design. Herein, we describe a semisynthetic method to site-specifically modify proteins with reducing carbohydrates. The method involves the genetic incorporation of a side-chain-esterified aspartate, which was subsequently quantitatively converted into alanine-ß-hydrazide (Aßz), and chemoselective conjugation of Aßz with a range of readily available reducing carbohydrates. The resulting Aßz-linked GlcNAc is a close mimic of native N-GlcNAc and could be installed on various proteins, including IL-17A and RNase A. Notably, Aßz-linked GlcNAc on proteins reacted with biantennary oligosaccharide oxazoline derivatives through endoglycosidase-catalyzed transglycosylation reactions to enable the assembly of homogeneous glycans on proteins.


Sujet(s)
Glycoprotéines , Oligosaccharides , Glycoprotéines/métabolisme , Glycosylation , Humains , Oligosaccharides/métabolisme , Polyosides/métabolisme , Maturation post-traductionnelle des protéines
20.
Front Cell Dev Biol ; 10: 745129, 2022.
Article de Anglais | MEDLINE | ID: mdl-35198553

RÉSUMÉ

Birds can be classified into altricial and precocial species. The hatchlings of altricial birds cannot stand, whereas precocial birds can walk and run soon after hatching. It might be owing to the development of the hindlimb bones in the embryo stage, but the molecular regulatory basis underlying the divergence is unclear. To address this issue, we chose the altricial pigeon and the precocial Japanese quail as model animals. The data of tibia weight rate, embryonic skeletal staining, and tibia tissues paraffin section during the embryonic stage showed that the Japanese quail and pigeon have similar skeletal development patterns, but the former had a faster calcification rate. We utilized the comparative transcriptome approach to screen the genes and pathways related to this heterochronism. We separately analyzed the gene expression of tibia tissues of quail and pigeon at two consecutive time points from an inability to stand to be able to stand. There were 2910 differentially expressed genes (DEGs) of quail, and 1635 DEGs of pigeon, respectively. A total of 409 DEGs in common in the quail and pigeon. On the other hand, we compared the gene expression profiles of pigeons and quails at four time points, and screened out eight pairs of expression profiles with similar expression trends but delayed expression in pigeons. By screening the common genes in each pair of expression profiles, we obtained a gene set consisting of 152 genes. A total of 79 genes were shared by the 409 DEGs and the 152 genes. Gene Ontology analysis of these common genes showed that 21 genes including the COL gene family (COL11A1, COL9A3, COL9A1), IHH, MSX2, SFRP1, ATP6V1B1, SRGN, CTHRC1, NOG, and GDF5 involved in the process of endochondral ossification. These genes were the candidate genes for the difference of tibial development between pigeon and quail. This is the first known study on the embryo skeletal staining in pigeon. It provides some new insights for studying skeletal development mechanisms and locomotor ability of altricial and precocial bird species.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE