Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Commun ; 15(1): 546, 2024 Jan 16.
Article de Anglais | MEDLINE | ID: mdl-38228611

RÉSUMÉ

Aging in mammals is accompanied by an imbalance of intestinal homeostasis and accumulation of mitochondrial DNA (mtDNA) mutations. However, little is known about how accumulated mtDNA mutations modulate intestinal homeostasis. We observe the accumulation of mtDNA mutations in the small intestine of aged male mice, suggesting an association with physiological intestinal aging. Using polymerase gamma (POLG) mutator mice and wild-type mice, we generate male mice with progressive mtDNA mutation burdens. Investigation utilizing organoid technology and in vivo intestinal stem cell labeling reveals decreased colony formation efficiency of intestinal crypts and LGR5-expressing intestinal stem cells in response to a threshold mtDNA mutation burden. Mechanistically, increased mtDNA mutation burden exacerbates the aging phenotype of the small intestine through ATF5 dependent mitochondrial unfolded protein response (UPRmt) activation. This aging phenotype is reversed by supplementation with the NAD+ precursor, NMN. Thus, we uncover a NAD+ dependent UPRmt triggered by mtDNA mutations that regulates the intestinal aging.


Sujet(s)
Vieillissement , NAD , Souris , Mâle , Animaux , NAD/métabolisme , Vieillissement/génétique , Vieillissement/métabolisme , Mutation , Mitochondries/génétique , Mitochondries/métabolisme , ADN mitochondrial/génétique , ADN mitochondrial/métabolisme , DNA Polymerase gamma/génétique , DNA Polymerase gamma/métabolisme , Mammifères/génétique
2.
STAR Protoc ; 2(2): 100568, 2021 06 18.
Article de Anglais | MEDLINE | ID: mdl-34151295

RÉSUMÉ

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors. Here, we describe a protocol for imaging mitochondrial permeability transition pore (mPTP) opening in reprogramming of somatic cells using a confocal microscope. We also describe a method to sort high and low mPTP opening somatic cells by calcein fluorescence and reprogram these sorted cells to iPSCs. These protocols are also suitable for imaging mPTP opening and uncovering the mechanisms of mPTP function in other cell fate conversions. For complete details on the use and execution of this protocol, please refer to Ying et al. (2018).


Sujet(s)
Reprogrammation cellulaire , Pore de transition de perméabilité mitochondriale/métabolisme , Animaux , Cellules cultivées , Milieux de culture , Souris , Souris transgéniques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE