Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 16 de 16
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Cell Chem Biol ; 30(9): 1064-1075.e8, 2023 09 21.
Article de Anglais | MEDLINE | ID: mdl-37716347

RÉSUMÉ

Mitochondrial biogenesis initiates within hours of T cell receptor (TCR) engagement and is critical for T cell activation, function, and survival; yet, how metabolic programs support mitochondrial biogenesis during TCR signaling is not fully understood. Here, we performed a multiplexed metabolic chemical screen in CD4+ T lymphocytes to identify modulators of metabolism that impact mitochondrial mass during early T cell activation. Treatment of T cells with pyrvinium pamoate early during their activation blocks an increase in mitochondrial mass and results in reduced proliferation, skewed CD4+ T cell differentiation, and reduced cytokine production. Furthermore, administration of pyrvinium pamoate at the time of induction of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis in mice, prevented the onset of clinical disease. Thus, modulation of mitochondrial biogenesis may provide a therapeutic strategy for modulating T cell immune responses.


Sujet(s)
Encéphalomyélite auto-immune expérimentale , Souris , Animaux , Encéphalomyélite auto-immune expérimentale/traitement médicamenteux , Lymphocytes T , Activation des lymphocytes , Récepteurs aux antigènes des cellules T , Lymphocytes T CD4+
3.
Oncogene ; 41(21): 2932-2944, 2022 05.
Article de Anglais | MEDLINE | ID: mdl-35437308

RÉSUMÉ

Invasive lobular breast carcinoma (ILC) is characterized by proliferative indolence and long-term latency relapses. This study aimed to identify how disseminating ILC cells control the balance between quiescence and cell cycle re-entry. In the absence of anchorage, ILC cells undergo a sustained cell cycle arrest in G0/G1 while maintaining viability. From the genes that are upregulated in anchorage independent ILC cells, we selected Inhibitor of DNA binding 2 (Id2), a mediator of cell cycle progression. Using loss-of-function experiments, we demonstrate that Id2 is essential for anchorage independent survival (anoikis resistance) in vitro and lung colonization in mice. Importantly, we find that under anchorage independent conditions, E-cadherin loss promotes expression of Id2 in multiple mouse and (organotypic) human models of ILC, an event that is caused by a direct p120-catenin/Kaiso-dependent transcriptional de-repression of the canonical Kaiso binding sequence TCCTGCNA. Conversely, stable inducible restoration of E-cadherin expression in the ILC cell line SUM44PE inhibits Id2 expression and anoikis resistance. We show evidence that Id2 accumulates in the cytosol, where it induces a sustained and CDK4/6-dependent G0/G1 cell cycle arrest through interaction with hypo-phosphorylated Rb. Finally, we find that Id2 is indeed enriched in ILC when compared to other breast cancers, and confirm cytosolic Id2 protein expression in primary ILC samples. In sum, we have linked mutational inactivation of E-cadherin to direct inhibition of cell cycle progression. Our work indicates that loss of E-cadherin and subsequent expression of Id2 drive indolence and dissemination of ILC. As such, E-cadherin and Id2 are promising candidates to stratify low and intermediate grade invasive breast cancers for the use of clinical cell cycle intervention drugs.


Sujet(s)
Tumeurs du sein , Carcinome lobulaire , Animaux , Tumeurs du sein/anatomopathologie , Cadhérines/génétique , Cadhérines/métabolisme , Carcinome lobulaire/génétique , Carcinome lobulaire/métabolisme , Carcinome lobulaire/anatomopathologie , Cycle cellulaire/génétique , Femelle , Humains , Protéine d'inhibition de la différenciation-2/génétique , Souris , Invasion tumorale , Récidive tumorale locale
4.
Cell Rep ; 36(2): 109345, 2021 07 13.
Article de Anglais | MEDLINE | ID: mdl-34260923

RÉSUMÉ

Upon nutrient stimulation, pre-adipocytes undergo differentiation to transform into mature adipocytes capable of storing nutrients as fat. We profiled cellular metabolite consumption to identify early metabolic drivers of adipocyte differentiation. We find that adipocyte differentiation raises the uptake and consumption of numerous amino acids. In particular, branched-chain amino acid (BCAA) catabolism precedes and promotes peroxisome proliferator-activated receptor gamma (PPARγ), a key regulator of adipogenesis. In early adipogenesis, the mitochondrial sirtuin SIRT4 elevates BCAA catabolism through the activation of methylcrotonyl-coenzyme A (CoA) carboxylase (MCCC). MCCC supports leucine oxidation by catalyzing the carboxylation of 3-methylcrotonyl-CoA to 3-methylglutaconyl-CoA. Sirtuin 4 (SIRT4) expression is decreased in adipose tissue of numerous diabetic mouse models, and its expression is most correlated with BCAA enzymes, suggesting a potential role for SIRT4 in adipose pathology through the alteration of BCAA metabolism. In summary, this work provides a temporal analysis of adipocyte differentiation and uncovers early metabolic events that stimulate transcriptional reprogramming.


Sujet(s)
Adipogenèse , Acides aminés à chaine ramifiée/métabolisme , Protéines mitochondriales/métabolisme , Sirtuines/métabolisme , Cellules 3T3-L1 , Tissu adipeux/métabolisme , Animaux , Diabète expérimental , Modèles animaux de maladie humaine , Souris , Souris de lignée C57BL , Récepteur PPAR gamma/métabolisme
5.
Small GTPases ; 11(2): 113-121, 2020 03.
Article de Anglais | MEDLINE | ID: mdl-29291271

RÉSUMÉ

Local modulation of the actin cytoskeleton is essential for the initiation and maintenance of strong homotypic adhesive interfaces between neighboring cells. The epithelial adherens junction (AJ) fulfils a central role in this process by mediating E-cadherin interactions and functioning as a signaling scaffold to control the activity of the small GTPase RhoA and subsequent actomyosin contractility. Interestingly, a number of regulatory proteins that modulate RhoA activity at the AJ also control RhoA during cytokinesis, an actomyosin-dependent process that divides the cytoplasm to generate two daughter cells at the final stages of mitosis. Recent insights have revealed that the central player in AJ stability, p120-catenin (p120), interacts with and modulates essential regulators of actomyosin contraction during cytokinesis. In cancer, loss of this modulation is a common event during tumor progression that can induce chromosomal instability and tumor progression.In this review, we will highlight the functional differences and similarities of the different RhoA-associated factors that have been linked to both the regulation of cell-cell adhesion and cytokinesis.


Sujet(s)
Actomyosine/métabolisme , Adhérence cellulaire , Division cellulaire , Protéine G RhoA/métabolisme , Animaux , Cytocinèse , Humains , Analyse spatio-temporelle
6.
J Cell Sci ; 131(16)2018 08 23.
Article de Anglais | MEDLINE | ID: mdl-30139926

RÉSUMÉ

Metastatic breast cancer is responsible for most breast cancer-related deaths. Disseminated cancer cells have developed an intrinsic ability to resist anchorage-dependent apoptosis (anoikis). Anoikis is caused by the absence of cellular adhesion, a process that underpins lumen formation and maintenance during mammary gland development and homeostasis. In healthy cells, anoikis is mostly governed by B-cell lymphoma-2 (BCL2) protein family members. Metastatic cancer cells, however, have often developed autocrine BCL2-dependent resistance mechanisms to counteract anoikis. In this Review, we discuss how a pro-apoptotic subgroup of the BCL2 protein family, known as the BH3-only proteins, controls apoptosis and anoikis during mammary gland homeostasis and to what extent their inhibition confers tumor suppressive functions in metastatic breast cancer. Specifically, the role of the two pro-apoptotic BH3-only proteins BCL2-modifying factor (BMF) and BCL2-interacting mediator of cell death (BIM) will be discussed here. We assess current developments in treatment that focus on mimicking the function of the BH3-only proteins to induce apoptosis, and consider their applicability to restore normal apoptotic responses in anchorage-independent disseminating tumor cells.


Sujet(s)
Protéines régulatrices de l'apoptose/physiologie , Tumeurs du sein/thérapie , Mort cellulaire/physiologie , Protéines proto-oncogènes c-bcl-2/physiologie , Protéines adaptatrices de la transduction du signal/physiologie , Animaux , Protéine-11 analogue à Bcl-2/physiologie , Tumeurs du sein/génétique , Tumeurs du sein/anatomopathologie , Femelle , Humains , Thérapie moléculaire ciblée/méthodes , Thérapie moléculaire ciblée/tendances , Métastase tumorale
7.
Proc Natl Acad Sci U S A ; 115(27): 7057-7062, 2018 07 03.
Article de Anglais | MEDLINE | ID: mdl-29915029

RÉSUMÉ

Metastasis remains the leading cause of cancer mortality, and reactive oxygen species (ROS) signaling promotes the metastatic cascade. However, the molecular pathways that control ROS signaling relevant to metastasis are little studied. Here, we identify SIRT3, a mitochondrial deacetylase, as a regulator of cell migration via its control of ROS signaling. We find that, although mitochondria are present at the leading edge of migrating cells, SIRT3 expression is down-regulated during migration, resulting in elevated ROS levels. This SIRT3-mediated control of ROS represses Src oxidation and attenuates focal adhesion kinase (FAK) activation. SIRT3 overexpression inhibits migration and metastasis in breast cancer cells. Finally, in human breast cancers, SIRT3 expression is inversely correlated with metastatic outcome and Src/FAK signaling. Our results reveal a role for SIRT3 in cell migration, with important implications for breast cancer progression.


Sujet(s)
Tumeurs du sein/métabolisme , Mouvement cellulaire , Cellules épithéliales/métabolisme , Focal adhesion kinase 1/métabolisme , Protéines tumorales/métabolisme , Sirtuine-3/biosynthèse , src-Family kinases/métabolisme , Tumeurs du sein/anatomopathologie , Lignée cellulaire tumorale , Activation enzymatique , Cellules épithéliales/anatomopathologie , Femelle , Humains , Métastase tumorale , Espèces réactives de l'oxygène , Sirtuine-3/métabolisme
8.
Trends Mol Med ; 23(4): 320-331, 2017 04.
Article de Anglais | MEDLINE | ID: mdl-28285806

RÉSUMÉ

Advancing age is the major risk factor for the development of chronic diseases and is accompanied by changes in metabolic processes and mitochondrial dysfunction. Mitochondrial sirtuins (SIRT3-5) are part of the sirtuin family of NAD+-dependent deacylases and ADP-ribosyl transferases. The dependence on NAD+ links sirtuin enzymatic activity to the metabolic state of the cell, poising them as stress sensors. Recent insights have revealed that SIRT3-5 orchestrate stress responses through coordinated regulation of substrate clusters rather than of a few key metabolic enzymes. Additionally, mitochondrial sirtuin function has been implicated in the protection against age-related pathologies, including neurodegeneration, cardiopathologies, and insulin resistance. In this review, we highlight the molecular targets of SIRT3-5 and discuss their involvement in aging and age-related pathologies.


Sujet(s)
Vieillissement , Mitochondries/métabolisme , Cartes d'interactions protéiques , Sirtuines/métabolisme , Stress physiologique , Animaux , Perte d'audition/métabolisme , Humains , NAD/métabolisme , Maladies neurodégénératives/métabolisme , Sirtuines/analyse
10.
Nat Commun ; 7: 13874, 2016 12 22.
Article de Anglais | MEDLINE | ID: mdl-28004812

RÉSUMÉ

Spatiotemporal activation of RhoA and actomyosin contraction underpins cellular adhesion and division. Loss of cell-cell adhesion and chromosomal instability are cardinal events that drive tumour progression. Here, we show that p120-catenin (p120) not only controls cell-cell adhesion, but also acts as a critical regulator of cytokinesis. We find that p120 regulates actomyosin contractility through concomitant binding to RhoA and the centralspindlin component MKLP1, independent of cadherin association. In anaphase, p120 is enriched at the cleavage furrow where it binds MKLP1 to spatially control RhoA GTPase cycling. Binding of p120 to MKLP1 during cytokinesis depends on the N-terminal coiled-coil domain of p120 isoform 1A. Importantly, clinical data show that loss of p120 expression is a common event in breast cancer that strongly correlates with multinucleation and adverse patient survival. In summary, our study identifies p120 loss as a driver event of chromosomal instability in cancer.


Sujet(s)
Caténines/métabolisme , Cytocinèse , Protéines associées aux microtubules/métabolisme , Protéine G RhoA/métabolisme , Animaux , Tumeurs du sein/génétique , Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Caténines/génétique , Adhérence cellulaire , Lignée cellulaire tumorale , Femelle , Cellules HeLa , Humains , Estimation de Kaplan-Meier , Souris knockout , Liaison aux protéines , Delta Catenin
11.
Nat Cell Biol ; 17(6): 804-15, 2015 Jun.
Article de Anglais | MEDLINE | ID: mdl-26005835

RÉSUMÉ

The character of EGFR signals can influence cell fate but mechanistic insights into intestinal EGFR-Ras signalling are limited. Here we show that two distinct Ras nucleotide exchange factors, RasGRP1 and SOS1, lie downstream of EGFR but act in functional opposition. RasGRP1 is expressed in intestinal crypts where it restricts epithelial growth. High RasGRP1 expression in colorectal cancer (CRC) patient samples correlates with a better clinical outcome. Biochemically, we find that RasGRP1 creates a negative feedback loop that limits proliferative EGFR-SOS1-Ras signals in CRC cells. Genetic Rasgrp1 depletion from mice with either an activating mutation in KRas or with aberrant Wnt signalling due to a mutation in Apc resulted in both cases in exacerbated Ras-ERK signalling and cell proliferation. The unexpected opposing cell biological effects of EGFR-RasGRP1 and EGFR-SOS1 signals in the same cell shed light on the intricacy of EGFR-Ras signalling in normal epithelium and carcinoma.


Sujet(s)
Récepteurs ErbB/métabolisme , Facteurs d'échange de nucléotides guanyliques/génétique , Muqueuse intestinale/métabolisme , Protéine SOS1/métabolisme , Protéine de la polypose adénomateuse colique/génétique , Animaux , Différenciation cellulaire/génétique , Lignée cellulaire tumorale , Prolifération cellulaire , Tumeurs colorectales/métabolisme , Cellules épithéliales/métabolisme , Facteurs d'échange de nucléotides guanyliques/biosynthèse , Humains , Muqueuse intestinale/cytologie , Souris , Souris de lignée C57BL , Souris knockout , Transplantation tumorale , Protéines proto-oncogènes p21(ras)/génétique , Interférence par ARN , Petit ARN interférent , Transduction du signal , Transplantation hétérologue , Protéines de type Wingless/génétique , Voie de signalisation Wnt/génétique
12.
Dis Model Mech ; 8(4): 373-84, 2015 Apr.
Article de Anglais | MEDLINE | ID: mdl-25713299

RÉSUMÉ

E-cadherin inactivation underpins the progression of invasive lobular breast carcinoma (ILC). In ILC, p120-catenin (p120) translocates to the cytosol where it controls anchorage independence through the Rho-Rock signaling pathway, a key mechanism driving tumor growth and metastasis. We now demonstrate that anchorage-independent ILC cells show an increase in nuclear p120, which results in relief of transcriptional repression by Kaiso. To identify the Kaiso target genes that control anchorage independence we performed genome-wide mRNA profiling on anoikis-resistant mouse ILC cells, and identified 29 candidate target genes, including the established Kaiso target Wnt11. Our data indicate that anchorage-independent upregulation of Wnt11 in ILC cells is controlled by nuclear p120 through inhibition of Kaiso-mediated transcriptional repression. Finally, we show that Wnt11 promotes activation of RhoA, which causes ILC anoikis resistance. Our findings thereby establish a mechanistic link between E-cadherin loss and subsequent control of Rho-driven anoikis resistance through p120- and Kaiso-dependent expression of Wnt11.


Sujet(s)
Anoïkis , Carcinome lobulaire/anatomopathologie , Caténines/métabolisme , Noyau de la cellule/métabolisme , Tumeurs mammaires de l'animal/anatomopathologie , Facteurs de transcription/métabolisme , Protéines de type Wingless/métabolisme , Animaux , Anoïkis/génétique , Tumeurs du sein/génétique , Tumeurs du sein/anatomopathologie , Carcinome lobulaire/génétique , Adhérence cellulaire , Cytosol/métabolisme , Femelle , Études d'associations génétiques , Humains , Tumeurs mammaires de l'animal/génétique , Souris , Invasion tumorale , Transport des protéines , Protéines de répression/métabolisme , Transcription génétique , Régulation positive/génétique , Protéine G RhoA/métabolisme , Delta Catenin
13.
J Cell Sci ; 126(Pt 16): 3515-25, 2013 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-23950111

RÉSUMÉ

The epithelial adherens junction is an E-cadherin-based complex that controls tissue integrity and is stabilized at the plasma membrane by p120-catenin (p120, also known as CTNND1). Mutational and epigenetic inactivation of E-cadherin has been strongly implicated in the development and progression of cancer. In this setting, p120 translocates to the cytosol where it exerts oncogenic properties through aberrant regulation of Rho GTPases, growth factor receptor signaling and derepression of Kaiso (also known as ZBTB33) target genes. In contrast, indirect inactivation of the adherens junction through conditional knockout of p120 in mice was recently linked to tumor formation, indicating that p120 can also function as a tumor suppressor. Supporting these opposing functions are findings in human cancer, which show that either loss or cytoplasmic localization of p120 is a common feature in the progression of several types of carcinoma. Underlying this dual biological phenomenon might be the context-dependent regulation of Rho GTPases in the cytosol and the derepression of Kaiso target genes. Here, we discuss past and present findings that implicate p120 in the regulation of cancer progression and highlight opportunities for clinical intervention.


Sujet(s)
Carcinomes/génétique , Carcinomes/métabolisme , Caténines/génétique , Caténines/métabolisme , Animaux , Carcinomes/anatomopathologie , Humains , Oncogènes , Delta Catenin
14.
Cell Oncol (Dordr) ; 36(5): 375-84, 2013 Oct.
Article de Anglais | MEDLINE | ID: mdl-23949920

RÉSUMÉ

BACKGROUND: Yes Associated Protein (YAP) has been implicated in the control of organ size by regulating cell proliferation and survival. YAP is a transcriptional coactivator that controls cellular responses through interaction with TEAD transcription factors in the nucleus, while its transcriptional functions are inhibited by phosphorylation-dependent translocation to the cytosol. YAP overexpression has been associated with different types of cancer, such as lung, skin, prostate, ovary and liver cancer. Recently, YAP was linked to E-cadherin-dependent regulation of contact inhibition in breast cancer cells. RESULTS: In this study we examined YAP protein expression and cellular localization in 237 cases of human invasive breast cancer by immunohistochemistry and related its expression to clinicopathological features and E-cadherin expression. We observed that invasive lobular carcinoma is characterized by higher expression levels of both nuclear and cytosolic YAP (p < 0.001). Nuclear YAP expression did not associate with other variables such as lymph node involvement, tumor grade, tumor size, mitotic activity or the molecular sub-types of invasive breast cancer. We observed that high nuclear and cytosolic YAP expression are associated with the E-cadherin deficient breast cancer subtype ILC (p < 0.001) and cell lines derived from human breast cancers and conditional mouse models of human lobular breast cancer. CONCLUSIONS: Since our data indicate that nuclear YAP localization is more common in breast cancers lacking functional adherens junctions, it suggests that YAP-mediated transcription may be involved in the development and progression of invasive lobular breast cancer.


Sujet(s)
Protéines adaptatrices de la transduction du signal/métabolisme , Tumeurs du sein/métabolisme , Carcinome lobulaire/métabolisme , Noyau de la cellule/métabolisme , Phosphoprotéines/métabolisme , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , Femelle , Humains , Adulte d'âge moyen , Facteurs de transcription , Protéines de signalisation YAP
15.
PLoS One ; 7(5): e37864, 2012.
Article de Anglais | MEDLINE | ID: mdl-22662240

RÉSUMÉ

Kaiso is a BTB/POZ transcription factor that is ubiquitously expressed in multiple cell types and functions as a transcriptional repressor and activator. Little is known about Kaiso expression and localization in breast cancer. Here, we have related pathological features and molecular subtypes to Kaiso expression in 477 cases of human invasive breast cancer. Nuclear Kaiso was predominantly found in invasive ductal carcinoma (IDC) (p = 0.007), while cytoplasmic Kaiso expression was linked to invasive lobular carcinoma (ILC) (p = 0.006). Although cytoplasmic Kaiso did not correlate to clinicopathological features, we found a significant correlation between nuclear Kaiso, high histological grade (p = 0.023), ERα negativity (p = 0.001), and the HER2-driven and basal/triple-negative breast cancers (p = 0.018). Interestingly, nuclear Kaiso was also abundant in BRCA1-associated breast cancer (p<0.001) and invasive breast cancer overexpressing EGFR (p = 0.019). We observed a correlation between nuclear Kaiso and membrane-localized E-cadherin and p120-catenin (p120) (p<0.01). In contrast, cytoplasmic p120 strongly correlated with loss of E-cadherin and low nuclear Kaiso (p = 0.005). We could confirm these findings in human ILC cells and cell lines derived from conditional mouse models of ILC. Moreover, we present functional data that substantiate a mechanism whereby E-cadherin controls p120-mediated relief of Kaiso-dependent gene repression. In conclusion, our data indicate that nuclear Kaiso is common in clinically aggressive ductal breast cancer, while cytoplasmic Kaiso and a p120-mediated relief of Kaiso-dependent transcriptional repression characterize ILC.


Sujet(s)
Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Carcinome lobulaire/anatomopathologie , Noyau de la cellule/métabolisme , Facteurs de transcription/métabolisme , Jonctions adhérentes/métabolisme , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , Animaux , Tumeurs du sein/génétique , Cadhérines/métabolisme , Carcinome lobulaire/génétique , Carcinome lobulaire/métabolisme , Lignée cellulaire , Récepteurs ErbB/métabolisme , Femelle , Expression des gènes , Humains , Souris , Adulte d'âge moyen , Grading des tumeurs , Invasion tumorale , Transport des protéines , Récepteur ErbB-2/déficit , Récepteurs des oestrogènes/déficit , Récepteurs à la progestérone/déficit , Facteurs de transcription/génétique , Protéine p120 d'activation de la ras GTPase/métabolisme
16.
J Biol Chem ; 287(19): 15533-43, 2012 May 04.
Article de Anglais | MEDLINE | ID: mdl-22433856

RÉSUMÉ

Growth hormone receptor (GHR) endocytosis is a highly regulated process that depends on the binding and activity of the multimeric ubiquitin ligase, SCF(ßTrCP) (Skp Cullin F-box). Despite a specific interaction between ß-transducin repeat-containing protein (ßTrCP) and the GHR, and a strict requirement for ubiquitination activity, the receptor is not an obligatory target for SCF(ßTrCP)-directed Lys(48) polyubiquitination. We now show that also Lys(63)-linked ubiquitin chain formation is required for GHR endocytosis. We identified both the ubiquitin-conjugating enzyme Ubc13 and the ubiquitin ligase COOH terminus of Hsp70 interacting protein (CHIP) as being connected to this process. Ubc13 activity and its interaction with CHIP precede endocytosis of GHR. In addition to ßTrCP, CHIP interacts specifically with the cytosolic tails of the dimeric GHR, identifying both Ubc13 and CHIP as novel factors in the regulation of cell surface availability of GHR.


Sujet(s)
Endocytose , Récepteur STH/métabolisme , Ubiquitin-conjugating enzymes/métabolisme , Ubiquitin-protein ligases/métabolisme , Technique de Western , Lignée cellulaire tumorale , Humains , Lysine/métabolisme , Microscopie de fluorescence , Liaison aux protéines , Multimérisation de protéines , Interférence par ARN , Récepteur STH/composition chimique , Récepteur STH/génétique , Ubiquitin-conjugating enzymes/génétique , Ubiquitin-protein ligases/génétique , Ubiquitination , Protéines à répétitions de séquences bêta-transducine/génétique , Protéines à répétitions de séquences bêta-transducine/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE