Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 130
Filtrer
1.
Front Immunol ; 15: 1440667, 2024.
Article de Anglais | MEDLINE | ID: mdl-39176090

RÉSUMÉ

Foot and mouth disease (FMD) is a highly contagious infection caused by FMD-virus (FMDV) that affects livestock worldwide with significant economic impact. The main strategy for the control is vaccination with FMDV chemically inactivated with binary ethylenimine (FMDVi). In FMDV infection and vaccination, B cell response plays a major role by providing neutralizing/protective antibodies in animal models and natural hosts. Extracellular vesicles (EVs) and small EVs (sEVs) such as exosomes are important in cellular communication. EVs secreted by antigen-presenting cells (APC) like dendritic cells (DCs) participate in the activation of B and T cells through the presentation of native antigen membrane-associated to B cells or by transferring MHC-peptide complexes to T cells and even complete antigens from DCs. In this study, we demonstrate for the first time that APC activated with the FMDVi O1 Campos vaccine-antigens secrete EVs expressing viral proteins/peptides that could stimulate FMDV-specific immune response. The secretion of EVs-FMDVi is a time-dependent process and can only be isolated within the first 24 h post-activation. These vesicles express classical EVs markers (CD9, CD81, and CD63), along with immunoregulatory molecules (MHC-II and CD86). With an average size of 155 nm, they belong to the category of EVs. Studies conducted in vitro have demonstrated that EVs-FMDVi express antigens that can stimulate a specific B cell response against FMDV, including both marginal zone B cells (MZB) and follicular B cells (FoB). These vesicles can also indirectly or directly affect T cells, indicating that they express both B and T epitopes. Additionally, lymphocyte expansion induced by EVs-FMDVi is greater in splenocytes that have previously encountered viral antigens in vivo. The present study sheds light on the role of EVs derived from APC in regulating the adaptive immunity against FMDV. This novel insight contributes to our current understanding of the immune mechanisms triggered by APC during the antiviral immune response. Furthermore, these findings may have practical implications for the development of new vaccine platforms, providing a rational basis for the design of more effective vaccines against FMDV and other viral diseases.


Sujet(s)
Cellules présentatrices d'antigène , Antigènes viraux , Lymphocytes B , Vésicules extracellulaires , Virus de la fièvre aphteuse , Fièvre aphteuse , Vaccins antiviraux , Animaux , Virus de la fièvre aphteuse/immunologie , Vésicules extracellulaires/immunologie , Lymphocytes B/immunologie , Fièvre aphteuse/immunologie , Fièvre aphteuse/prévention et contrôle , Cellules présentatrices d'antigène/immunologie , Cellules présentatrices d'antigène/métabolisme , Antigènes viraux/immunologie , Vaccins antiviraux/immunologie , Protéines virales/immunologie , Activation des lymphocytes/immunologie , Cellules dendritiques/immunologie , Présentation d'antigène/immunologie
2.
Front Immunol ; 15: 1456220, 2024.
Article de Anglais | MEDLINE | ID: mdl-39185403

RÉSUMÉ

B cells are the cornerstone of our body's defense system, producing precise antibodies and safeguarding immunological memory for future protection against pathogens. While we have a thorough understanding of how naïve B cells differentiate into plasma or memory B cells, the early B cell response to various antigens-whether self or foreign-remains a thrilling and evolving area of study. Advances in imaging have illuminated the molecular intricacies of B cell receptor (BCR) signaling, yet the dynamic nature of B cell activation continues to reveal new insights based on the nature of antigen exposure. This review explores the evolutionary journey of B cells as they adapt to the unique challenges presented by pathogens. We begin by examining the specific traits of antigens that influence their pathogenic potential, then shift our focus to the distinct characteristics of B cells that counteract these threats. From foundational discoveries to the latest cutting-edge research, we investigate how B cells are effectively activated and distinguish between self and non-self antigens, ensuring a balanced immune response that defends against pathogenic diseases but not self-antigens.


Sujet(s)
Antigènes , Lymphocytes B , Tolérance immunitaire , Activation des lymphocytes , Récepteurs pour l'antigène des lymphocytes B , Humains , Animaux , Lymphocytes B/immunologie , Activation des lymphocytes/immunologie , Récepteurs pour l'antigène des lymphocytes B/immunologie , Antigènes/immunologie , Transduction du signal/immunologie , Évolution biologique
3.
Ren Fail ; 46(2): 2391069, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39143819

RÉSUMÉ

OBJECTIVE: High serum levels of B-cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) have been observed in patients with idiopathic membranous nephropathy (iMN); however, their relationships with disease severity and progression remain unclear. METHODS: Patients with iMN diagnosed via renal biopsy were enrolled in this study. The concentrations of BAFF and APRIL were determined using ELISA kits. Proteinuria remission, including complete remission (CR) and partial remission (PR), and renal function deterioration were defined as clinical events. The Cox proportional hazards method was used to analyze the relationship between cytokine levels and disease progression. RESULTS: Seventy iMN patients were enrolled in this study, with a median follow-up time of 24 months (range 6-72 months). The serum levels of BAFF and APRIL were higher in iMN patients than in healthy controls but lower than those in minimal change disease (MCD) patients. The serum BAFF level was positively correlated with the serum APRIL level, serum anti-phospholipase A2 receptor (anti-PLA2R) antibody level, and 24-h proteinuria and negatively correlated with the serum albumin (ALB) level. However, no significant correlation was observed between the serum APRIL level and clinical parameters. According to the multivariate Cox proportional hazards regression model adjusted for sex, age, systolic blood pressure (SBP), estimated glomerular filtration rate (eGFR), immunosuppressive agent use, 24-h proteinuria, APRIL level, and anti-PLA2R antibody, only the serum BAFF level was identified as an independent predictor of PR (HR, 0.613; 95% CI, 0.405-0.927; p = 0.021) and CR of proteinuria (HR, 0.362; 95% CI, 0.202-0.648; p < 0.001). CONCLUSIONS: A high serum BAFF level is associated with severe clinical manifestations and poor disease progression in patients with iMN.


Sujet(s)
Facteur d'activation des lymphocytes B , Évolution de la maladie , Glomérulonéphrite extra-membraneuse , Protéinurie , Membre-13 de la superfamille du facteur de nécrose tumorale , Humains , Glomérulonéphrite extra-membraneuse/sang , Glomérulonéphrite extra-membraneuse/diagnostic , Facteur d'activation des lymphocytes B/sang , Mâle , Femelle , Adulte d'âge moyen , Adulte , Pronostic , Membre-13 de la superfamille du facteur de nécrose tumorale/sang , Protéinurie/sang , Protéinurie/étiologie , Modèles des risques proportionnels , Récepteurs à la phospholipase A2/immunologie , Récepteurs à la phospholipase A2/sang , Études cas-témoins , Sujet âgé , Débit de filtration glomérulaire , Rein/physiopathologie , Rein/anatomopathologie
4.
AMB Express ; 14(1): 95, 2024 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-39215890

RÉSUMÉ

T and B cell activation are equally important in triggering and orchestrating adaptive host responses to design multi-epitope African swine fever virus (ASFV) vaccines. However, few design methods have considered the trade-off between T and B cell immunogenicity when identifying promising ASFV epitopes. This work proposed a novel Pareto front-based ASFV screening method PFAS to identify promising epitopes for designing multi-epitope vaccines utilizing five ASFV Georgia 2007/1 sequences. To accurately predict T cell immunogenicity, four scoring methods were used to estimate the T cell activation in the four stages, including proteasomal cleavage probability, transporter associated with antigen processing transport efficiency, class I binding affinity of the major histocompatibility complex, and CD8 + cytotoxic T cell immunogenicity. PFAS ranked promising epitopes using a Pareto front method considering T and B cell immunogenicity. The coefficient of determination between the Pareto ranks of multi-epitope vaccines and survival days of swine vaccinations was R2 = 0.95. Consequently, PFAS scored complete epitope profiles and identified 72 promising top-ranked epitopes, including 46 CD2v epitopes, two p30 epitopes, 10 p72 epitopes, and 14 pp220 epitopes. PFAS is the first method of using the Pareto front approach to identify promising epitopes that considers the objectives of maximizing both T and B cell immunogenicity. The top-ranked promising epitopes can be cost-effectively validated in vitro. The Pareto front approach can be adaptively applied to various epitope predictors for bacterial, viral and cancer vaccine developments. The MATLAB code of the Pareto front method was available at https://github.com/NYCU-ICLAB/PFAS .

5.
Front Immunol ; 15: 1423141, 2024.
Article de Anglais | MEDLINE | ID: mdl-39055713

RÉSUMÉ

Background: Trichothiodystrophy-1 (TTD1) is an autosomal-recessive disease and caused by mutations in ERCC2, a gene coding for a subunit of the TFIIH transcription and nucleotide-excision repair (NER) factor. In almost half of these patients infectious susceptibility has been reported but the underlying molecular mechanism leading to immunodeficiency is largely unknown. Objective: The aim of this study was to perform extended molecular and immunological phenotyping in patients suffering from TTD1. Methods: Cellular immune phenotype was investigated using multicolor flow cytometry. DNA repair efficiency was evaluated in UV-irradiation assays. Furthermore, early BCR activation events and proliferation of TTD1 lymphocytes following DNA damage induction was tested. In addition, we performed differential gene expression analysis in peripheral lymphocytes of TTD1 patients. Results: We investigated three unrelated TTD1 patients who presented with recurrent infections early in life of whom two harbored novel ERCC2 mutations and the third patient is a carrier of previously described pathogenic ERCC2 mutations. Hypogammaglobulinemia and decreased antibody responses following vaccination were found. TTD1 B-cells showed accumulation of γ-H2AX levels, decreased proliferation activity and reduced cell viability following UV-irradiation. mRNA sequencing analysis revealed significantly downregulated genes needed for B-cell development and activation. Analysis of B-cell subpopulations showed low numbers of naïve and transitional B-cells in TTD1 patients, indicating abnormal B-cell differentiation in vivo. Conclusion: In summary, our analyses confirmed the pathogenicity of novel ERCC2 mutations and show that ERCC2 deficiency is associated with antibody deficiency most likely due to altered B-cell differentiation resulting from impaired BCR-mediated B-cell activation and activation-induced gene transcription.


Sujet(s)
Lymphocytes B , Mutation , Protéine du groupe de complémentation D de Xeroderma pigmentosum , Humains , Lymphocytes B/immunologie , Protéine du groupe de complémentation D de Xeroderma pigmentosum/génétique , Protéine du groupe de complémentation D de Xeroderma pigmentosum/déficit , Mâle , Femelle , Trichothiodystrophies/génétique , Trichothiodystrophies/immunologie , Réparation de l'ADN , Enfant , Activation des lymphocytes/génétique , Enfant d'âge préscolaire , Adolescent
6.
Am J Physiol Cell Physiol ; 327(1): C1-C10, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38708521

RÉSUMÉ

The purpose of this study is to investigate the previously unknown connection that succinate has with neutrophils in the setting of adjuvant-mediated immunological enhancement. It has been discovered that succinates stimulate the recruitment of neutrophils in immunization sites, which in turn induces the expression of what is known as neutrophil-derived B cell-activating factor (BAFF). Further amplification of vaccine-induced antibody responses is provided via the succinate receptor 1-interferon regulatory factor 5 (SUCNR1-IRF5)-BAFF signaling pathway, which provides insights into a unique mechanism for immunological enhancement.NEW & NOTEWORTHY This study explores the role of succinate as a vaccine adjuvant, revealing its capacity to enhance neutrophil recruitment at immunization sites, which boosts B cell activation through the succinate receptor 1-interferon regulatory factor 5-B cell-activating factor (SUCNR1-IRF5-BAFF) signaling pathway. Results demonstrate succinate's potential to amplify vaccine-induced antibody responses, highlighting its significance in immunological enhancement and offering new insights into the adjuvant mechanisms of action, particularly in neutrophil-mediated immune responses.


Sujet(s)
Adjuvants immunologiques , Granulocytes neutrophiles , Transduction du signal , Acide succinique , Granulocytes neutrophiles/immunologie , Granulocytes neutrophiles/métabolisme , Animaux , Acide succinique/métabolisme , Adjuvants immunologiques/pharmacologie , Humains , Souris , Lymphocytes B/immunologie , Lymphocytes B/métabolisme , Lymphocytes B/effets des médicaments et des substances chimiques , Infiltration par les neutrophiles/effets des médicaments et des substances chimiques , Facteur d'activation des lymphocytes B/métabolisme , Facteur d'activation des lymphocytes B/immunologie , Facteur d'activation des lymphocytes B/génétique , Souris de lignée C57BL , Femelle
7.
EMBO Rep ; 25(6): 2662-2697, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38744970

RÉSUMÉ

The multifunctional RNA-binding protein hnRNPL is implicated in antibody class switching but its broader function in B cells is unknown. Here, we show that hnRNPL is essential for B cell activation, germinal center formation, and antibody responses. Upon activation, hnRNPL-deficient B cells show proliferation defects and increased apoptosis. Comparative analysis of RNA-seq data from activated B cells and another eight hnRNPL-depleted cell types reveals common effects on MYC and E2F transcriptional programs required for proliferation. Notably, while individual gene expression changes are cell type specific, several alternative splicing events affecting histone modifiers like KDM6A and SIRT1, are conserved across cell types. Moreover, hnRNPL-deficient B cells show global changes in H3K27me3 and H3K9ac. Epigenetic dysregulation after hnRNPL loss could underlie differential gene expression and upregulation of lncRNAs, and explain common and cell type-specific phenotypes, such as dysfunctional mitochondria and ROS overproduction in mouse B cells. Thus, hnRNPL is essential for the resting-to-activated B cell transition by regulating transcriptional programs and metabolism, at least in part through the alternative splicing of several histone modifiers.


Sujet(s)
Épissage alternatif , Lymphocytes B , Épigenèse génétique , Activation des lymphocytes , Animaux , Humains , Souris , Apoptose/génétique , Lymphocytes B/métabolisme , Lymphocytes B/immunologie , Prolifération cellulaire/génétique , Régulation de l'expression des gènes , Centre germinatif/immunologie , Centre germinatif/métabolisme , Histone/métabolisme , Activation des lymphocytes/génétique
8.
ACS Appl Mater Interfaces ; 16(22): 28184-28192, 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38770711

RÉSUMÉ

B cells, despite their several unique functionalities, remain largely untapped for use as an adoptive cell therapy and are limited to in vitro use for antibody production. B cells can be easily sourced, they possess excellent lymphoid-homing capabilities, and they can act as antigen-presenting cells (APCs), offering an alternative to dendritic cells (DCs), which have shown limited efficacy in the clinical setting. Soluble factors such as IL-4 and anti-CD40 antibody can enhance the activation, survival, and antigen-presenting capabilities of B cells; however, it is difficult to attain sufficiently high concentrations of these biologics to stimulate B cells in vivo. Micropatches as Cell Engagers (MACE) are polymeric microparticles, surface functionalized with anti-CD40 and anti-IgM, which can attach to B cells and simultaneously engage multiple B-cell receptors (BCR) and CD40 receptors. Stimulation of these receptors through MACE, unlike free antibodies, enhanced the display of costimulatory molecules on the B-cell surface, increased B-cell viability, and improved antigen presentation by B cells to T cells in vitro. B-cell activation by MACE further synergized with soluble IL-4 and anti-CD40. MACE also elicited T-cell chemokine secretion by B cells. Upon intravenous adoptive transfer, MACE-bound B cells homed to the spleen and lymph nodes, key sites for antigen presentation to T cells. Adoptive transfer of MACE-B cells pulsed with the CD4+ and CD8+ epitopes of ovalbumin significantly delayed tumor progression in a murine subcutaneous EG7-OVA tumor model, demonstrating the functional benefit conferred to B cells by MACE.


Sujet(s)
Lymphocytes B , Antigènes CD40 , Polymères , Animaux , Lymphocytes B/immunologie , Souris , Antigènes CD40/métabolisme , Antigènes CD40/immunologie , Polymères/composition chimique , Récepteurs pour l'antigène des lymphocytes B/métabolisme , Humains , Lymphocytes T/immunologie , Interleukine-4 , Souris de lignée C57BL
9.
Heliyon ; 10(6): e27687, 2024 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-38515720

RÉSUMÉ

It is well established that increased peripheral helper T cells (TPH) and follicular helper T cells (TFH) was found in systemic lupus erythematosus (SLE) patients. However, the expression patterns and immunomodulatory roles of TIGIT and PD1 on TPH/TFH in SLE are poorly understood. The expression patterns of TIGIT and PD1 on TPH and TFH cells were examined using flow cytometry and their expression patterns in SLE patients were then further evaluated for their correlation with auto-antibodies, disease activity and severity, B cell differentiation. Logistic regression was used to analyze the risk factors. And the receiver operating characteristic curves and logistic regression model were created to evaluate the predicting role in SLE. TIGIT±PD1+TPH, TIGIT±PD1+TFH cells in the peripheral blood of SLE patients were upregulated, whereas TIGIT+PD1-TFH was downregulated. TIGIT ± PD1+TPH, TIGIT ± PD1+TFH cells positively correlated with auto-antibodies production, disease activity and severity, whereas TIGIT+PD1-TFH cells negatively correlated. TIGIT ± PD1+TPH, TIGIT-PD1+TFH were positively correlated with the frequency of plasmablasts. Furthermore, higher TIGIT+PD1+TPH and TIGIT+PD1+TFH were shown to be risk factors for SLE, whereas TIGIT+PD1-TFH was found to be a protective factor, according to logistic regression analysis. A further logistic regression model showed that combination of TPH/TFH and routine blood indicators may has potential predicting value for SLE, with AUC of 0.957. The increased TIGIT ± PD1+TPH, increased TIGIT ± PD1+TFH, decreased TIGIT+PD1-TFH correlates with disease severity and activity, may boost our comprehending of the role of TIGIT and PD1 on TPH/TFH in SLE, and a logistic regression model based on combination of TPH/TFH and routine blood indicators shows prominent value for predicting SLE.

10.
Best Pract Res Clin Rheumatol ; 38(2): 101936, 2024 05.
Article de Anglais | MEDLINE | ID: mdl-38326197

RÉSUMÉ

B cells are central players in the immune system, responsible for producing antibodies and modulating immune responses. This review explores the intricate relationship between aberrant B cell activation and the development of autoimmune diseases, emphasizing the essential role of B cells in these conditions. We also summarize B cell receptor signaling and Toll-like receptor signaling in B cell activation, as well as their association with autoimmune diseases, shedding light on the molecular mechanisms behind these associations. Additionally, we explore the clinical observations involving B cell activation and their significance in autoimmune disease management. Various clinical studies related to B cell-targeted therapies are also discussed, offering insights into potential avenues for improving treatment strategies. Overall, this review serves as a resource for researchers and clinicians in the field of immunology and autoimmune diseases, providing a general view of B cell signaling and its role in autoimmunity.


Sujet(s)
Autoanticorps , Maladies auto-immunes , Lymphocytes B , Activation des lymphocytes , Humains , Lymphocytes B/immunologie , Maladies auto-immunes/immunologie , Autoanticorps/immunologie , Activation des lymphocytes/immunologie , Transduction du signal/immunologie , Récepteurs pour l'antigène des lymphocytes B/immunologie , Récepteurs de type Toll/immunologie , Auto-immunité/immunologie
11.
Front Immunol ; 15: 1344346, 2024.
Article de Anglais | MEDLINE | ID: mdl-38390320

RÉSUMÉ

Introduction: Conformationally stabilized Env trimers have been developed as antigens for the induction of neutralizing antibodies against HIV-1. However, the non-glycosylated immunodominant base of these soluble antigens may compete with the neutralizing antibody response. This has prompted attempts to couple Env trimers to organic or inorganic nanoparticles with the base facing towards the carrier. Such a site-directed coupling could not only occlude the base of the trimer, but also enhance B cell activation by repetitive display. Methods: To explore the effect of an ordered display of HIV-1 Env on microspheres on the activation of Env-specific B cells we used Bind&Bite, a novel covalent coupling approach for conformationally sensitive antigens based on heterodimeric coiled-coil peptides. By engineering a trimeric HIV-1 Env protein with a basic 21-aa peptide (Peptide K) extension at the C-terminus, we were able to covalently biotinylate the antigen in a site-directed fashion using an acidic complementary peptide (Peptide E) bearing a reactive site and a biotin molecule. This allowed us to load our antigen onto streptavidin beads in an oriented manner. Results: Microspheres coated with HIV-1 Env through our Bind&Bite system showed i) enhanced binding by conformational anti-HIV Env broadly neutralizing antibodies (bNAbs), ii) reduced binding activity by antibodies directed towards the base of Env, iii) higher Env-specific B cell activation, and iv) were taken-up more efficiently after opsonization compared to beads presenting HIV-1 Env in an undirected orientation. Discussion: In comparison to site-directed biotinylation via the Avi-tag, Bind&Bite, offers greater flexibility with regard to alternative covalent protein modifications, allowing selective modification of multiple proteins via orthogonal coiled-coil peptide pairs. Thus, the Bind&Bite coupling approach via peptide K and peptide E described in this study offers a valuable tool for nanoparticle vaccine design where surface conjugation of correctly folded antigens is required.


Sujet(s)
Séropositivité VIH , VIH-1 (Virus de l'Immunodéficience Humaine de type 1) , Humains , Anticorps anti-VIH , Anticorps neutralisants , Peptides , Phagocytose
12.
Article de Anglais | MEDLINE | ID: mdl-37562787

RÉSUMÉ

Nanoparticle-based vaccines offer a multivalent approach for antigen display, efficiently activating T and B cells in the lymph nodes. Among various nanoparticle design strategies, DNA nanotechnology offers an innovative alternative platform, featuring high modularity, spatial addressing, nanoscale regulation, high functional group density, and lower self-antigenicity. This review delves into the potential of DNA nanostructures as biomolecular scaffolds for antigen display, addressing: (1) immunological mechanisms behind nanovaccines and commonly used nanoparticles in their design, (2) techniques for characterizing protein NP-antigen complexes, (3) advancements in DNA nanotechnology and DNA-protein assembly approach, (4) strategies for precise antigen presentation on DNA scaffolds, and (5) current applications and future possibilities of DNA scaffolds in antigen display. This analysis aims to highlight the transformative potential of DNA nanoscaffolds in immunology and vaccinology. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.


Sujet(s)
Nanoparticules , Nanostructures , Nanostructures/composition chimique , ADN/composition chimique , Nanotechnologie/méthodes , Nanoparticules/composition chimique , Protéines
13.
Cells ; 12(21)2023 11 02.
Article de Anglais | MEDLINE | ID: mdl-37947644

RÉSUMÉ

In B cells, antigen processing and peptide-antigen (pAg) presentation is essential to ignite high-affinity antibody responses with the help of cognate T cells. B cells efficiently internalize and direct specific antigens for processing and loading onto MHCII. This critical step, which enables pAg presentation, occurs in MHCII compartments (MIICs) which possess the enzymatic machinery for pAg loading on MHCII. The intracellular transport systems that guide antigen and maintain this unique compartment remain enigmatic. Here, we probed the possible functional role of two known endosomal proteins, the Rab family small GTPases Rab7 and Rab9, that are both reported to colocalize with internalized antigen. As compared to Rab9, we found Rab7 to exhibit a higher overlap with antigen and MIIC components. Rab7 also showed a higher association with antigen degradation. The inhibition of Rab7 drastically decreased pAg presentation. Additionally, we detected the strong colocalization of perinuclearly clustered and presumably MIIC-associated antigen with autophagy protein LC3. When we pharmacologically inhibited autophagy, pAg presentation was inhibited. Together, our data promote Rab7 as an important regulator of antigen processing and, considering the previously reported functions of Rab7 in autophagy, this also raises the possibility of the involvement of autophagy-related machinery in this process.


Sujet(s)
Présentation d'antigène , Protéines Rab7 liant le GTP , Protéines G rab/métabolisme , Lymphocytes B , Autophagie
14.
Front Immunol ; 14: 1178445, 2023.
Article de Anglais | MEDLINE | ID: mdl-37731503

RÉSUMÉ

Regulatory B lymphocytes (Bregs) are B cells with well-pronounced immunosuppressive properties, allowing them to suppress the activity of effector cells. A broad repertoire of immunosuppressive mechanisms makes Bregs an attractive tool for adoptive cell therapy for diseases associated with excessive activation of immune reactions. Such therapy implies Breg extraction from the patient's peripheral blood, ex vivo activation and expansion, and further infusion into the patient. At the same time, the utility of Bregs for therapeutic approaches is limited by their small numbers and extremely low survival rate, which is typical for all primary B cell cultures. Therefore, extracting CD19+ cells from the patient's peripheral blood and specifically activating them ex vivo to make B cells acquire a suppressive phenotype seems to be far more productive. It will allow a much larger number of B cells to be obtained initially, which may significantly increase the likelihood of successful immunosuppression after adoptive Breg transfer. This comparative study focuses on finding ways to efficiently manipulate B cells in vitro to differentiate them into Bregs. We used CD40L, CpG, IL4, IL21, PMA, and ionomycin in various combinations to generate immunosuppressive phenotype in B cells and performed functional assays to test their regulatory capacity. This work shows that treatment of primary B cells using CD40L + CpG + IL21 mix was most effective in terms of induction of functionally active regulatory B lymphocytes with high immunosuppressive capacity ex vivo.


Sujet(s)
Lymphocytes B régulateurs , Ligand de CD40 , Humains , Immunosuppresseurs/pharmacologie , Immunosuppresseurs/usage thérapeutique , Immunosuppression thérapeutique , Phénotype
15.
Microbiol Spectr ; 11(4): e0509622, 2023 08 17.
Article de Anglais | MEDLINE | ID: mdl-37404188

RÉSUMÉ

Polyclonal B cell activation and the resulting hypergammaglobulinemia are a detrimental consequence of visceral leishmaniasis (VL); however, the mechanisms underlying this excessive production of nonprotective antibodies are still poorly understood. Here, we show that a causative agent of VL, Leishmania donovani, induces CD21-dependent formation of tunneling nanotubule (TNT)-like protrusions in B cells. These intercellular connections are used by the parasite to disseminate among cells and propagate B cell activation, and close contact both among the cells and between B cells and parasites is required to achieve this activation. Direct contact between cells and parasites is also observed in vivo, as L. donovani can be detected in the splenic B cell area as early as 14 days postinfection. Interestingly, Leishmania parasites can also glide from macrophages to B cells via TNT-like protrusions. Taken together, our results suggest that, during in vivo infection, B cells may acquire L. donovani from macrophages via TNT-like protrusions, and these connections are subsequently exploited by the parasite to disseminate among B cells, thus propagating B cell activation and ultimately leading to polyclonal B cell activation. IMPORTANCE Leishmania donovani is a causative agent of visceral leishmaniasis, a potentially lethal disease characterized by strong B cell activation and the subsequent excessive production of nonprotective antibodies, which are known to worsen the disease. How Leishmania activates B cells is still unknown, particularly because this parasite mostly resides inside macrophages and would not have access to B cells during infection. In this study, we describe for the first time how the protozoan parasite Leishmania donovani induces and exploits the formation of protrusions that connect B lymphocytes with each other or with macrophages and glides on these structures from one cell to another. In this way, B cells can acquire Leishmania from macrophages and become activated upon contact with the parasites. This activation will then lead to antibody production. These findings provide an explanation for how the parasite may propagate B cell activation during infection.


Sujet(s)
Leishmania donovani , Leishmaniose viscérale , Humains , Leishmania donovani/physiologie , Leishmaniose viscérale/parasitologie , Macrophages
16.
Int J Mol Sci ; 24(10)2023 May 22.
Article de Anglais | MEDLINE | ID: mdl-37240453

RÉSUMÉ

Calcium (Ca2+) flux acts as a central signaling pathway in B cells, and its alterations are associated with autoimmune dysregulation and B-cell malignancies. We standardized a flow-cytometry-based method using various stimuli to investigate the Ca2+ flux characteristics of circulating human B lymphocytes from healthy individuals. We found that different activating agents trigger distinct Ca2+ flux responses and that B-cell subsets show specific developmental-stage dependent Ca2+ flux response patterns. Naive B cells responded with a more substantial Ca2+ flux to B cell receptor (BCR) stimulation than memory B cells. Non-switched memory cells responded to anti-IgD stimulation with a naive-like Ca2+ flux pattern, whereas their anti-IgM response was memory-like. Peripheral antibody-secreting cells retained their IgG responsivity but showed reduced Ca2+ responses upon activation, indicating their loss of dependence on Ca2+ signaling. Ca2+ flux is a relevant functional test for B cells, and its alterations could provide insight into pathological B-cell activation development.


Sujet(s)
Sous-populations de lymphocytes B , Lymphocytes B , Humains , Sous-populations de lymphocytes B/métabolisme , Cellules productrices d'anticorps , Récepteurs pour l'antigène des lymphocytes B/métabolisme , Différenciation cellulaire
17.
Cells ; 12(9)2023 04 24.
Article de Anglais | MEDLINE | ID: mdl-37174629

RÉSUMÉ

Lipopolysaccharide (LPS) stimulates dual receptor signaling by bridging the B cell receptor and Toll-like receptor 4 (BCR/TLR4). B cells from IκBNS-deficient bumble mice treated with LPS display reduced proliferative capacity and impaired plasma cell differentiation. To improve our understanding of the regulatory role of IκBNS in B cell activation and differentiation, we investigated the BCR and TLR4 signaling pathways separately by using dimeric anti-IgM Fab (F(ab')2) or lipid A, respectively. IκBNS-deficient B cells exhibited reduced survival and defective proliferative capacity in response to lipid A compared to B cells from wildtype (wt) control mice. In contrast, anti-IgM stimulation of bumble B cells resulted in enhanced viability and increased differentiation into CD138+ cells compared to control B cells. Anti-IgM-stimulated IκBNS-deficient B cells also showed enhanced cycle progression with increased levels of c-Myc and cyclin D2, and augmented levels of pCD79a, pSyk, and pERK compared to control B cells. These results suggest that IκBNS acts as a negative regulator of BCR signaling and a positive regulator of TLR4 signaling in mouse B cells.


Sujet(s)
Lipopolysaccharides , Récepteur de type Toll-4 , Animaux , Souris , Lipopolysaccharides/pharmacologie , Récepteur de type Toll-4/métabolisme , Lipide A , Lymphocytes B/métabolisme , Récepteurs pour l'antigène des lymphocytes B
18.
Int Immunol ; 35(6): 275-286, 2023 05 19.
Article de Anglais | MEDLINE | ID: mdl-36689362

RÉSUMÉ

T cell independent type II (TI-II) antigens, such as capsular polysaccharides, have multivalent epitopes, which induce B cell activation, plasma cell differentiation and antibody production by strongly cross-linking B cell receptors. However, the mechanism of B cell activation by TI-II antigens remains unclear. In this study, we demonstrate that DNA endonuclease DNase1L3 (also termed DNase γ) is required for the TI-II response. The production of antigen-specific antibodies was severely diminished in DNase1L3-deficient mice upon immunization with TI-II antigens, but not with T cell dependent (TD) antigens. Bone marrow chimeric mice and B cell transfer experiments revealed that B cell-intrinsic DNase1L3 was required for the TI-II response. DNase1L3-deficient B cells were defective in cell proliferation and plasma cell differentiation in the TI-II response in vivo as well as in vitro, which was not rescued by co-culture with DNase1L3-sufficient B cells in vitro, disproving an involvement of a secretory DNase1L3. In vitro stimulation with TI-II antigen transiently increased expression of DNase1L3 and its translocation into the nucleus. RNA-seq analysis of ex vivo B cells that had responded to TI-II antigen in vivo revealed a marked reduction of Myc-target gene sets in DNase1L3-deficient B cells. Expression of IRF4, a gene that Myc targets, was diminished in the ex vivo DNase1L3-deficient B cells, in which forced expression of IRF4 restored the TI-II response in vivo. These data revealed an unexpected role of DNase1L3 in a missing link between B cell receptor signaling and B cell activation in the TI-II response, giving a valuable clue to molecularly dissect this response.


Sujet(s)
Lymphocytes B , Lymphocytes T , Souris , Animaux , Antigènes , Récepteurs pour l'antigène des lymphocytes B , Anticorps , Endodeoxyribonucleases/métabolisme
19.
Cell Mol Immunol ; 20(3): 277-291, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36631557

RÉSUMÉ

Upon recognition of foreign antigens, naïve B cells undergo rapid activation, growth, and proliferation. How B-cell growth and proliferation are coupled with activation remains poorly understood. Combining CRISPR/Cas9-mediated functional analysis and mouse genetics approaches, we found that Dhx33, an activation-induced RNA helicase, plays a critical role in coupling B-cell activation with growth and proliferation. Mutant mice with B-cell-specific deletion of Dhx33 exhibited impaired B-cell development, germinal center reactions, plasma cell differentiation, and antibody production. Dhx33-deficient B cells appeared normal in the steady state and early stage of activation but were retarded in growth and proliferation. Mechanistically, Dhx33 played an indispensable role in activation-induced upregulation of ribosomal DNA (rDNA) transcription. In the absence of Dhx33, activated B cells were compromised in their ability to ramp up 47S ribosomal RNA (rRNA) production and ribosome biogenesis, resulting in nucleolar stress, p53 accumulation, and cellular death. Our findings demonstrate an essential role for Dhx33 in coupling B-cell activation with growth and proliferation and suggest that Dhx33 inhibition is a potential therapy for lymphoma and antibody-mediated autoimmune diseases.


Sujet(s)
ARN ribosomique , Animaux , Souris , Cycle cellulaire , Prolifération cellulaire , ARN ribosomique/génétique , Régulation positive
20.
Immunol Cell Biol ; 101(4): 345-357, 2023 04.
Article de Anglais | MEDLINE | ID: mdl-36710659

RÉSUMÉ

The transcription factor Myc is critically important in driving cell proliferation, a function that is frequently dysregulated in cancer. To avoid this dysregulation Myc is tightly controlled by numerous layers of regulation. One such layer is the use of distal regulatory enhancers to drive Myc expression. Here, using chromosome conformation capture to examine B cells of the immune system in the first hours after their activation, we reveal a previously unidentified enhancer of Myc. The interactivity of this enhancer coincides with a dramatic, but discrete, spike in Myc expression 3 h post-activation. However, genetic deletion of this region, has little impact on Myc expression, Myc protein level or in vitro and in vivo cell proliferation. Examination of the enhancer deleted regulatory landscape suggests that enhancer redundancy likely sustains Myc expression. This work highlights not only the importance of temporally examining enhancers, but also the complexity and dynamics of the regulation of critical genes such as Myc.


Sujet(s)
Éléments activateurs (génétique) , Gènes myc , Éléments activateurs (génétique)/génétique , Facteurs de transcription/métabolisme , Régulation de l'expression des gènes , Régions promotrices (génétique)
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE