Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 4.005
Filtrer
1.
Front Cell Dev Biol ; 12: 1412268, 2024.
Article de Anglais | MEDLINE | ID: mdl-38966428

RÉSUMÉ

Bone remodelling is a highly regulated process that maintains mineral homeostasis and preserves bone integrity. During this process, intricate communication among all bone cells is required. Indeed, adapt to changing functional situations in the bone, the resorption activity of osteoclasts is tightly balanced with the bone formation activity of osteoblasts. Recent studies have reported that RNA Binding Proteins (RBPs) are involved in bone cell activity regulation. RBPs are critical effectors of gene expression and essential regulators of cell fate decision, due to their ability to bind and regulate the activity of cellular RNAs. Thus, a better understanding of these regulation mechanisms at molecular and cellular levels could generate new knowledge on the pathophysiologic conditions of bone. In this Review, we provide an overview of the basic properties and functions of selected RBPs, focusing on their physiological and pathological roles in the bone.

2.
Mol Cell ; 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38964322

RÉSUMÉ

Dissecting the regulatory mechanisms controlling mammalian transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm in human and mouse cells. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA-binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered a link between DDX3X and nuclear export. For hundreds of RNA metabolism genes, most transcripts with retained introns were degraded by the nuclear exosome, while the remaining molecules were exported with stable cytoplasmic lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, machine learning identified molecular features that predicted the diverse life cycles of mRNAs.

3.
Cell Genom ; : 100603, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38955188

RÉSUMÉ

The uncovering of protein-RNA interactions enables a deeper understanding of RNA processing. Recent multiplexed crosslinking and immunoprecipitation (CLIP) technologies such as antibody-barcoded eCLIP (ABC) dramatically increase the throughput of mapping RNA binding protein (RBP) binding sites. However, multiplex CLIP datasets are multivariate, and each RBP suffers non-uniform signal-to-noise ratio. To address this, we developed Mudskipper, a versatile computational suite comprising two components: a Dirichlet multinomial mixture model to account for the multivariate nature of ABC datasets and a softmasking approach that identifies and removes non-specific protein-RNA interactions in RBPs with low signal-to-noise ratio. Mudskipper demonstrates superior precision and recall over existing tools on multiplex datasets and supports analysis of repetitive elements and small non-coding RNAs. Our findings unravel splicing outcomes and variant-associated disruptions, enabling higher-throughput investigations into diseases and regulation mediated by RBPs.

4.
Article de Anglais | MEDLINE | ID: mdl-38958111

RÉSUMÉ

INTRODUCTION: Actin has been implicated in lens opacification; however, the specific actin-related pathways involved in cataracts remain unelucidated. In this study, actin-related proteome changes and signaling pathways involved in the development of cataracts were evaluated. METHODS: The anterior capsule and phacoemulsification (phaco) cassette contents were collected during cataract surgery from 11 patients with diabetic cataract (DC), 12 patients with age-related cataract (ARC), and seven patients with post-vitrectomy cataract (PVC). Untargeted, global identification and quantification of proteins was performed through liquid chromatography-mass spectrometry with the data-independent acquisition (DIA). RESULTS: In phaco cassette samples, proteins with significantly lower expression in ARC than in DC and PVC were involved in various pathways, including actin binding, actin cytoskeleton reorganization, actin filament capping, cortical actin cytoskeleton organization, and small GTPase-mediated signal transduction pathways. In anterior capsules, proteins with significantly lower expression in ARC than in DC and PVC were involved in actin binding and actin cytoskeleton reorganization pathways. CONCLUSION: Actin cytoskeleton and actin-binding proteins are involved in lens fiber elongation and differentiation. Rho GTPases contribute to actin cytoskeletal reorganization, and their inactivation is linked to abnormal lens fiber migration. These findings link actin binding to lens fiber integrity, lens opacification, and cataracts.

5.
FEBS Lett ; 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38946055

RÉSUMÉ

The human FoxP transcription factors dimerize via three-dimensional domain swapping, a unique feature among the human Fox family, as result of evolutionary sequence adaptations in the forkhead domain. This is the case for the conserved glycine and proline residues in the wing 1 region, which are absent in FoxP proteins but present in most of the Fox family. In this work, we engineered both glycine (G) and proline-glycine (PG) insertion mutants to evaluate the deletion events in FoxP proteins in their dimerization, stability, flexibility, and DNA-binding ability. We show that the PG insertion only increases protein stability, whereas the single glycine insertion decreases the association rate and protein stability and promotes affinity to the DNA ligand.

6.
J Cell Physiol ; 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38946197

RÉSUMÉ

The small Rho GTP-binding proteins are important cell morphology, function, and apoptosis regulators. Unlike other Rho proteins, RhoB can be subjected to either geranylgeranylation (RhoB-GG) or farnesylation (RhoB-F), making that the only target of the farnesyltransferase inhibitor (FTI). Fluorescence resonance energy transfer experiments revealed that RhoB is activated by hyperosmolarity. By contrast, hyposmolarity did not affect RhoB activity. Interestingly, treatment with farnesyltransferase inhibitor-277 (FTI-277) decreased the cell size. To evaluate whether RhoB plays a role in volume reduction, renal collecting duct MCD4 cells and Human Kidney, HK-2 were transiently transfected with RhoB-wildtype-Enhance Green Fluorescence Protein (RhoB-wt-EGFP) and RhoB-CLLL-EGFP which cannot undergo farnesylation. A calcein-based fluorescent assay revealed that hyperosmolarity caused a significant reduction of cell volume in mock and RhoB-wt-EGFP-expressing cells. By contrast, cells treated with FTI-277 or expressing the RhoB-CLLL-EGFP mutant did not properly respond to hyperosmolarity with respect to mock and RhoB-wt-EGFP expressing cells. These findings were further confirmed by 3D-LSCM showing that RhoB-CLLL-EGFP cells displayed a significant reduction in cell size compared to cells expressing RhoB-wt-EGFP. Moreover, flow cytometry analysis revealed that RhoB-CLLL-EGFP expressing cells as well as FTI-277-treated cells showed a significant increase in cell apoptosis. Together, these data suggested that: (i) RhoB is sensitive to hyperosmolarity and not to hyposmolarity; (ii) inhibition of RhoB farnesylation associates with an increase in cell apoptosis, likely suggesting that RhoB might be a paramount player controlling apoptosis by interfering with responses to cell volume change.

7.
Protein Expr Purif ; 222: 106542, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38969281

RÉSUMÉ

Human ZC3H11A is an RNA-binding zinc finger protein involved in mRNA export and required for the efficient growth of human nuclear replicating viruses. Its biochemical properties are largely unknown so our goal has been to produce the protein in a pure and stable form suitable for its characterization. This has been challenging since the protein is large (810 amino acids) and with only the N-terminal zinc finger domain (amino acids 1-86) being well structured, the remainder is intrinsically disordered. Our production strategies have encompassed recombinant expression of full-length, truncated and mutated ZC3H11A variants with varying purification tags and fusion proteins in several expression systems, with or without co-expression of chaperones and putative interaction partners. A range of purification schemes have been explored. Initially, only truncated ZC3H11A encompassing the zinc finger domain could successfully be produced in a stable form. It required recombinant expression in insect cells since expression in E. coli gave a protein that aggregated. To reduce problematic nucleic acid contaminations, Cys8, located in one of the zinc fingers, was substituted by Ala and Ser. Interestingly, this did not affect nucleic acid binding, but the full-length protein was stabilised while the truncated version was insoluble. Ultimately, we discovered that when using alkaline buffers (pH 9) for purification, full-length ZC3H11A expressed in Sf9 insect cells was obtained in a stable and >90 % pure form, and as a mixture of monomers, dimers, tetramers and hexamers. Many of the challenges experienced are consistent with its predicted structure and unusual charge distribution.

8.
Se Pu ; 42(7): 702-710, 2024 Jul.
Article de Chinois | MEDLINE | ID: mdl-38966978

RÉSUMÉ

Organic acid metabolites exhibit acidic properties. These metabolites serve as intermediates in major carbon metabolic pathways and are involved in several biochemical pathways, including the tricarboxylic acid (TCA) cycle and glycolysis. They also regulate cellular activity and play crucial roles in epigenetics, tumorigenesis, and cellular signal transduction. Knowledge of the binding proteins of organic acid metabolites is crucial for understanding their biological functions. However, identifying the binding proteins of these metabolites has long been a challenging task owing to the transient and weak nature of their interactions. Moreover, traditional methods are unsuitable for the structural modification of the ligands of organic acid metabolites because these metabolites have simple and similar structures. Even minor structural modifications can significantly affect protein interactions. Thermal proteome profiling (TPP) provides a promising avenue for identifying binding proteins without the need for structural modifications. This approach has been successfully applied to the identification of the binding proteins of several metabolites. In this study, we investigated the binding proteins of two TCA cycle intermediates, i.e., succinate and fumarate, and lactate, an end-product of glycolysis, using the matrix thermal shift assay (mTSA) technique. This technique involves combining single-temperature (52 ℃) TPP and dose-response curve analysis to identify ligand-binding proteins with high levels of confidence and determine the binding affinity between ligands and proteins. To this end, HeLa cells were lysed, followed by protein desalting to remove endogenous metabolites from the cell lysates. The desalted cell lysates were treated with fumarate or succinate at final concentrations of 0.004, 0.04, 0.4, and 2 mmol/L in the experimental groups or 2 mmol/L sodium chloride in the control group. Considering that the cellular concentration of lactate can be as high as 2-30 mmol/L, we then applied lactate at final concentrations of 0.2, 1, 5, 10, and 25 mmol/L in the experimental groups or 25 mmol/L sodium chloride in the control group. Using high-sensitivity mass spectrometry coupled with data-independent acquisition (DIA) quantification, we quantified 5870, 5744, and 5816 proteins in succinate, fumarate, and lactate mTSA experiments, respectively. By setting stringent cut-off values (i.e., significance of changes in protein thermal stability (p-value)<0.001 and quality of the dose-response curve fitting (square of Pearson's correlation coefficient, R2)>0.95), multiple binding proteins for these organic acid metabolites from background proteins were confidently determined. Several known binding proteins were identified, notably fumarate hydratase (FH) as a binding protein for fumarate, and α-ketoglutarate-dependent dioxygenase (FTO) as a binding protein for both fumarate and succinate. Additionally, the affinity data for the interactions between these metabolites and their binding proteins were obtained, which closely matched those reported in the literature. Interestingly, ornithine aminotransferase (OAT), which is involved in amino acid biosynthesis, and 3-mercaptopyruvate sulfurtransferase (MPST), which acts as an antioxidant in cells, were identified as lactate-binding proteins. Subsequently, an orthogonal assay technique developed in our laboratory, the solvent-induced precipitation (SIP) technique, was used to validate the mTSA results. SIP identified OAT as the top target candidate, validating the mTSA-based finding that OAT is a novel lactate-binding protein. Although MPST was not identified as a lactate-binding protein by SIP, statistical analysis of MPST in the mTSA experiments with 10 or 25 mmol/L lactate revealed that MPST is a lactate-binding protein with a high level of confidence. Peptide-level empirical Bayes t-tests combined with Fisher's exact test also supported the conclusion that MPST is a lactate-binding protein. Lactate is structurally similar to pyruvate, the known binding protein of MPST. Therefore, assuming that lactate could potentially occupy the binding site of pyruvate on MPST. Overall, the novel binding proteins identified for lactate suggest their potential involvement in amino acid synthesis and redox balance regulation.


Sujet(s)
Cycle citrique , Humains , Cellules HeLa , Acide succinique/métabolisme , Acide succinique/composition chimique , Fumarates/métabolisme , Fumarates/composition chimique
9.
Genes Cells ; 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38965717

RÉSUMÉ

The brain utilizes glucose as a primary energy substrate but also fatty acids for the ß-oxidation in mitochondria. The ß-oxidation is reported to occur mainly in astrocytes, but its capacity and efficacy against different fatty acids remain unknown. Here, we show the fatty acid preference for the ß-oxidation in mitochondria of murine cultured astrocytes. Fatty acid oxidation assay using an extracellular flux analyzer showed that saturated or monosaturated fatty acids, palmitic acid and oleic acid, are preferred substrates over polyunsaturated fatty acids like arachidonic acid and docosahexaenoic acid. We also report that fatty acid binding proteins expressed in the astrocytes contribute less to fatty acid transport to mitochondria for ß-oxidation. Our results could give insight into understanding energy metabolism through fatty acid consumption in the brain.

10.
Anal Biochem ; : 115603, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38986796

RÉSUMÉ

The recognition of DNA-binding proteins (DBPs) is the crucial step to understanding their roles in various biological processes such as genetic regulation, gene expression, cell cycle control, DNA repair, and replication within cells. However, conventional experimental methods for identifying DBPs are usually time-consuming and expensive. Therefore, there is an urgent need to develop rapid and efficient computational methods for the prediction of DBPs. In this study, we proposed a novel predictor named PreDBP-PLMs to further improve the identification accuracy of DBPs by fusing the pre-trained protein language model (PLM) ProtT5 embedding with evolutionary features as input to the classic convolutional neural network (CNN) model. Firstly, the ProtT5 embedding was combined with different evolutionary features derived from the position-specific scoring matrix (PSSM) to represent protein sequences. Then, the optimal feature combination was selected and input to the CNN classifier for the prediction of DBPs. Finally, the 5-fold cross-validation (CV), the leave-one-out CV (LOOCV), and the independent set test were adopted to examine the performance of PreDBP-PLMs on the benchmark datasets. Compared to the existing state-of-the-art predictors, PreDBP-PLMs exhibits an accuracy improvement of 0.5% and 5.2% on the PDB186 and PDB2272 datasets, respectively. It demonstrated that the proposed method could serve as a useful tool for the recognition of DBPs.

11.
BMC Womens Health ; 24(1): 396, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38987734

RÉSUMÉ

BACKGROUND: Aging results in many changes in health status, body composition, muscle strength, and, ultimately, functional capacity. These changes coincide with significant alterations in the endocrine system, such as insulin-like growth factor-1 (IGF-1) and IGF-binding proteins (IGFBPs), and may be associated with many symptoms of aging. The objectives of this study is to investigate the potential influence of different types of exercise, such as resistance training and aerobic training, on IGF-1 and IGFBP-3 levels in postmenopausal women. METHODS: Medline, Scopus, and Google Scholar databases were systematically searched up to November 2023. The Cochrane Collaboration tool was used to assess the risk of bias and the quality of the studies. The random-effects model, weighted mean difference (WMD), and 95% confidence interval (CI) were used to estimate the overall effect. Between-study heterogeneity was assessed using the chi-squared and I2 tests. RESULTS: Seventeen studies were included in the present systematic review and 16 studies were included in the meta-analysis. The pooled results from 16 studies (21 trials) with 1170 participants examining the impact of exercise on IGF-1 concentration showed a significant increase in IGF-1, and the pooled results among six studies (trials) showed a significant decrease in IGFBP-3 concentration (730 participants). In addition, resistance training and aerobic training had a significant effect on increasing IGF-1 concentration post-exercise compared with placebo. CONCLUSION: Based on this meta-analysis, Women who have completed menopause and followed an exercise routine showed changes in IGF-1 and IGFBP-3 levels that can indirectly be associated with risk of chronic age-related conditions.


Sujet(s)
Exercice physique , Protéine-3 de liaison aux IGF , Facteur de croissance IGF-I , Post-ménopause , Entraînement en résistance , Humains , Femelle , Post-ménopause/physiologie , Facteur de croissance IGF-I/métabolisme , Facteur de croissance IGF-I/analyse , Exercice physique/physiologie , Protéine-3 de liaison aux IGF/sang , Entraînement en résistance/méthodes
12.
J Indian Soc Periodontol ; 28(1): 99-105, 2024.
Article de Anglais | MEDLINE | ID: mdl-38988960

RÉSUMÉ

Background: The intricate interplay between periodontal polymicrobial flora and an altered immune response is the central cause of periodontal disease. Multiple cell death methods and their interactions, along with the associated signaling pathways, significantly impact the initiation and advancement of periodontitis. Our speculation revolves around the role of the miR-223/Ras-associated binding protein (RAB12) signaling axis in regulating autophagy-induced pyroptosis, contributing to the pathophysiology of periodontitis. Thus, this study aimed to investigate miR-223 and RAB12 expression patterns in Stage III/Grade B periodontal disease. Materials and Methods: The study included 50 healthy individuals and 50 patients diagnosed with Stage III/Grade B periodontal disease. Clinical parameters were cataloged for each participant. miRNA-223 underwent an in silico analysis to identify its potential target genes. Gingival crevicular fluid (GCF) samples were collected from the subjects for real-time polymerase chain reaction to evaluate the expression of both miR-223 and the RAB12 gene. Results: The miRTargetLink2.0 analysis highlighted the RAB12 gene as a prime target for miR-223. In periodontal disease patients, miR-223 and RAB12 gene expressions significantly increased (15.21 and 34.70-fold changes, respectively; P < 0.05). Receiver operating characteristic analysis suggested that miR-223 is a potential biomarker for periodontal disease, with 76% diagnostic accuracy and an area under the curve of 0.777 (P < 0.01). Conclusion: MicroRNA-223 and its target gene RAB12 exhibit high expression levels in GCF samples from individuals with periodontal disease. This suggests modulation of autophagy and the signaling mechanism for pyroptotic cell death in periodontal tissues during pathogenesis. Consequently, the miR-223/RAB12 axis might represent a plausible link for periodontal disease.

13.
Adv Exp Med Biol ; 1445: 47-57, 2024.
Article de Anglais | MEDLINE | ID: mdl-38967749

RÉSUMÉ

Traditionally, immunoglobulin (Ig) expression has been attributed solely to B cells/plasma cells with well-documented and accepted regulatory mechanisms governing Ig expression in B cells. Ig transcription is tightly controlled by a series of transcription factors. However, increasing evidence has recently demonstrated that Ig is not only produced by B cell lineages but also by various types of non-B cells (non-B-Ig). Under physiological conditions, non-B-Ig not only exhibits antibody activity but also regulates cellular biological activities (such as promoting cell proliferation, adhesion, and cytoskeleton protein activity). In pathological conditions, non-B-Ig is implicated in the development of various diseases including tumour, kidney disease, and other immune-related disorders. The mechanisms underline Ig gene rearrangement and transcriptional regulation of Ig genes in non-B cells are not fully understood. However, existing evidence suggests that these mechanisms in non-B cells differ from those in B cells. For instance, non-B-Ig gene rearrangement occurs in an RAG-independent manner; and Oct-1 and Oct-4, rather than Oct-2, are required for the transcriptional regulation of non-B derived Igs. In this chapter, we will describe and compare the mechanisms of gene rearrangement and expression regulation between B-Ig and non-B-Ig.


Sujet(s)
Régulation de l'expression des gènes , Immunoglobulines , Transcription génétique , Humains , Animaux , Immunoglobulines/génétique , Immunoglobulines/métabolisme , Réarrangement des gènes , Lymphocytes B/métabolisme , Lymphocytes B/immunologie
14.
Protein J ; 2024 Jun 02.
Article de Anglais | MEDLINE | ID: mdl-38824467

RÉSUMÉ

Actin is present in the cytoplasm and nucleus of every eukaryotic cell. In the cytoplasm, framework and motor functions of actin are associated with its ability to polymerize to form F-actin. In the nucleus, globular actin plays a significant functional role. For a globular protein, actin has a uniquely large number of proteins with which it interacts. Bioinformatics analysis of the actin interactome showed that only a part of actin-binding proteins are both cytoplasmic and nuclear. There are proteins that interact only with cytoplasmic, or only with nuclear actin. The first pool includes proteins associated with the formation, regulation, and functioning of the actin cytoskeleton predominate, while nuclear actin-binding proteins are involved in the majority of key nuclear processes, from regulation of transcription to DNA damage response. Bioinformatics analysis of the structure of actin-binding proteins showed that these are mainly intrinsically disordered proteins, many of which are part of membrane-less organelles. Interestingly, although the number of intrinsically disordered actin-binding proteins in the nucleus is greater than in the cytoplasm, the drivers for the formation of the membrane-less organelles in the cytoplasm are significantly (four times) greater than in the nucleus.

15.
Eur J Cell Biol ; 103(3): 151438, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38945074

RÉSUMÉ

The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.

16.
bioRxiv ; 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38915499

RÉSUMÉ

Cell type-specific alternative splicing (AS) enables differential gene isoform expression between diverse neuron types with distinct identities and functions. Current studies linking individual RNA-binding proteins (RBPs) to AS in a few neuron types underscore the need for holistic modeling. Here, we use network reverse engineering to derive a map of the neuron type-specific AS regulatory landscape from 133 mouse neocortical cell types defined by single-cell transcriptomes. This approach reliably inferred the regulons of 350 RBPs and their cell type-specific activities. Our analysis revealed driving factors delineating neuronal identities, among which we validated Elavl2 as a key RBP for MGE-specific splicing in GABAergic interneurons using an in vitro ESC differentiation system. We also identified a module of exons and candidate regulators specific for long- and short-projection neurons across multiple neuronal classes. This study provides a resource for elucidating splicing regulatory programs that drive neuronal molecular diversity, including those that do not align with gene expression-based classifications.

17.
Noncoding RNA ; 10(3)2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38921833

RÉSUMÉ

Telomerase is an enzyme involved in the maintenance of telomeres. Telomere shortening due to the end-replication problem is a threat to the genome integrity of all eukaryotes. Telomerase inside cells depends on a myriad of protein-protein and RNA-protein interactions to properly assemble and regulate the function of the telomerase holoenzyme. These interactions are well studied in model eukaryotes, like humans, yeast, and the ciliated protozoan known as Tetrahymena thermophila. Emerging evidence also suggests that deep-branching eukaryotes, such as the parasitic protist Trypanosoma brucei require conserved and novel RNA-binding proteins for the assembly and function of their telomerase. In this review, we will discuss telomerase regulatory pathways in the context of telomerase-interacting proteins, with special attention paid to RNA-binding proteins. We will discuss these interactors on an evolutionary scale, from parasitic protists to humans, to provide a broader perspective on the extensive role that protein-protein and RNA-protein interactions play in regulating telomerase activity in eukaryotes.

18.
Adv Respir Med ; 92(3): 218-229, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38921061

RÉSUMÉ

Ragweed pollen allergy is the most common seasonal allergy in western Romania. Prolonged exposure to ragweed pollen may induce sensitization to pan-allergens such as calcium-binding proteins (polcalcins) and progression to more severe symptoms. We aimed to detect IgE sensitization to recombinant Amb a 9 and Amb a 10 in a Romanian population, to assess their potential clinical relevance and cross-reactivity, as well as to investigate the relation with clinical symptoms. rAmb a 9 and rAmb a 10 produced in Escherichia coli were used to detect specific IgE in sera from 87 clinically characterized ragweed-allergic patients in ELISA, for basophil activation experiments and rabbit immunization. Rabbit rAmb a 9- and rAmb a 10-specific sera were used to detect possible cross-reactivity with rArt v 5 and reactivity towards ragweed and mugwort pollen extracts. The results showed an IgE reactivity of 25% to rAmb a 9 and 35% to rAmb a 10. rAmb a 10 induced basophil degranulation in three out of four patients tested. Moreover, polcalcin-negative patients reported significantly more skin symptoms, whereas polcalcin-positive patients tended to report more respiratory symptoms. Furthermore, both rabbit antisera showed low reactivity towards extracts and showed high reactivity to rArt v 5, suggesting strong cross-reactivity. Our study indicated that recombinant ragweed polcalcins might be considered for molecular diagnosis.


Sujet(s)
Protéines de liaison au calcium , Réactions croisées , Immunoglobuline E , Rhinite allergique saisonnière , Humains , Immunoglobuline E/sang , Immunoglobuline E/immunologie , Réactions croisées/immunologie , Rhinite allergique saisonnière/immunologie , Rhinite allergique saisonnière/sang , Roumanie , Protéines de liaison au calcium/immunologie , Antigènes végétaux/immunologie , Allergènes/immunologie , Femelle , Mâle , Ambrosia/immunologie , Lapins , Adulte , Extraits de plantes
19.
Mol Cell ; 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38917795

RÉSUMÉ

Efficient targeted control of splicing is a major goal of functional genomics and therapeutic applications. Guide (g)RNA-directed, deactivated (d)Cas CRISPR enzymes fused to splicing effectors represent a promising strategy due to the flexibility of these systems. However, efficient, specific, and generalizable activation of endogenous exons using this approach has not been previously reported. By screening over 300 dCasRx-splicing factor fusion proteins tethered to splicing reporters, we identify dCasRx-RBM25 as a potent activator of exons. Moreover, dCasRx-RBM25 efficiently activates the splicing of ∼90% of targeted endogenous alternative exons and displays high on-target specificity. Using gRNA arrays for combinatorial targeting, we demonstrate that dCasRx-RBM25 enables multiplexed activation and repression of exons. Using this feature, the targeting of neural-regulated exons in Ptpb1 and Puf60 in embryonic stem cells reveals combinatorial effects on downstream alternative splicing events controlled by these factors. Collectively, our results enable versatile, combinatorial exon-resolution functional assays and splicing-directed therapeutic applications.

20.
Curr Biol ; 34(13): 2972-2979.e4, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38851184

RÉSUMÉ

The evolution of novel traits can have important consequences for biological diversification. Novelties such as new structures are associated with changes in both genotype and phenotype that often lead to changes in ecological function.1,2 New ecological opportunities provided by a novel trait can trigger subsequent trait modification or niche partitioning3; however, the underlying mechanisms of novel trait diversification are still poorly understood. Here, we report that the innovation of a new chlorophyll (Chl) pigment, Chl d, by the cyanobacterium Acaryochloris marina was followed by the functional divergence of its light-harvesting complex. We identified three major photosynthetic spectral types based on Chl fluorescence properties for a collection of A. marina laboratory strains for which genome sequence data are available,4,5 with shorter- and longer-wavelength types more recently derived from an ancestral intermediate phenotype. Members of the different spectral types exhibited extensive variation in the Chl-binding proteins as well as the Chl energy levels of their photosynthetic complexes. This spectral-type divergence is associated with differences in the wavelength dependence of both growth rate and photosynthetic oxygen evolution. We conclude that the divergence of the light-harvesting apparatus has consequently impacted A. marina ecological diversification through specialization on different far-red photons for photosynthesis.


Sujet(s)
Chlorophylle , Cyanobactéries , Complexes collecteurs de lumière , Photosynthèse , Chlorophylle/métabolisme , Cyanobactéries/métabolisme , Cyanobactéries/génétique , Complexes collecteurs de lumière/métabolisme , Complexes collecteurs de lumière/génétique , Évolution biologique , Phénotype
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...