Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 876
Filtrer
1.
J Environ Radioact ; 278: 107510, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39088873

RÉSUMÉ

The Irish Sea and the Baltic Sea are nowadays still the two most Cs-137 contaminated Seas worldwide. However, the origins of this contaminations are completely different. While the Baltic Sea was unintentionally contaminated due to global fallout after the accident in the Chernobyl nuclear powerplant in 1986, the Irish sea was intentionally used for low level liquid radioactive waste discharges from the Sellafield nuclear reprocessing facility (called Windscale until 1981) between the 1950s and 1990s. Nowadays, more than 30 years later, it is still possible to detect these contaminations in fish, water and sediments of both seas. Since fish are an important part of the human diet, monitoring Cs-137 levels in fish is essential for assessing the potential radiation exposure to humans. In 2019 and 2020 two surveys were dedicated to study the current levels of radioactive contamination in fish species from both Seas. During both surveys, fish samples were collected and analysed by gamma spectrometry later on. The results show that the average Cs-137 activity in benthic, demersal and pelagic fish species from the Baltic Sea are 2.7, 4.6 and 4.2, respectively, times higher than the corresponding values of the Irish Sea. Based on this and two other comparisons, it is concluded that the Baltic Sea is the most contaminated with Cs-137.

2.
Heliyon ; 10(14): e34180, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39114082

RÉSUMÉ

This study evaluates the mechanical properties and formulation of dental restoration material comprised of cellulose acetate (CA) from water hyacinth and chitosan (C) from white shrimp shells. The research phases included extraction, formulation, functional group testing, antibacterial, toxicity, water absorption and solubility, compressive, shear, tensile, hardness, microleakage, thermal expansion, and shrinkage. The experimental data were analyzed using probit regression, one-way ANOVA, and Kruskal-Wallis test. The data showed that CA and C had microxyl and amine groups, could inhibit S. mutans, and were non-toxic. Composite resins were divided into nine formulations with different concentrations: F1 (1 % CA + 3 % C), F2 (1 % CA + 5 % C), F3 (1 % CA + 7 % C), F4 (3 % CA + 3 % C), F5 (3 % CA + 5 % C), F6 (3 % CA + 7 % C), F7 (5 % CA + 3 % C), F8 (5 % CA + 5 % C), and F9 (5 % CA + 7 % C). The F9 has mechanical strength close to the control group, with 113.33 µg/mm3 absorption, 80 µg/mm3 solubility, 32.67 Mpa compressive strength, 17.18 Mpa tensile strength, and no shrinkage. It shows that F9 has potential as an eco-friendly dental filling material. The present study completed the development of a formulation for a restoration material by combining water hyacinth fiber and shrimp skin chitosan. The outcomes of a comparative analysis of the mechanical properties of synthetic composite resins and water hyacinth fiber composites containing shrimp skin chitosan revealed that the F9 formulation (CA 5 % + C 7 %) exhibited the following fiber: absorption, compressive strength, tensile strength, hardness, and thermal expansion.

3.
Biomater Adv ; 164: 213988, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39116599

RÉSUMÉ

World hunger is getting worse, while one-third of food produced around the globe is wasted and never consumed. It is vital to reduce food waste to promote the sustainability of food systems, and improved food packaging solutions can augment this effort. The utilization of biomaterials in smart food packaging not only enhances food preservation and safety but also aligns with current demands for eco-friendly technologies to mitigate the impacts of climate change. This review provides a comprehensive overview of the developments in the field of food packaging based on the innovative use of biomaterials. It emphasizes the potential use of biomaterials derived from nature including cellulose, chitosan, keratin, etc. for this purpose. Various smart food packaging technologies such as active and intelligent packaging are discussed in detail including scavenging additives, colour-changing environment indicators, sensors, RFID tags, etc. The article also delves into the utilization of edible films and coatings, nanoparticle fillers and 2D materials in food packaging systems. Furthermore, it outlines the challenges and opportunities in this dynamic domain, emphasizing the ongoing need for research and innovation to shape the future of sustainable and smart food packaging solutions to enhance and monitor the shelf-life of food products.

4.
Food Chem ; 460(Pt 2): 140732, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39106807

RÉSUMÉ

Chemical pollutants such as mycotoxins and pesticides exert harmful effects on human health such as inflammation, oxidative stress, and cancer. Several strategies were applied for food decontamination, including physicochemical and biological strategies. The present review comprehensively discussed the recent efforts related to the biodegradation of eight food chemical contaminants, including mycotoxins, acrylamide, biogenic amines, N-nitrosamines, polycyclic aromatic hydrocarbons, bisphenol A, pesticides, and heavy metals by lactic acid bacteria (LAB). Biological detoxification by LAB such as Lactobacillus is a promising approach to remove the risks related to the presence of chemical and environmental pollutants in foodstuffs. It is a safe, efficient, environmentally friendly, and low-cost strategy to remove hazardous compounds. LAB can directly decrease these chemical pollutants by degradation or adsorption. Also, it can indirectly reduce the content of these pollutants by reducing their precursors. Hence, LAB can contribute to reducing chemical pollutants in contaminated foods and enhance food safety.

5.
Luminescence ; 39(8): e4861, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39109462

RÉSUMÉ

Cariprazine represents a new generation of antipsychotic medication, characterized by its heightened affinity for the D3 receptor. It has recently obtained approval as an adjunctive treatment option for patients diagnosed with major depressive disorder. In this study, a novel approach utilizing fluorescence spectroscopy was developed to analyze cariprazine. The methodology involves the transformation of cariprazine into a fluorescent compound by means of chemical derivatization with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Following excitation at 470 nm, the fluorescent derivative displayed peak fluorescence emission at 550 nm. The factors influencing the derivatization process were optimized. Upon reaching the optimal reaction conditions, a linear correlation (r2 = 0.9995) was observed between the fluorescence intensity and concentrations of cariprazine ranging from 20 to 400 ng/ml. Detection and quantitation limits were determined to be 5.85 and 17.74 ng/ml, respectively. The approach was accurate and precise, with percent recovery values ranging from 98.14% to 99.91% and relative standard deviations of less than 2%. Application of the method to the analysis of cariprazine in bulk and commercial capsules forms yielded accurate results. Moreover, adherence to environmentally friendly analytical practices was evident through alignment with the principles of green analysis, as demonstrated by the analytical eco-scale, AGREE, and GAPI greenness assessment tools.


Sujet(s)
Pipérazines , Spectrométrie de fluorescence , Pipérazines/composition chimique , Pipérazines/analyse , Technologie de la chimie verte , Neuroleptiques/composition chimique , Structure moléculaire , Limite de détection
6.
ChemSusChem ; : e202401298, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39115637

RÉSUMÉ

Photoelectrochemical (PEC) water splitting based on colloidal quantum dots (QDs) presents a promising approach for utilizing solar energy to produce green hydrogen energy. Previous research has been mainly focused on the single-photoelectrode QDs-PEC device operated under external bias, while the investigation of dual-photoelectrode configuration for self-biased QDs-PEC system is still lacking. In this work, two types of eco-friendly Cu-AISe/ZnSe:Cu (CZAC) and Mn-AIS/ZnS@Cu (MAZC) QDs were used to respectively sensitize the semiconductor n-type TiO2 and p-type Cu2O photoelectrodes, which acted as the photoanode and photocathode to build a heavy metal-free QDs-based bias-free solar water splitting cell, yielding a maximum photocurrent density of 0.47 mA cm-2 and a solar-to-hydrogen (STH) efficiency of 0.4% under 1 sun AM 1.5G illumination (100 mW cm-2). Moreover, approximate 692 nmol of H2 and 355 nmol of O2 with molar ratio of ~2:1 was detected after two hours of continuous light illumination, demonstrating the effective overall water splitting. This work indicates a significant advancement towards the realization of a cost-effective, efficient and "green" QDs-based artificial solar-to-fuel conversion system.

7.
BMC Chem ; 18(1): 143, 2024 Aug 03.
Article de Anglais | MEDLINE | ID: mdl-39097711

RÉSUMÉ

Developing analytical techniques that align with green and sustainable chemistry principles is crucial in today's scientific landscape. This work introduces two innovative approaches for the simultaneous quantification of indacaterol (IND) and mometasone (MOM), a recently approved combination therapy for chronic obstructive pulmonary disease. These methods-rapid isocratic ion pair chromatography (IPC) and UV-visible spectrophotometry-demonstrate improved environmental sustainability, cost-effectiveness, and versatility compared to existing techniques. The optimized 4-min IPC method achieved excellent resolution (retention times 2.18 ± 0.1 min for IND and 3.95 ± 0.1 min for MOM), peak symmetry, and sensitivity. It utilizes a low-cost ion pair mobile phase of acetonitrile and acidified water containing 0.025% sodium dodecyl sulfate (50:50% v/v), making it suitable for laboratories with standard chromatographic instruments. The spectrophotometric approach offers two procedures: first derivative and ratio derivative methods. These serve as simplified, low-cost alternatives for resource-limited laboratories without access to advanced instruments. Both techniques feature simplified protocols that minimize extraction and fractionation steps. Comprehensive validation confirmed outstanding accuracy (98-102%) and precision (%2 <). Sustainability assessments using ComplexGAPI, AGREE, carbon footprint, BAGI, and RGB12 tools demonstrated enhanced environmental performance compared to existing methods. The IPC and spectrophotometry methods achieved greenness scores of 0.81 and 0.85, respectively, surpassing the 0.63-0.67 range of reported techniques. Additionally, they showed lower carbon footprints of 0.035 and 0.022 kg CO2 equivalent emissions per sample, compared to 0.079-0.092 kg for conventional procedures. The application of novel "blueness" and "whiteness" concepts using BAGI and RGB12 algorithms further confirmed superior sustainability, with scores of 87.5 & 90 for blueness and 88.1 & 89.8 for whiteness. Successfully applied to quantify IND and MOM in combined capsules, this work provides a model for eco-friendly pharmaceutical analysis that maintains high analytical reliability while improving sustainability metrics.

8.
Article de Anglais | MEDLINE | ID: mdl-39106016

RÉSUMÉ

Natural and renewable polymers are gradually replacing petroleum-based plastics, mostly as a result of environmental concerns. Moreover, upcycling industrial food waste into new added-value products is a creative approach that is crucial for cleaner and more sustainable manufacturing. The aim of this study was to obtain an environmentally friendly biodegradable film using a combination of k-carrageenan (KCAR) and chicken gelatin (CGEL), which obtained from poultry by-products. The effects of varying concentrations of KCAR (0-2%) on the physical, permeability, textural, thermal, and microstructural properties of CGEL/KCAR composite films were evaluated. The findings demonstrated that an increase in KCAR enhanced the lightness and opacity levels of the films. Water vapor permeability (WVP) values reduced as the KCAR concentration increased. The lowest WVP value (0.0012 g.mm/h.m2.kpa) was seen in the treatment with 2% KCAR. Tensile strength (TS) values increased with increasing KCAR. The films' thermal stability was increased by the addition of KCAR. Microstructure assessments revealed a more compact and smooth structure in the KCAR-containing treatments, indicating improvements in WVP, thermal stability, and TS. Compared to the commercial cattle gelatin film, the CGEL film had higher TS and lower water solubility (WS). Overall, this study showed that the physical, mechanical, barrier and thermal and microstructural qualities of gelatin-based films may be enhanced by combining CGEL and KCAR to create an effective biodegradable film. Moreover, the comparison study between commercial cattle and chicken gelatin films revealed that cross-linked chicken gelatin films would be a suitable alternative for bovine gelatin films in the production of biodegradable film.

9.
J Colloid Interface Sci ; 677(Pt A): 378-389, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39096706

RÉSUMÉ

HYPOTHESIS: Nanoparticle-stabilized foams are extremely stable, and flame retardant inorganic nanoparticles should be able to add sealing capacity of firefighting foams on flammable liquid fuels, and hence enhance fire extinguishment performance on liquid fuel fire. In practice, how do flame retardant nanoparticles resist the destructive effect of oil molecules on foam and tune foam properties? EXPERIMENTS: We have prepared a nanoparticle-enhanced foam comprising of hydrocarbon surfactant, short-chain fluorocarbon surfactant, and nanoparticles. The interactions among nanoparticles and surfactant molecules were characterized by using dynamic surface tension and conductivity. Stability, rheology, and oil resistivity on liquid fuel of the nanoparticle-enhanced foam were evaluated systematically. Fire suppression effectiveness of the foams was verified based on a standard experiment. FINDINGS: Foam stability and oil resistivity were enhanced due to self-assembled network structures formed by jammed aggregates composed by nanoparticles and surfactants in Plateau borders and bubble films, providing structural recoverability and enhanced viscoelasticity within foam. Foams containing nano-SiO2, nano-CaCO3, nano-Al(OH)3, and nano-Mg(OH)2 show difference in fire extinguishment due to different ability to enhance foam properties. Foam containing nano-Al(OH)3 shows the strongest adaptation and could shorten fire extinguishing time by 2 times and prolong burn-back time by 2.3 times compared with commercial product.

10.
Front Chem ; 12: 1425953, 2024.
Article de Anglais | MEDLINE | ID: mdl-39119516

RÉSUMÉ

Introduction: Biofouling poses a significant economic threat to various marine industries, leading to financial losses that can reach billions of euros annually. This study highlights the urgent need for effective alternatives to traditional antifouling agents, particularly following the global ban on organotin compounds. Material and methods: Streptomyces aculeolatus PTM-346 was isolated from sediment samples on the shores of the Madeira Archipelago, Portugal. The crude extract was fractionated using silica flash chromatography and preparative HPLC, resulting in two isolated marinone compounds: madeirone (1), a novel marinone derivative discovered in this study, and neomarinone (2). The antifouling activities of these compounds were tested against five marine bacterial species and the larvae of the mussel Mytilus galloprovincialis. Additionally, in silico and in vivo environmental toxicity evaluations of madeirone (1) and neomarinone (2) were conducted. Results: Madeirone (1) demonstrated significant antibiofilm efficacy, inhibiting Phaeobacter inhibens by up to 66%, Marinobacter hydrocarbonoclasticus by up to 60%, and Cobetia marina by up to 40%. Neomarinone (2) also exhibited substantial antibiofilm activity, with inhibition rates of up to 41% against P. inhibens, 40% against Pseudo-oceanicola batsensis, 56% against M. hydrocarbonoclasticus, 46% against C. marina, and 40% against Micrococcus luteus. The growth inhibition activity at the same concentrations of these compounds remained below 20% for the respective bacteria, highlighting their effectiveness as potent antibiofilm agents without significantly affecting bacterial viability. Additionally, both compounds showed potent effects against the settlement of Mytilus galloprovincialis larvae, with EC50 values of 1.76 µg/mL and 0.12 µg/mL for compounds (1) and (2), respectively, without impairing the viability of the targeted macrofouling species. In silico toxicity predictions and in vivo toxicity assays both support their potential for further development as antifouling agents. Conclusion: The newly discovered metabolite madeirone (1) and neomarinone (2) effectively inhibit both micro- and macrofouling. This distinct capability sets them apart from existing commercial antifouling agents and positions them as promising candidates for biofouling prevention. Consequently, these compounds represent a viable and environmentally friendly alternative for incorporation into paints, primers, varnishes, and sealants, offering significant advantages over traditional copper-based compounds.

11.
Int J Biol Macromol ; 277(Pt 3): 134433, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39098686

RÉSUMÉ

Phosphorus-containing flame retardants are prone to result in the buildup of biotoxins, while halogen flame retardants easily lead to hazardous gases. Therefore, it is crucial to develop a multifunctional flame-retardant cotton fabric without phosphorus and halogen. Herein, single-ended hydroxy-terminated polydimethylsiloxane (PDMS-ID) was synthesized through single-ended hydrosilicone oil and 1,4-butanediol, followed by the preparation of a waterborne polyurethane (RWPU) containing side chain polydimethylsiloxane through the reaction of PDMS-ID with isocyanate prepolymer. Characterization data shows that its particle size distribution is relatively dispersed while maintaining good emulsification performance. Based on this, a halogen-free and phosphorus-free multifunctional flame retardant cotton fabric (COF-BBN@RWPU) was successfully prepared through treatment with boric acid/borax/3-aminopropyltriethoxysilane solution and subsequent RWPU encapsulation. In vertical flammability test (VFT), COF-BBN@RWPU has a char length of 57 mm and a limiting oxygen index (LOI) of 42.3 % with a 11 % weight gain while pure cotton was burned through with a LOI of 18.0 %. In addition, the total heat release and total smoke release of COF-BBN@RWPU decreased by 80.0 % and 47.2 %, compared with pure cotton. Additionally, COF-BBN@RWPU can achieve a maximum contact angle of 140.1° with an oil-water separation rate of 98.4 %. This study presents an eco-friendly approach to achieving the multifunctionality of cellulose fabrics.

12.
Front Psychol ; 15: 1429454, 2024.
Article de Anglais | MEDLINE | ID: mdl-39156813

RÉSUMÉ

Drawing upon the stimulus-organism-response framework and incorporating green trust and perceptions of information usefulness, we formulated a model to explore how marketing on social media impacts consumers' intentions towards eco-friendly purchases, using eastern Chinese cities as a case study. The findings indicate that: (1) marketing on social media significantly boosts intentions for eco-friendly purchases, and green trust positively affects the perceptions of information usefulness. (2) Green trust and perceptions of information usefulness jointly act as mediators between social media marketing and eco-friendly purchase intentions, with green trust exhibiting a stronger effect (0.306 > 0.122). The multi-group analysis findings indicate significant disparities in several potential pathways as a result of moderating factors such as educational attainment, etc. The benefits are especially apparent in women, people with middle to high incomes, people with intermediate to high levels of education, and people who engage with social media for over three hours per day. Through the effect analysis between marketing on social media, green trust, and perceptions of information usefulness on consumers' intentions towards eco-friendly purchases, this study offers insights to social media platforms, businesses, and policymakers, enabling them to enhance strategies for fostering eco-friendly consumer behavior through social media channels.

13.
BMC Chem ; 18(1): 149, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39123255

RÉSUMÉ

The development of sustainable analytical methodologies that minimize hazards, waste generation, and energy consumption has become crucial. This study introduces pioneering green‒blue-white approaches for the simultaneous quantification of montelukast sodium (MLK) and fexofenadine hydrochloride (FEX) in combination formulations. The first approach employs an ultra-performance liquid chromatographic method (UPLC) with a green micellar mobile phase of 0.02 M sodium dodecyl sulfate and 10% 1-pentanol (65:35%). The method demonstrated excellent resolution, peak symmetry, and a short analysis time, with retention times of 3.53 min for MLK and 1.67 min for FEX. The MLK and FEX linearities were 1-260 and 1.2-312 µg/mL, respectively. The second approach involves complementary built-in spectroscopic techniques (second derivative, third derivative, and ratio difference methods) using water as a solvent, providing a green, simple, low-cost alternative in laboratories where expensive chromatographic devices may not be readily available. The MLK and FEX linearities were 3-50 and 3-60 µg/mL, respectively. All methods were comprehensively validated and showed satisfactory results. The proposed methods demonstrated excellent linearity (r2 ≥ 0.9990), accuracy (recovery 98.5-101.5%), and precision (RSD ≤ 2%) across wide concentration ranges. A multifaceted evaluation was conducted to assess the environmental sustainability, real-world applicability, and economic viability of the proposed methods in comparison with previously reported techniques. This comprehensive assessment leveraged several state-of-the-art tools, including NEMI, ComplexGAPI, AGREE, ESA, BAGI, and RGB12. The suggested approaches exhibited favorable quadrant profiles in the NEMI and ComplexGAPI assessments, coupled with higher AGREE scores (0.90, 0.86) than reported (0.62, 0.74, 0.75, 0.69, 0.74, 0.74, and 0.75), in addition to higher ESA score (88, 92) than reported (75, 84, 85, 79, 82, 82, and 83), collectively affirming their environmentally friendly credentials. Moreover, we embraced the innovative notions of 'blueness' and 'whiteness' assessment by harnessing the recently formulated BAGI and RGB12 algorithms. The higher BAGI score (90, 82.5) than reported (72.5, 70, 70, 67.5, 67.5, 67.5, and 72.5), confirmed the excellent real-world applicability of the proposed methods, while the notable RGB12 indices (89.8, 88.1) than reported (67.8, 72.8, 71.5, 67.1, 73.7, 70.3, and 73.2), validated their cost-effectiveness and overall sustainability, contributing to an eco-friendly future for quality control processes.

14.
Biosens Bioelectron ; 263: 116627, 2024 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-39102774

RÉSUMÉ

The complex sample matrix poses significant challenges in accurately detecting heavy metals. In view of its superior performance for the biological adsorption of heavy metals, probiotic bacteria can be explored for functional unit to eliminate matrix interference. Herein, Lactobacillus rhamnosus (LGG) demonstrates a remarkable tolerance and can adsorb up to 300 µM of Hg2+, following the Freundlich isotherm model with the correlation coefficient (R2) value of 0.9881. Subsequently, by integrating the CRISPR/Cas12a system, a sensitive and specific fluorescent biosensor, "Cas12a-MB," has been developed for Hg2+ detection. Specifically, Hg2+ adsorbed onto LGG can specifically bind to the nucleic acid probe, thereby inhibiting the binding of the probe to LGG and the subsequent activation of the CRISPR/Cas12a system. Under optimal experimental conditions, with the detection time of 90 min and the detection limit of 0.44 nM, the "Cas12a-MB" biosensor offers a novel, eco-friendly approach for Hg2+ detection, showcasing the innovative application of probiotics in biosensor.


Sujet(s)
Techniques de biocapteur , Systèmes CRISPR-Cas , Lacticaseibacillus rhamnosus , Mercure , Probiotiques , Mercure/analyse , Mercure/composition chimique , Techniques de biocapteur/méthodes , Probiotiques/composition chimique , Lacticaseibacillus rhamnosus/isolement et purification , Lacticaseibacillus rhamnosus/génétique , Adsorption , Limite de détection
15.
Mol Divers ; 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39083218

RÉSUMÉ

Synthesis of functionalized chromenyl phosphonates by the reaction among 2-hydorxybenzaldehydes, dicyanoethane, and dialkyl phosphonates that was promoted by choline hydroxide ionic liquid catalyzes the simultaneous, Knoevenagel, Pinner, and phospha-Michael reactions, under neat condition at room temperature. Important phosphorus-containing compounds can be produced at a reasonable cost because of the mild reaction conditions and the inexpensive promoter choline hydroxide. Furthermore, the desired products can be obtained without the need for any extraction or chromatography steps. An alternate technique for the simple and high-yield synthesis of functionalized chromenyl phosphonates is offered by this protocol. The synthesized compounds were studied by anti-microbial activity and docking studies. The title compounds molecular docking investigations demonstrated their efficacy as therapeutic agents against DNA Gyrase B and Aspergillus niger endoglucanase in both antibacterial and antifungal inhibition, and they identified compounds 4a, 4d, 4l, 4p, and 4q as promising candidates for microbial treatment, with binding affinities ranging from - 6.9 to - 7.4 kcal/mol.

16.
Sci Rep ; 14(1): 17548, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39080429

RÉSUMÉ

This study introduces an experimental investigation of a novel direct trend evaporative cooler based on a ground-air heat exchanger (GAHE) using porous clay vessels as an evaporation media under a variety of operational conditions, including air flow rate, inlet air temperature, temperature of inlet water, and in air humidity. The evaluation of the GAHE performance was based on the air-cooling effect, wet-bulb and dew-point efficiencies, energy efficiency ratio, water evaporation rate, specific water evaporation, specific cooling capacity, specific total cost, and CO2 emission rate. The influences of dry-bulb temperature, the incoming air's relative humidity (RH), and six air flow rates ranging from 11 to 25 L/s on the performance are investigated and discussed. Results indicated that increasing the air flow rate leads to an increase in the cooling capacity. Energy efficiency ratio (EER) reaches the highest value of about 25.5 recorded at 3:00 PM with air flow rate = 11 L/s. The lowest EER value is approximately 7.2 when the measured inlet and outlet temperatures are the closest at 7:00 PM, with a flow rate of 25 L/s. Increasing the air flow rate from 11 to 17 L/s increased the wet bulb efficiency, and the airflow rate was inversely proportional to wet-bulb efficiency. The maximum and minimum average dew-point efficiencies are 64% and 58% at 17 L/s and 22 L/s respectively. The water evaporation rate increases by 182.1%, increasing the air flow rate from 11 to 25 L/s.

17.
Polymers (Basel) ; 16(13)2024 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-39000625

RÉSUMÉ

Polymer sustainability is a pressing concern in today's world driven by the increasing demand for environmentally friendly materials. This review paper provides a comprehensive overview of eco-friendly approaches towards enhancing the sustainability of polymers. It synthesized recent research and developments in various areas such as green polymer synthesis methods, biodegradable polymers, recycling technologies, and emerging sustainable alternatives. The environmental impact of traditional polymer production processes and the importance of adopting greener alternatives were critically examined. The review delved into the advancements in polymer recycling technologies like mechanical, chemical, and biological processes aimed at minimizing plastic waste and promoting a circular economy. The innovative approaches such as upcycling, hybrid methods etc., which offer promising solutions for addressing plastic pollution and achieving long-term sustainability goals were also analyzed. Finally, the paper discussed the challenges and future prospects of eco-friendly approaches for polymer sustainability, emphasizing the need for researchers and concerted efforts from scientists across industries and academia to drive meaningful change towards a more sustainable future.

18.
Polymers (Basel) ; 16(13)2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-39000756

RÉSUMÉ

In recent years, concerns about the harmful effects of synthetic UV filters on the environment have highlighted the need for natural sun blockers. Lignin, the most abundant aromatic renewable biopolymer on Earth, is a promising candidate for next-generation sunscreen due to its inherent UV absorbance and its green, biodegradable, and biocompatible properties. Lignin's limitations, such as its dark color and poor dispersity, can be overcome by reducing particle size to the nanoscale, enhancing UV protection and formulation. In this study, 100-200 nm lignin nanoparticles (LNPs) were prepared from various biomass by-products (hardwood, softwood, and herbaceous material) using an eco-friendly anti-solvent precipitation method. Pure lignin macroparticles (LMPs) were extracted from beech, spruce, and wheat straw using an ethanol-organosolv treatment and compared with sulfur-rich kraft lignin (KL). Sunscreen lotions made from these LMPs and LNPs at various concentrations demonstrated novel UV-shielding properties based on biomass source and particle size. The results showed that transitioning from the macro- to nanoscale increased the sun protection factor (SPF) by at least 2.5 times, with the best results improving the SPF from 7.5 to 42 for wheat straw LMPs and LNPs at 5 wt%. This study underscores lignin's potential in developing high-quality green sunscreens, aligning with green chemistry principles.

19.
Prep Biochem Biotechnol ; : 1-10, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39012298

RÉSUMÉ

Walnut oil was extracted using three different eco-friendly extraction methods, solvent extraction (using ethyl acetate [EA] and ethanol [ET]), aqueous enzymatic extraction (AEE), and ultrasound-assisted enzymatic extraction (UAEE), and their lipid yield, lipid composition, physicochemical analysis, mineral composition, total phenols, antioxidant capacity, and antimicrobial activity were analyzed and compared. The AEE technique offered a greater yield (50.6%) than the other extraction methods and gave comparatively higher linoleic acid (66.12%) content. Palmitic, oleic, linoleic, linolenic, and stearic acids were the principal components that GC/MS detected in all the oil samples. UAEE produced the most polyphenols (0.49 mgGAE/g), followed by AEE (0.46 mgGAE/g), EA (0.45 mgGAE/g), and ET (0.35 mgGAE/g). The DPPH assay results were in the order of UAEE (191 µmolTE/kg) > AEE (186 µmolTE/kg) > EA (153 µmolTE/kg) > ET (130 µmolTE/kg). The FRAP assay findings showed a similar pattern: UAEE (112 molTE/kg) > AEE (102 molTE/kg) > EA (96 molTE/kg) > ET (82 molTE/kg). Results suggested that for a higher extraction yield, AEE is the better technique and UAEE is the recommended method for enhancing walnut oil antioxidant capacity. Additionally, it was found that polyphenols considerably increased the antioxidant capacity of walnut oil and are thought to be health-promoting. The results demonstrated the antibacterial effectiveness of the extracted oil against Bacillus subtilis, Bacillus licheniformis, and Staphylococcus aureus. This study provides information about low-cost and ecofriendly technologies of walnut oil extraction for food, cosmetic, and medical uses.

20.
Macromol Rapid Commun ; : e2400394, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-39073254

RÉSUMÉ

Poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT: PSS) is a promising material for organic thermoelectric (TE) applications. However, it is challenging to achieve PEDOT: PSS composites with stretchable, self-healable, and high TE performance. Furthermore, some existing self-healing TE materials employ toxic reagents, posing risks to human health and the environment. In this study, a novel intrinsically self-healable and wearable composite is developed by incorporating environmentally friendly, highly biocompatible, and biodegradable materials of polyvinyl alcohol (PVA) and citric acid (CA) into PEDOT: PSS. This results in the formation of double hydrogen bonding networks among CA, PVA, and PEDOT: PSS, inducing microstructure alignment and leading to simultaneous enhancements in both TE performance and stretchability. The resulting composites exhibit a high electrical conductivity and power factor of 259.3 ± 11.7 S·cm-1, 6.9 ± 0.4 µW·m-1·K-2, along with a tensile strain up to 68%. Furthermore, the composites display impressive self-healing ability, with 84% recovery in electrical conductivity and an 85% recovery in tensile strain. Additionally, the temperature and strain sensors based on the PEDOT: PSS/PVA/CA are prepared, which exhibit high resolution suitable for human-machine interaction and wearable devices. This work provides a reliable and robust solution for the development of environmentally friendly, self-healing and wearable TE thermoelectrics.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE