Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.274
Filtrer
1.
Article de Anglais | MEDLINE | ID: mdl-38970147

RÉSUMÉ

Interfacial electric field holds significant importance in determining both the polar molecular configuration and surface coverage during electrocatalysis. This study introduces a methodology leveraging the varying electric dipole moment of SO2 under distinct interfacial electric field strengths to enhance the selectivity of the SO2 electroreduction process. This approach presented the first attempt to utilize pulsed voltage application to the Au/PTFE membrane electrode for the control of the molecular configuration and coverage of SO2 on the electrode surface. Remarkably, the modulation of pulse duration resulted in a substantial inhibition of the hydrogen evolution reaction (HER) (FEH2 < 3%) under millisecond pulse conditions (ta = 10 ms, tc = 300 ms, Ea = -0.8 V (vs Hg/Hg2SO4), Ec = -1.8 V (vs Hg/Hg2SO4)), concomitant with a noteworthy enhancement in H2S selectivity (FEH2S > 97%). A comprehensive analysis, incorporating in situ Raman spectroscopy, electrochemical quartz crystal microbalance, COMSOL simulations, and DFT calculations, corroborated the increased selectivity of H2S products was primarily associated with the inherently large dipole moment of the SO2 molecule. The enhancement of the interfacial electric field induced by millisecond pulses was instrumental in amplifying SO2 coverage, activating SO2, facilitating the formation of the pivotal intermediate product *SOH, and effectively reducing the reaction energy barrier in the SO2 reduction process. These findings provide novel insights into the influences of ion and molecular transport dynamics, as well as the temporal intricacies of competitive pathways during the SO2 electroreduction process. Moreover, it underscores the intrinsic correlation between the electric dipole moment and surface-molecule interaction of the catalyst.

2.
Ann Work Expo Health ; 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38981129

RÉSUMÉ

This study evaluates the effectiveness of self-assessed exposure (SAE) data collection for characterization of hydrogen sulfide (H2S) risks in water and wastewater management, challenging the adequacy of traditional random or campaign sampling strategies. We compared 3 datasets derived from distinct strategies: expert data with activity metadata (A), SAE without metadata (B), and SAE with logbook metadata (C). The findings reveal that standard practices of random sampling (dataset A) fail to capture the sporadic nature of H2S exposure. Instead, SAE methods enhanced by logbook metadata and supported by reliable detection and calibration infrastructure (datasets B and C) are more effective. When assessing risk, particularly peak exposure risks, it is crucial to adopt measures that capture exposure variability, such as the range and standard deviations. This finer assessment is vital where high H2S peaks occur in confined spaces. Risk assessment should incorporate indices that account for peak exposure, utilizing variability measures like range and standard or geometric standard deviation to reflect the actual risk more accurately. For large datasets, a histogram is just as useful as statistical measures. This approach has revealed that not only wastewater workers but also water distribution network workers, can face unexpectedly high H2S levels when accessing confined underground spaces. Our research underscores the need for continuous monitoring with personal electrochemical gas detector alarm systems, particularly in environments with variable and potentially hazardous exposure levels.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124762, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38959687

RÉSUMÉ

Hydrogen sulfide (H2S) is a key factor in various biological processes such as plant grow and its response to environmental stress. Here, we develop a novel near-infrared (NIR) fluorescent probe for detecting hydrogen sulfide based on the regulatory NIR dye pKa values. After triggering the H2S substitution response, probe A with introducing the cyano moiety not only exhibits a significant near-infrared emission (Emax: 724 nm) response in physiological environments, but also shows a fast response, high selectivity, and sensitivity (LOD as 0.52 µM). In addition, probe A with low biological cytotoxicity is successfully used for imaging detection of cellular exogenous and endogenous hydrogen sulfide. More importantly, in situ imaging of probe A tracks the H2S fluctuations in the rice root system and its response to environmental stress. Hence, this work offers a new NIR fluorescence imaging monitoring tool for hydrogen sulfide in biological systems.

4.
Plant Signal Behav ; 19(1): 2375673, 2024 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-38972043

RÉSUMÉ

OBJECTIVE: This study aimed to investigate the regulatory effects of exogenous hydrogen sulfide (H2S) on seed germination, seedling growth, and reactive oxygen species (ROS) homeostasis in alfalfa under chromium (Cr) ion (III) stress. METHODS: The effects of 0-4 mM Cr(III) on the germination and seedling growth of alfalfa were first assessed. Subsequently, following seed NaHS immersion, the influence of H2S on alfalfa seed germination and seedling growth under 2 mM Cr(III) stress was investigated, and the substance contents and enzyme activities associated with ROS metabolism were quantified. RESULTS: Compared to the control group, alfalfa plant germination was delayed under 2 mM Cr(III) stress for up to 48 h (p < 0.05). At 120 h, the total seedling length was approximately halved, and the root length was roughly one-third of the control. Treatment with 0.02-0.1 mM NaHS alleviated the delay in germination and root growth inhibition caused by 2 mM Cr(III) stress, resulting in an increased ratio of root length to hypocotyl length from 0.57 to 1 above. Additionally, immersion in 0.05 mM NaHS reduced hydrogen peroxide (H2O2) and oxygen-free radicals (O2· -) levels (p < 0.05), boosted glutathione (GSH) levels (p < 0.05), and notably enhanced catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) activities (p < 0.05) compared to the 2 mM Cr(III) stress treatment group. CONCLUSION: Seed immersion in NaHS mitigated the delay in germination and inhibition of root elongation under 2 mM Cr(III) stress. This effect is likely attributed to the regulation of intracellular ROS homeostasis and redox balance through enzymatic and non-enzymatic systems; thus, providing a potential mechanism for combating oxidative stress.


Sujet(s)
Chrome , Germination , Medicago sativa , Espèces réactives de l'oxygène , Graines , Sulfures , Medicago sativa/effets des médicaments et des substances chimiques , Medicago sativa/métabolisme , Medicago sativa/croissance et développement , Graines/effets des médicaments et des substances chimiques , Graines/croissance et développement , Chrome/pharmacologie , Germination/effets des médicaments et des substances chimiques , Sulfures/pharmacologie , Espèces réactives de l'oxygène/métabolisme , Plant/effets des médicaments et des substances chimiques , Plant/métabolisme , Plant/croissance et développement , Stress physiologique/effets des médicaments et des substances chimiques , Peroxyde d'hydrogène/métabolisme , Oxygène/métabolisme , Racines de plante/effets des médicaments et des substances chimiques , Racines de plante/métabolisme , Racines de plante/croissance et développement
5.
Sci Rep ; 14(1): 15503, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38969703

RÉSUMÉ

In this study, we have examined the air quality within a revitalized, post-industrial urban area in Lódz, Poland. The use of Dron technology with mobile measurement equipment allowed for accurate assessment of air quality (particulate matter and gaseous pollutants) and factors influencing air quality (wind speed and direction) on a local scale in an area of 0.18 km2 and altitudes from 2 to 50 m. The results show that the revitalization carried out in the Lodz special economic zone area contributed to eliminate internal air pollution emitters through the use of ecological and effective heat sources. The exceedances permissible concentration values were local, and concerned mainly the higher measurement zones of the troposphere (more than 30 m above ground level). In the case of gaseous pollutants, higher wind speeds were associated with a decrease in the concentration of SO2 and an increase in H2S concentration. In both cases, the wind contributed to the occurrence of local areas of accumulation of these gaseous pollutants in the spaces between buildings or wooded areas.

6.
Acta Biomater ; 183: 221-234, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38849021

RÉSUMÉ

Antimicrobial drug development faces challenges from bacterial resistance, biofilms, and excessive inflammation. Here, we design an intelligent nanoplatform utilizing mesoporous silica nanoparticles doped with copper ions for loading copper sulfide (DM/Cu2+-CuS). The mesoporous silica doped with tetrasulfide bonds responds to the biofilm microenvironment (BME), releasing Cu2+ions, CuS along with hydrogen sulfide (H2S) gas. The release of hydrogen sulfide within 72 h reached 793.5 µM, significantly higher than that observed with conventional small molecule donors. H2S induces macrophages polarization towards the M2 phenotype, reducing inflammation and synergistically accelerating endothelial cell proliferation and migration with Cu2+ions. In addition, H2S disrupts extracellular DNA within biofilms, synergistically photothermal enhanced peroxidase-like activity of CuS to effectively eradicate biofilms. Remarkably, DM-mediated consumption of endogenous glutathione enhances the anti-biofilm activity of H2S and improves oxygen species (ROS) destruction efficiency. The combination of photothermal therapy (PTT), chemodynamic therapy (CDT), and gas treatment achieves sterilization rates of 99.3 % and 99.6 % against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively, in vitro under 808 nm laser irradiation. Additionally, in vivo experiments demonstrate a significant biosafety and antibacterial potential. In summary, the H2S donor developed in this study exhibits enhanced biocompatibility and controlled release properties. By integrating BME-responsive gas therapy with antibacterial ions, PTT and CDT, a synergistic multimodal strategy is proposed to offer new therapeutic approaches for wound healing. STATEMENT OF SIGNIFICANCE: The advanced DMOS/Cu2+-CuS (DMCC) multimodal therapeutic nanoplatform has been developed for the treatment of drug-resistant bacterial wound infections and has exhibited enhanced therapeutic efficacy through the synergistic effects of photothermal therapy, chemodynamic therapy, Cu2+ions, and H2S. The DMCC exhibited exceptional biocompatibility and could release CuS, Cu2+, and H2S in response to elevated concentrations of glutathione within the biofilm microenvironment. H2S effectively disrupted the biofilm structure. Meanwhile, peroxidase activity of CuS combined with GSH-mediated reduction of Cu2+ to Cu+ generated abundant hydroxyl radicals under acidic conditions, leading to efficient eradication of pathogenic bacteria. Furthermore, both H2S and Cu2+ could modulate M2 macrophages polarization and regulate immune microenvironment dynamics. These strategies collectively provided a novel approach for developing antibacterial nanomedical platforms.


Sujet(s)
Antibactériens , Biofilms , Cuivre , Staphylococcus aureus , Cicatrisation de plaie , Biofilms/effets des médicaments et des substances chimiques , Antibactériens/pharmacologie , Antibactériens/composition chimique , Cicatrisation de plaie/effets des médicaments et des substances chimiques , Animaux , Souris , Staphylococcus aureus/effets des médicaments et des substances chimiques , Cuivre/composition chimique , Cuivre/pharmacologie , Nanoparticules/composition chimique , Escherichia coli/effets des médicaments et des substances chimiques , Thérapie photothermique , Humains , Association thérapeutique , Sulfure d'hydrogène/pharmacologie , Sulfure d'hydrogène/composition chimique , Silice/composition chimique , Silice/pharmacologie , Microenvironnement cellulaire/effets des médicaments et des substances chimiques , Cellules RAW 264.7 , Macrophages/effets des médicaments et des substances chimiques , Macrophages/métabolisme
7.
J Fluoresc ; 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38874825

RÉSUMÉ

An iminocoumarin and tetraphenylethylene compound that exhibits aggregation-induced emission (AIE) and a significant Stokes shift (Δλ = 135 nm) in THF was created via the Knoevenagel condensation method. TPICBT could also be used as a ratiometric near-infrared fluorescent probe for the naked color identification of F- and H2S. It showed a large red shift (˃ 90 nm), good selectivity, and anti-interference. Test strip detection and cell imaging had both been accomplished using the probe. In addition, the probe could conveniently detect H2S produced during food spoilage without laboratory instruments.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124567, 2024 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-38843614

RÉSUMÉ

The positive identification of the molecular components of interstellar icy grain mantles is critically reliant upon the availability of laboratory-generated mid-infrared absorption spectra which can be compared against data acquired by ground- and space-borne telescopes. However, one molecule which remains thus far undetected in interstellar ices is H2S, despite its important roles in astrochemical and geophysical processes. Such a lack of a detection is surprising, particularly in light of its relative abundance in cometary ices which are believed to be the most pristine remnants of pre-solar interstellar ices available for study. In this paper, we present the results of an extensive and quantitative mid-infrared spectroscopic characterisation of H2S ices deposited at 20, 40, and 70 K and thermally processed to sublimation in an ultrahigh-vacuum system. We anticipate our results to be useful in confirming the detection of interstellar H2S ice using high-resolution and high-sensitivity instruments such as the James Webb Space Telescope, as well as in the identification of solid H2S in icy environments in the outer Solar System, such as comets and moons.

9.
Anal Bioanal Chem ; 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38878181

RÉSUMÉ

As a representative gas of food spoilage, the development of rapid hydrogen sulfide (H2S) analysis strategies for food safety control is in great demand. Despite traditional methods for H2S detection possessing great achievements, they are still incapable of meeting the requirement of portability and quantitative detection at the same time. Herein, a nanozyme catalysis pressure-powered sensing platform that enables visual quantification with the naked eye is proposed. In this methodology, Pt nanozyme inherits the catalase-like activity to facilitate the decomposition of H2O2 to O2, which can significantly improve the pressure in the closed container, further pushing the movement of indicator dye. Furthermore, H2S was found to effectively inhibit the catalytic activity of Pt nanozyme, indicating that the catalase-like activity of PtNPs may be regulated by varying concentrations of H2S. Therefore, by utilizing a self-designed pressure-powered microchannel device, the concentration of H2S was successfully converted into a distinct signal variation in distance. The effectiveness of the as-designed sensor in assessing the spoilage of red wine by H2S determination has been demonstrated. It exhibits a strong correlation between the change in dye distance and H2S concentration within the range of 1-250 µM, with a detection limit of 0.17 µM. This method is advantageous as it enhances the quantitative detection of H2S with the naked eye based on the portable pressure-powered sensing platform, as compared to traditional H2S biosensors. Such a pressure-powered distance variation platform would greatly broaden the application of H2S-based detection in food spoilage management.

10.
J Hazard Mater ; 476: 134954, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38936184

RÉSUMÉ

With the increasing demand for heavy metals due to the advancement of industrial activities, large proportions of heavy metals have been discharged into aquatic ecosystems, causing serious harm to human health and the environment. Existing physical and chemical methods for recovering heavy metals from wastewater encounter challenges, such as low efficiency, high processing costs, and potential secondary pollution. In this study, we developed a novel approach by engineering the endogenous sulphur metabolic pathway of Yarrowia lipolytica, providing it with the ability to produce approximately 550 ppm of sulphide. Subsequently, sulphide-producing Y. lipolytica was used for the first time in heavy metal remediation. The engineered strain exhibited a high capacity to remove various heavy metals, especially achieving over 90 % for cadmium (Cd), copper (Cu) and lead (Pb). This capacity was consistent when applied to both synthetic and actual wastewater samples. Microscopic analyses revealed that sulphide-mediated biological precipitation of metal sulphides on the cell surface is responsible for their removal. Our findings demonstrate that sulphide-producing yeasts are a robust and effective bioremediation strategy for heavy metals, showing great potential for future heavy metal pollution remediation practices.

11.
J Hazard Mater ; 476: 134932, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38936189

RÉSUMÉ

Bismuth sulfide (Bi2S3) possesses unique properties that make it a promising material for effective hydrogen sulfide (H2S) detection at room temperature. However, when exposed to light, the oxygen anions (O2-(ads)) adsorbed on the surface of Bi2S3 can react with photoinduced holes, ultimately reducing the ability to respond to H2S. In this study, Bi2S3/Sb2S3 heterostructures were synthesized, producing photoinduced oxygen anions (O2-(hv)) under visible light conditions, resulting in enhanced H2S sensing capability. The Bi2S3/Sb2S3 heterostructure sensor exhibits a two-fold increase in sensing response to 500 ppb H2S under in door light conditions relative to its performance in darkness. Additionally, the sensing response of the Bi2S3/Sb2S3 sensor (Ra/Rg= 23.3) was approximately five times higher than pure Bi2S3. The improved sensing performance of the Bi2S3/Sb2S3 heterostructures is attributable to the synergistic influence of the heterostructure configuration and light modulation, which enhances the H2S sensing performance by facilitating rapid charge transfer and increasing active sites (O2-(hv)) when exposed to visible light.

12.
Chemistry ; : e202402019, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38923040

RÉSUMÉ

Photoacoustic (PA) tomography is an emerging biomedical imaging technology for precision cancer medicine. Conventional small-molecule PA probes usually exhibit a single PA signal and poor tumor targeting that lack the imaging reliability. Here, we introduce a series of cyanine/hemicyanine interconversion dyes (denoted Cy-HCy) for PA/fluorescent dual-mode probe development that features optimized ratiometric PA imaging and tunable tumor-targeting ability for precise diagnosis and resection of colorectal cancer (CRC). Importantly, Cy-HCy can be presented in cyanine (inherent tumor targeting and long NIR PA wavelength) and hemicyanine (poor tumor targeting and short NIR PA wavelength) by fine-tuning torsion angle and the ingenious transformation between cyanine and hemicyanine through regulation optically tunable group endows the NIR ratiometric PA and tunable tumor-targeting properties. To demonstrate the applicability of Cy-HCy dyes, we designed the first small-molecule tumor-targeting and NIR ratiometric PA probe Cy-HCy-H2S for precise CRC liver metastasis diagnosis, activated by H2S (a CRC biomarker). Using this probe, we not only visualized the subcutaneous tumor and liver metastatic cancers in CRC mouse models but also realized PA and fluorescence image-guided tumor excision. We expect that Cy-HCy will be generalized for creating a wide variety of inherently tumor-targeting NIR ratiometric PA probes in oncological research and practice.

13.
Chemistry ; : e202401733, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38934891

RÉSUMÉ

In several biological processes, H2S is known to function as an endogenous gaseous agent. It is very necessary to monitor H2S and relevant physiological processes in vivo. Herein, a new type of fluorophore with a reliable leaving group allows for excited-state intramolecular transfer characteristics (ESIPT), inspired by mycophenolic acid. A morpholine ring was connected at the maleimide position to target the lysosome. Subsequently, the dinitrophenyl group known for a photoinduced electron transfer (PET) effect, was connected to allow for an effective "turn-on" probe Lyso-H2S. Lyso-H2S demonstrated strong selectivity towards H2S, large Stokes shift (111 nm), and an incredibly low detection limit (41.8 nM). The imaging of endogenous and exogenous H2S in living cells (A549 cell line) was successfully achieved because of the specificity and ultra-low toxicity (100 % cell viability at 50 µM concentration of Lyso-H2S.) Additionally, Lyso-H2S was also employed to visualize the activity of H2S in the gallbladder and intestine in a living zebrafish model. This is the first report of a fluorescent probe to track H2S sensing in specific organ systems to our knowledge.

14.
Polymers (Basel) ; 16(12)2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38932098

RÉSUMÉ

Increasing concern over the safety of consumable products, particularly aquatic products, due to freshness issues, has become a pressing issue. Therefore, ensuring the quality and safety of aquatic products is paramount. To address this, a dual-mode colorimetric-fluorescence sensor utilizing Ce-MOF as a mimic peroxidase to detect H2S was developed. Ce-MOF was prepared by a conventional solvothermal synthesis method. Ce-MOF catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by hydrogen peroxide (H2O2) to produce blue oxidized TMB (oxTMB). When dissolved, hydrogen sulfide (H2S) was present in the solution, and it inhibited the catalytic effect of Ce-MOF and caused the color of the solution to fade from blue to colorless. This change provided an intuitive indication for the detection of H2S. Through steady-state dynamic analysis, the working mechanism of this sensor was elucidated. The sensor exhibited pronounced color changes from blue to colorless, accompanied by a shift in fluorescence from none to light blue. Additionally, UV-vis absorption demonstrated a linear correlation with the H2S concentration, ranging from 200 to 2300 µM, with high sensitivity (limit of detection, LOD = 0.262 µM). Fluorescence intensity also showed a linear correlation, ranging from 16 to 320 µM, with high selectivity and sensitivity (LOD = 0.156 µM). These results underscore the sensor's effectiveness in detecting H2S. Furthermore, the sensor enhanced the accuracy of H2S detection and fulfilled the requirements for assessing food freshness and safety.

15.
ACS Sens ; 9(6): 3433-3443, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38872232

RÉSUMÉ

The development of a portable, low-cost sensor capable of accurately detecting H2S gas in exhaled human breath at room temperature is highly anticipated in the fields of human health assessment and food spoilage evaluation. However, achieving outstanding gas sensing performance and applicability for flexible room-temperature operation with parts per billion H2S gas sensors still poses technical challenges. To address this issue, this study involves the in situ growth of MoS2 nanosheets on the surface of In2O3 fibers to construct a p-n heterojunction. The In2O3@MoS2-2 sensor exhibits a high response of 460.61 to 50 ppm of H2S gas at room temperature, which is 19.5 times higher than that of the pure In2O3 sensor and 322.1 times higher than that of pure MoS2. The In2O3@MoS2-2 also demonstrates a minimum detection limit of 3 ppb and maintains a stable response to H2S gas even after being bent 50 times at a 60° angle. These exceptional gas sensing properties are attributed to the increase in oxygen vacancies and chemisorbed oxygen on In2O3@MoS2-2 nanofibers as well as the formation of the p-n heterojunction, which modulates the heterojunction barrier. Furthermore, in this study, we successfully applied the In2O3@MoS2-2 sensor for oral disease and detection of food spoilage conditions, thereby providing new design insights for the development of portable exhaled gas sensors and gas sensors for evaluating food spoilage conditions at room temperature.


Sujet(s)
Tests d'analyse de l'haleine , Sulfure d'hydrogène , Limite de détection , Molybdène , Température , Humains , Sulfure d'hydrogène/analyse , Tests d'analyse de l'haleine/méthodes , Tests d'analyse de l'haleine/instrumentation , Molybdène/composition chimique , Disulfures/composition chimique , Indium/composition chimique , Sulfures/composition chimique
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124672, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38905899

RÉSUMÉ

Nitroxyl (HNO), a reactive nitrogen species (RNS), is essential for plant growth. However, the action of HNO in plants has been difficult to understand due to the lack of highly sensitive and real-time in-situ monitoring tools. Herein, we presented a near-infrared fluorescent probe, DCI-HNO, based on dicyanoisophorone fluorophore, for real-time mapping HNO in plants. The introduction of a phosphine moiety as a specific HNO recognition unit can inhibit the intramolecular charge transfer (ICT) of probe DCI-HNO. However, in the presence of HNO, the ICT process occurred, leading to the emission at 665 nm. Probe DCI-HNO exhibited high sensitivity (97 nM), rapid response time (8 min), large Stokes shift (135 nm) for detection of HNO in plants. The novel developed probe has successfully imaged endogenous HNO produced during NO/H2S cross-talk in plant tissues. Additionally, the up-regulated in HNO levels during tobacco aging and in response to stress has been confirmed. Therefore, probe DCI-HNO has provided a reliable method for monitoring the NO/H2S cross-talk and revealing the role of HNO in plants.

17.
Front Endocrinol (Lausanne) ; 15: 1377090, 2024.
Article de Anglais | MEDLINE | ID: mdl-38883604

RÉSUMÉ

As an important gas signaling molecule, hydrogen sulfide (H2S) affects multiple organ systems, including the nervous, cardiovascular, digestive, and genitourinary, reproductive systems. In particular, H2S not only regulates female reproductive function but also holds great promise in the treatment of male reproductive diseases and disorders, such as erectile dysfunction, prostate cancer, varicocele, and infertility. In this review, we summarize the relationship between H2S and male reproductive organs, including the penis, testis, prostate, vas deferens, and epididymis. As lower urinary tract symptoms have a significant impact on penile erection disorders, we also address the potential ameliorative effects of H2S in erectile dysfunction resulting from bladder disease. Additionally, we discuss the regulatory role of H2S in cavernous smooth muscle relaxation, which involves the NO/cGMP pathway, the RhoA/Rho-kinase pathway, and K+ channel activation. Recently, various compounds that can alleviate erectile dysfunction have been reported to be at least partly dependent on H2S. Therefore, understanding the role of H2S in the male reproductive system may help develop novel strategies for the clinical treatment of male reproductive system diseases.


Sujet(s)
Système génital de l'homme , Sulfure d'hydrogène , Sulfure d'hydrogène/métabolisme , Humains , Mâle , Système génital de l'homme/métabolisme , Animaux , Dysfonctionnement érectile/traitement médicamenteux , Dysfonctionnement érectile/métabolisme , Transduction du signal
18.
Life Sci ; 351: 122819, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-38857651

RÉSUMÉ

AIMS: Our aim was to evaluate whether the hydrogen sulfide (H2S) donor, 4-carboxyphenyl-isothiocyanate (4-CPI), exerts cardioprotective effect in the two kidney- one clip (2K-1C) rats through oxidative stress and MMP-2 activity attenuation and compare it with the classical H2S donor, Sodium Hydrosulfide (NaHS). MATERIALS AND METHODS: Renovascular hypertension (two kidneys-one clip; 2K-1C) was surgically induced in male Wistar rats. After two weeks, normotensive (2K) and hypertensive rats were intraperitoneally treated with vehicle (0.6 % dimethyl sulfoxide), NaHS (0.24 mg/Kg/day) or with 4-CPI (0.24 mg/Kg/day), for more 4 weeks. Systolic blood pressure (SBP) was evaluated weekly by tail-cuff plethysmography. Heart function was assessed by using the Millar catheter. Cardiac hypertrophy and fibrosis were evaluated by hematoxylin and eosin, and Picrosirius Red staining, respectively. The H2S was analyzed using WSP-1 fluorimetry and the cardiac oxidative stress was measured by lucigenin chemiluminescence and Amplex Red. MMP-2 activity was measured by in-gel gelatin or in situ zymography assays. Nox1, gp91phox, MMP-2 and the phospho-p65 subunit (Serine 279) nuclear factor kappa B (NF-κB) levels were evaluated by Western blotting. KEY FINDINGS: 4-CPI reduced blood pressure in hypertensive rats, decreased cardiac remodeling and promoted cardioprotection through the enhancement of cardiac H2S levels. An attenuation of oxidative stress, with inactivation of the p65-NF-κB/MMP-2 axis was similarly observed after NaHS or 4-CPI treatment in 2K-1C hypertension. SIGNIFICANCE: H2S is a mediator that promotes cardioprotective effects and decreases blood pressure, and 4-CPI seems to be a good candidate to reverse the maladaptive remodeling and cardiac dysfunction in renovascular hypertension.


Sujet(s)
Pression sanguine , Sulfure d'hydrogène , Matrix metalloproteinase 2 , Facteur de transcription NF-kappa B , Stress oxydatif , Animaux , Mâle , Rats , Pression sanguine/effets des médicaments et des substances chimiques , Cardiotoniques/pharmacologie , Sulfure d'hydrogène/pharmacologie , Sulfure d'hydrogène/métabolisme , Hypertension artérielle/traitement médicamenteux , Hypertension artérielle/métabolisme , Hypertension rénovasculaire/traitement médicamenteux , Hypertension rénovasculaire/métabolisme , Hypertension rénovasculaire/physiopathologie , Isothiocyanates/pharmacologie , Matrix metalloproteinase 2/métabolisme , Facteur de transcription NF-kappa B/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Rat Wistar , Sulfures/pharmacologie
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124640, 2024 Nov 05.
Article de Anglais | MEDLINE | ID: mdl-38906062

RÉSUMÉ

Hydrogen sulfide (H2S) is a pungent gas that is one of the key mediators of signal transduction in biological systems, and its presence is related to the freshness of some protein foods. Using phenothiazine derivatives as fluorophores and 2, 4-dinitrobenzene sulfonate (DNBS) fragments as reaction groups, a near-infrared (NIR) probe WX-HS for H2S identification was designed. With the addition of H2S, WX-HS appeared a strong fluorescence signal at 660 nm with short reaction time (90 s) and high sensitivity, and fluorescence state change from non-fluorescent to orange-red. In addition, WX-HS could effectively detect H2S produced during food oxidation. Based on its low cytotoxicity, the WX-HS probe further enabled the detection and imaging of H2S in A549 cells.


Sujet(s)
Colorants fluorescents , Sulfure d'hydrogène , Sulfure d'hydrogène/analyse , Colorants fluorescents/composition chimique , Colorants fluorescents/synthèse chimique , Humains , Cellules A549 , Analyse d'aliment/méthodes , Spectrométrie de fluorescence , Spectroscopie proche infrarouge/méthodes
20.
Biomolecules ; 14(6)2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38927037

RÉSUMÉ

Ulcerative colitis (UC) is an autoimmune disease in which the immune system attacks the colon, leading to ulcer development, loss of colon function, and bloody diarrhea. The human gut ecosystem consists of almost 2000 different species of bacteria, forming a bioreactor fueled by dietary micronutrients to produce bioreactive compounds, which are absorbed by our body and signal to distant organs. Studies have shown that the Western diet, with fewer short-chain fatty acids (SCFAs), can alter the gut microbiome composition and cause the host's epigenetic reprogramming. Additionally, overproduction of H2S from the gut microbiome due to changes in diet patterns can further activate pro-inflammatory signaling pathways in UC. This review discusses how the Western diet affects the microbiome's function and alters the host's physiological homeostasis and susceptibility to UC. This article also covers the epidemiology, prognosis, pathophysiology, and current treatment strategies for UC, and how they are linked to colorectal cancer.


Sujet(s)
Rectocolite hémorragique , Tumeurs colorectales , Régime occidental , Épigenèse génétique , Microbiome gastro-intestinal , Humains , Rectocolite hémorragique/microbiologie , Rectocolite hémorragique/métabolisme , Rectocolite hémorragique/génétique , Tumeurs colorectales/microbiologie , Tumeurs colorectales/métabolisme , Régime occidental/effets indésirables , Animaux
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...