Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 41
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Heliyon ; 10(16): e35986, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39247360

RÉSUMÉ

Bacterial cellulose (BC) is a biopolymer has found extensive applications across different fields due to its nanostructure and biomaterial performance. This study focused on optimizing yield of BC produced by Komagataeibacter xylinus CH1, isolated from kombucha SCOBY. The study aimed to use Nabat industry waste (NIW) as a cost-effective alternative carbon source for submerged fermentation. To optimize the fermentation criteria, the central composite design was used with the inoculation amount (1.5-4.5 % VV-1), NIW (0-1%), and fermentation time (3-7 days) as independent variables. The impressive results indicated the yield was enhanced up to 45.543 gL-1 at 3.013 % VV-1 of inoculation, 0.516 % NIW, and 7 days of stirred fermentation. SEM, XRD, FTIR, and TGA were applied to evaluate the characteristics of freeze-dried BC, such as the three-dimensional, porous structure, crystalline peaks, amorphous haloes, and thermal stability. The physicochemical properties of BC including high moisture content (93.022 ± 0.472 %), water absorption rate (569.473 ± 3.739 %), water-holding capacity (1333.016 ± 3.680 %), porosity (166.247 ± 2.055 %), and low water activity (0.296 ± 0.030 %) were achieved. Rheological properties of BC suspensions showed that G' dominated over G″, with tan δ values lower than 1. These characteristics indicate NIW and stirred fermentation conditions are a promising method for producing BC in high yield.

2.
Sci Rep ; 14(1): 20494, 2024 09 03.
Article de Anglais | MEDLINE | ID: mdl-39227724

RÉSUMÉ

Bacterial cellulose synthesis from defined media and waste products has attracted increasing interest in the circular economy context for sustainable productions. In this study, a glucose dehydrogenase-deficient Δgdh K2G30 strain of Komagataeibacter xylinus was obtained from the parental wild type through homologous recombination. Both strains were grown in defined substrates and cheese whey as an agri-food waste to assess the effect of gene silencing on bacterial cellulose synthesis and carbon source metabolism. Wild type K2G30 boasted higher bacterial cellulose yields when grown in ethanol-based medium and cheese whey, although showing an overall higher D-gluconic acid synthesis. Conversely, the mutant Δgdh strain preferred D-fructose, D-mannitol, and glycerol to boost bacterial cellulose production, while displaying higher substrate consumption rates and a lower D-gluconic acid synthesis. This study provides an in-depth investigation of two K. xylinus strains, unravelling their suitability for scale-up BC production.


Sujet(s)
Carbone , Cellulose , Cellulose/biosynthèse , Cellulose/métabolisme , Carbone/métabolisme , Acetobacteraceae/métabolisme , Acetobacteraceae/génétique , Gluconates/métabolisme , Glycérol/métabolisme , Mannitol/métabolisme
3.
Carbohydr Polym ; 343: 122459, 2024 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-39174096

RÉSUMÉ

Bacterial cellulose (BC) is a renewable biomaterial that has attracted significant attention due to its excellent properties and wide applications. Komagataeibacter xylinus CGMCC 2955 is an important BC-producing strain. It primarily produces BC from glucose while simultaneously generating gluconic acid as a by-product, which acidifies the medium and inhibits BC synthesis. To enhance glucose uptake and BC synthesis, we reconstructed the phosphoenolpyruvate-dependent glucose phosphotransferase system (PTSGlc) and strengthened glycolysis by introducing heterologous genes, resulting in a recombinant strain (GX08PTS03; Δgcd::ptsHIcrrE. coli::ptsGE. coli::pfkAE. coli). Strain GX08PTS03 efficiently utilized glucose for BC production without accumulating gluconic acid. Subsequently, the fermentation process was systematically optimized. Under optimal conditions, strain GX08PTS03 produced 7.74 g/L of BC after 6 days of static fermentation, with a BC yield of 0.39 g/g glucose, which were 87.41 % and 77.27 % higher than those of the wild-type strain, respectively. The BC produced by strain GX08PTS03 exhibited a longer fiber diameter along with a lower porosity, significantly higher solid content, crystallinity, tensile strength, and Young's modulus. This study is novel in reporting that the engineered PTSGlc-based glucose metabolism could effectively enhance the production and properties of BC, providing a future outlook for the biopolymer industry.


Sujet(s)
Acetobacteraceae , Cellulose , Glucose , Cellulose/biosynthèse , Cellulose/métabolisme , Cellulose/composition chimique , Glucose/métabolisme , Acetobacteraceae/métabolisme , Acetobacteraceae/génétique , Phosphoenolpyruvate-fructose phosphotransferase/génétique , Phosphoenolpyruvate-fructose phosphotransferase/métabolisme , Fermentation , Génie métabolique/méthodes , Gluconacetobacter xylinus/métabolisme , Gluconacetobacter xylinus/génétique , Résistance à la traction
4.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1856-1867, 2024 Jun 25.
Article de Chinois | MEDLINE | ID: mdl-38914496

RÉSUMÉ

Bacterial cellulose (BC) is a biopolymer synthesized by bacteria, which possess excellent characteristics such as high water holding capacity, high crystallinity, and high purity. It is widely used in food, medical, cosmetics, and functional films. Komagataeibacter xylinus is a model strain used in BC synthesis research. In bacteria, motility-related genes are associated with BC synthesis, whereas in Komagataeibacter xylinus CGMCC 2955, the functions of motility-related genes and their effects on BC synthesis are not known. To address this gap, we used the λ Red recombinant system to individually knock out motA, motB, and mot2A respectively, and constructed the knockout strains K. x-ΔmotA, K. x-ΔmotB, and K. x-Δmot2A. Additionally, both motA and motB were disrupted to construct the K. x-ΔmotAB mutant. The results demonstrated that knockout strain K. x-ΔmotAB exhibited the highest BC yield, reaching (5.05±0.26) g/L, which represented an increase of approximately 24% compared to wild-type strains. Furthermore, the BC synthesized by this strain exhibited the lowest porosity, 54.35%, and displayed superior mechanical properties with a Young's modulus of up to 5.21 GPa. As knocking out motA and motB genes in K. xylinus CGMCC 2955 did not reduce BC yield; instead, it promoted BC synthesis. Consequently, this research further deepened our understanding of the relationship between motility and BC synthesis in acetic acid bacteria. The knockouts of motA and motB genes resulted in reduced BC porosity and improved mechanical properties, provides a reference for BC synthesis and membrane structure regulation modification.


Sujet(s)
Acetobacteraceae , Cellulose , Cellulose/biosynthèse , Cellulose/métabolisme , Acetobacteraceae/génétique , Acetobacteraceae/métabolisme , Techniques de knock-out de gènes , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Gluconacetobacter xylinus/génétique , Gluconacetobacter xylinus/métabolisme , Gènes bactériens
5.
Int J Mol Sci ; 24(18)2023 Sep 21.
Article de Anglais | MEDLINE | ID: mdl-37762703

RÉSUMÉ

Biodegradable bacterial nanocellulose (BNC) is a highly in-demand but expensive polymer, and the reduction of its production cost is an important task. The present study aimed to biosynthesize BNC on biologically high-quality hydrolyzate media prepared from miscanthus and oat hulls, and to explore the properties of the resultant BNC depending on the microbial producer used. In this study, three microbial producers were utilized for the biosynthesis of BNC: individual strains Komagataeibacter xylinus B-12429 and Komagataeibacter xylinus B-12431, and symbiotic Medusomyces gisevii Sa-12. The use of symbiotic Medusomyces gisevii Sa-12 was found to have technological benefits: nutrient media require no mineral salts or growth factors, and pasteurization is sufficient for the nutrient medium instead of sterilization. The yield of BNCs produced by the symbiotic culture turned out to be 44-65% higher than that for the individual strains. The physicochemical properties of BNC, such as nanofibril width, degree of polymerization, elastic modulus, Iα allomorph content and crystallinity index, are most notably dependent on the microbial producer type rather than the nutrient medium composition. This is the first study in which we investigated the biosynthesis of BNC on hydrolyzate media prepared from miscanthus and oat hulls under the same conditions but using different microbial producers, and showed that it is advisable to use the symbiotic culture. The choice of a microbial producer is grounded on the yield, production process simplification and properties. The BNC production from technical raw materials would cover considerable demands of BNC for technical purposes without competing with food resources.

6.
N Biotechnol ; 76: 72-81, 2023 Sep 25.
Article de Anglais | MEDLINE | ID: mdl-37182820

RÉSUMÉ

The development of bacterial cellulose (BC) industrialization has been seriously affected by its production. Mannose/mannan is an essential component in many biomass resources, but Komagataeibacter xylinus uses mannose in an ineffective way, resulting in waste. The aim of this study was to construct recombinant bacteria to use mannose-rich biomass efficiently as an alternative and inexpensive carbon source in place of the more commonly used glucose. This strategy aimed at modification of the mannose catabolic pathway via genetic engineering of K. xylinus ATCC 23770 strain through expression of mannose kinase and phosphomannose isomerase genes from the Escherichia coli K-12 strain. Recombinant and wild-type strains were cultured under conditions of glucose and mannose respectively as sole carbon sources. The fermentation process and physicochemical properties of BC were investigated in detail in the strains cultured in mannose media. The comparison showed that with mannose as the sole carbon source, the BC yield from the recombinant strain increased by 84%, and its tensile strength and elongation were increased 1.7 fold, while Young's modulus was increased 1.3 fold. The results demonstrated a successful improvement in BC yield and properties on mannose-based medium compared with the wild-type strain. Thus, the strategy of modifying the mannose catabolic pathway of K. xylinus is feasible and has significant potential in reducing the production costs for industrial production of BC from mannose-rich biomass.


Sujet(s)
Escherichia coli K12 , Gluconacetobacter xylinus , Mannose/métabolisme , Cellulose/composition chimique , Escherichia coli K12/métabolisme , Gluconacetobacter xylinus/génétique , Gluconacetobacter xylinus/métabolisme , Glucose/métabolisme , Carbone/métabolisme
7.
J Gen Appl Microbiol ; 68(5): 225-231, 2023 Jan 24.
Article de Anglais | MEDLINE | ID: mdl-35691844

RÉSUMÉ

The present study investigated the efficacy of bacterial cellulose production by K. xylinus TISTR 1011 and K. nataicola TISTR 975 using yam bean juice as a nutrient source, and the physicochemical and sensory characteristics of bacterial cellulose were examined. Bacterial cellulose content, production yield, and production rate were significantly higher when K. xylinus TISTR 1011 rather than K. nataicola TISTR 975 was used as the bacterial strain. The analysis of physicochemical characteristics revealed that bacterial cellulose produced by K. xylinus TISTR 1011 using yam bean juice medium had higher scores for CIE L*, a*, and b* values, wet weight, moisture content, firmness, and gel strength than bacterial cellulose produced by K. nataicola TISTR 975. In contrast, sensory evaluation showed that the acceptability scores and preference of all attributes of bacterial cellulose produced by K. nataicola TISTR 975 using yam bean juice medium were higher than those of bacterial cellulose produced by K. xylinus TISTR 1011. The results of this study indicate that yam bean juice from yam bean tubers, an alternative raw material agricultural product, can be used as a nutrient source for producing bacterial cellulose or nata by Komagataeibacter strains.


Sujet(s)
Acetobacteraceae , Pachyrhizus , Cellulose , Nutriments
8.
Appl Microbiol Biotechnol ; 106(21): 7099-7112, 2022 Nov.
Article de Anglais | MEDLINE | ID: mdl-36184690

RÉSUMÉ

Komagataeibacter xylinus is an aerobic strain that produces bacterial cellulose (BC). Oxygen levels play a critical role in regulating BC synthesis in K. xylinus, and an increase in oxygen tension generally means a decrease in BC production. Fumarate nitrate reduction protein (FNR) and aerobic respiration control protein A (ArcA) are hypoxia-inducible factors, which can signal whether oxygen is present in the environment. In this study, FNR and ArcA were used to enhance the efficiency of oxygen signaling in K. xylinus, and globally regulate the transcription of the genome to cope with hypoxic conditions, with the goal of improving growth and BC production. FNR and ArcA were individually overexpressed in K. xylinus, and the engineered strains were cultivated under different oxygen tensions to explore how their overexpression affects cellular metabolism and regulation. Although FNR overexpression did not improve BC production, ArcA overexpression increased BC production by 24.0% and 37.5% as compared to the control under oxygen tensions of 15% and 40%, respectively. Transcriptome analysis showed that FNR and ArcA overexpression changed the way K. xylinus coped with oxygen tension changes, and that both FNR and ArcA overexpression enhanced the BC synthesis pathway. The results of this study provide a new perspective on the effect of oxygen signaling on growth and BC production in K. xylinus and suggest a promising strategy for enhancing BC production through metabolic engineering. KEY POINTS: • K. xylinus BC production increased after overexpression of ArcA • The young's modulus is enhanced by the ArcA overexpression • ArcA and FNR overexpression changed how cells coped with changes in oxygen tension.


Sujet(s)
Cellulose , Gluconacetobacter xylinus , Humains , Cellulose/métabolisme , Nitrates/métabolisme , Gluconacetobacter xylinus/génétique , Gluconacetobacter xylinus/métabolisme , Oxygène/métabolisme , Fumarates/métabolisme , Hypoxie
9.
Front Microbiol ; 13: 994097, 2022.
Article de Anglais | MEDLINE | ID: mdl-36312960

RÉSUMÉ

Among naturally produced polymers, bacterial cellulose is receiving enormous attention due to remarkable properties, making it suitable for a wide range of industrial applications. However, the low yield, the instability of microbial strains and the limited knowledge of the mechanisms regulating the metabolism of producer strains, limit the large-scale production of bacterial cellulose. In this study, Komagataeibacter xylinus K2G30 was adapted in mannitol based medium, a carbon source that is also available in agri-food wastes. K. xylinus K2G30 was continuously cultured by replacing glucose with mannitol (2% w/v) for 210 days. After a starting lag-phase, in which no changes were observed in the utilization of mannitol and in bacterial cellulose production (cycles 1-25), a constant improvement of the phenotypic performances was observed from cycle 26 to cycle 30, accompanied by an increase in mannitol consumption. At cycle 30, the end-point of the experiment, bacterial cellulose yield increased by 38% in comparision compared to cycle 1. Furthermore, considering the mannitol metabolic pathway, D-fructose is an intermediate in the bioconversion of mannitol to glucose. Based on this consideration, K. xylinus K2G30 was tested in fructose-based medium, obtaining the same trend of bacterial cellulose production observed in mannitol medium. The adaptive laboratory evolution approach used in this study was suitable for the phenotypic improvement of K. xylinus K2G30 in bacterial cellulose production. Metabolic versatility of the strain was confirmed by the increase in bacterial cellulose production from D-fructose-based medium. Moreover, the adaptation on mannitol did not occur at the expense of glucose, confirming the versatility of K2G30 in producing bacterial cellulose from different carbon sources. Results of this study contribute to the knowledge for designing new strategies, as an alternative to the genetic engineering approach, for bacterial cellulose production.

10.
3 Biotech ; 12(9): 207, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-35935541

RÉSUMÉ

Enzymatic hydrolysis of the golden oyster mushroom (Pleurotus citrinopileatus) generated a new bacterial cellulose (BC). The sugar syrup obtained from the hydrolysis of mushroom powder by commercial enzymes gave maximum total soluble solids (TSS) content at 8.83 ± 0.29°Brix, while 8.82 ± 0.06 mg GAE/g substrate of total phenolic content (TPC) was obtained when using initial substrate and enzyme concentrations at 125 g/L and 5.0%, respectively. Glutamic acid, aspartic acid, alanine and valine were determined as the main amino acids found in P. citrinopileatus hydrolysis at 524.74 ± 0.03, 247.09 ± 0.04, 176.82 ± 0.07 and 174.57 ± 0.01 mg/100 g sample, respectively. Thin-layer chromatography revealed that the obtained sugar syrup was glucose. The hydrolyzed mushroom fermented with Komagataeibacter xylinus AGR 60 at 30 ± 2 °C for 9 days produced optimal conditions at 4.0°Brix of the initial mushroom syrup and 12.0% (v/v) of the starter culture. Maximum BC thickness was 0.88 ± 0.03 cm with 7.90 ± 0.07 g dry weight, equivalent to 39.50 ± 0.35 g/L and 4.39 ± 0.04 g/L/day for BC production (P) and BC production rate (R p), respectively. The obtained BC was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, small-angle X-ray scattering and wide-angle X-ray diffraction. These showed the structure and functional properties as a natural source of fiber from the fermentation of a novel substrate.

11.
Polymers (Basel) ; 14(15)2022 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-35956737

RÉSUMÉ

Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for "grafting" of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality.

12.
Front Bioeng Biotechnol ; 10: 876822, 2022.
Article de Anglais | MEDLINE | ID: mdl-35547175

RÉSUMÉ

The textile industry is in crisis and under pressure to minimize the environmental impact on its practices. Bacterial cellulose (BC), a naturally occurring form of cellulose, displays properties superior to those of its cotton plant counterpart, such as enhanced purity, crystallinity, tensile strength, and water retention and is thus suitable for an array of textile applications. It is synthesized from a variety of microorganisms but is produced in most abundance by Komagataeibacter xylinus. K. xylinus is available as a type strain culture and exists in the microbial consortium commonly known as Kombucha. Whilst existing literature studies have described the effectiveness of both K. xylinus isolates and Kombucha in the production of BC, this study investigated the change in microbial communities across several generations of sub-culturing and the impact of these communities on BC yield. Using Kombucha and the single isolate strain K. xylinus as inocula in Hestrin and Schramm liquid growth media, BC pellicles were propagated. The resulting pellicles and residual liquid media were used to further inoculate fresh liquid media, and this process was repeated over three generations. For each generation, the thickness of the pellicles and their appearance under SEM were recorded. 16S rRNA sequencing was conducted on both pellicles and liquid media samples to assess changes in communities. The results indicated that the genus Komagataeibacter was the most abundant species in all samples. Cultures seeded with Kombucha yielded thicker cellulose pellicles than those seeded with K. xylinus, but all the pellicles had similar nanofibrillar structures, with a mix of liquid and pellicle inocula producing the best yield of BC after three generations of sub-culturing. Therefore, Kombucha starter cultures produce BC pellicles which are more reproducible across generations than those created from pure isolates of K. xylinus and could provide a reproducible sustainable model for generating textile materials.

13.
Carbohydr Polym ; 260: 117807, 2021 May 15.
Article de Anglais | MEDLINE | ID: mdl-33712153

RÉSUMÉ

To date, the production of bacterial nanocellulose (BNC) by standard methods has been well known, while the use of low-cost feedstock as an alternative medium still needs to be explored for BNC commercialization. This study explores the prospect for the use of the different aqueous extract of fruit peel wastes (aE-FPW) as a nutrient and carbon source for the production of BNC. Herein, this objective was accomplished by the use of a novel, high- yielding strain, isolated from rotten apple and further identified as Komagataeibacter xylinus IITR DKH20 using 16 s rRNA sequencing analysis. The physicochemical properties of BNC matrix collected from the various aE-FPW mediums were similar or advanced to those collected with the HS medium. Statistical optimization of BNC based on Central Composite Design was performed to study the effect of significant parameters and the results demonstrated that the BNC yield (11.44 g L-1) was increased by 4.5 fold after optimization.


Sujet(s)
Acetobacteraceae/métabolisme , Cellulose/métabolisme , Nanostructures/composition chimique , Acetobacteraceae/classification , Acetobacteraceae/génétique , Acetobacteraceae/isolement et purification , Cellulose/composition chimique , Cellulose/isolement et purification , Fruit/microbiologie , Malus/microbiologie , Microscopie à force atomique , Phylogenèse , ARN ribosomique 16S/composition chimique , ARN ribosomique 16S/isolement et purification , ARN ribosomique 16S/métabolisme , Spectroscopie infrarouge à transformée de Fourier
14.
Environ Sci Pollut Res Int ; 28(34): 46423-46430, 2021 Sep.
Article de Anglais | MEDLINE | ID: mdl-32335838

RÉSUMÉ

In the present study, fermentative production of bacterial nanocellulose (BNC) by using Komagataeibacter xylinus strain SGP8 and characterization of nanocellulose is presented. The bacterium was able to produce 1.82 g L-1 of cellulose in the form of pellicle in standard Hestrin-Schramn (HS) medium. The morpho-structural characterization of the BNC using scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies, respectively revealed nanofibrillar structure and high crystallinity index (~86%). The thermogravimetric analysis (TGA) showed the stability of BNC up to 280 °C, further rise in temperature to 350 °C results in depolymerization of the sample. In order to show the applicability of produced BNC, it was modified first using calcite (CaCO3) and thereafter characterized using SEM, XRD, FTIR, and TGA studies. The BNC-CaCO3 composites as a sorbent resulted in >99% removal of initial 10 mg L-1 of Cd (II) at pH 5, 7 and 9 after 12 h of treatment. Moreover, the composite was also found to be competent in removing high concentrations of Cd (25 and 50 mg L-1) from the solution (69-70%). Overall, the above results suggest that cellulose produced by K. xylinus strain SGP8 showed excellent material properties, and modified BNC (BNC-CaCO3 composite) could effectively be used for remediation of toxic levels of Cd from the contaminated system.


Sujet(s)
Cadmium , Gluconacetobacter xylinus , Carbonate de calcium , Cellulose , Ions
15.
ACS Synth Biol ; 9(11): 3171-3180, 2020 11 20.
Article de Anglais | MEDLINE | ID: mdl-33048520

RÉSUMÉ

Komagataeibacter xylinus has received increasing attention as an important microorganism for the conversion of several carbon sources to bacterial cellulose (BC). However, BC productivity has been impeded by the lack of efficient genetic engineering techniques. In this study, a lambda Red and FLP/FRT-mediated site-specific recombination system was successfully established in Komagataeibacter xylinus. Using this system, the membrane bound gene gcd, a gene that encodes glucose dehydrogenase, was knocked out to reduce the modification of glucose to gluconic acid. The engineered strain could not produce any gluconic acid and presented a decreased bacterial cellulose (BC) production due to its restricted glucose utilization. To address this problem, the gene of glucose facilitator protein (glf; ZMO0366) was introduced into the knockout strain coupled with the overexpression of the endogenous glucokinase gene (glk). The BC yield of the resultant strain increased by 63.63-173.68%, thus reducing the production cost.


Sujet(s)
Bactéries/génétique , Cellulose/génétique , DNA nucleotidyltransferases/génétique , Gluconacetobacter xylinus/génétique , Recombinaison génétique/génétique , Carbone/métabolisme , Gluconates/métabolisme , Glucose/génétique
16.
Int J Biol Macromol ; 163: 1908-1914, 2020 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-32976905

RÉSUMÉ

Bacterial cellulose (BC), prepared from two recently developed thermotolerant bacterial strains (Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37-9), were used as a raw material to synthesize nanofibril films. Field-emission scanning electron microscope (FE-SEM) observations confirmed the ultrafine nano-structure of BC pellicle (BCP) with average fibril widths between 50 and 60 nm. The BC was directly oxidized in a TEMPO/NaBr/NaClO system at pH of 10 for 2 h. TEMPO-oxidized bacterial cellulose nanofibrils (TOBCN) were obtained by a mild mechanical treatment and the TOBCN films were prepared through heat-drying. The oxidation yielded a recovery ratio between 70 and 80% by weight with an increase in the carboxylate content of 0.9-1.0 mmol g -1. Nanofibrillation yields were more than 90% and the resulting high aspect ratio TOBCNs were ~6 nm in average width with >800 nm in lengths, when observed under transmission electron microscope (TEM). TOBCN film of K. xylinus C30 exhibited high transparency (79%), tensile strength (142 MPa), Young's modulus (7.13 GPa), elongation around failure (3.89%), and work of fracture (2.29 MJ m-3), when compared to the TOBCN films of K. oboediens R37-9 at 23 °C and 50% RH. Coefficients of thermal expansion of both the TOBCN films were low at around 6 ppm K-1.


Sujet(s)
Acetobacteraceae/composition chimique , Oxycellulose/composition chimique , Cellulose/composition chimique , Nanofibres/composition chimique , Cellulose/synthèse chimique , Oxycellulose/synthèse chimique , N-oxydes cycliques/composition chimique , Nanostructures/composition chimique , Oxydoréduction , Résistance à la traction
17.
J Microbiol Biotechnol ; 30(9): 1430-1435, 2020 Sep 28.
Article de Anglais | MEDLINE | ID: mdl-32627756

RÉSUMÉ

Bacterial cellulose (BC) has outstanding physical and chemical properties, including high crystallinity, moisture retention, and tensile strength. Currently, the major producer of BC is Komagataeibacter xylinus. However, due to limited tools of expression, this host is difficult to engineer metabolically to improve BC productivity. In this study, a regulated expression system for K. xylinus with synthetic ribosome binding site (RBS) was developed and used to engineer a BC biosynthesis pathway. A synthetic RBS library was constructed using green fluorescent protein (GFP) as a reporter, and three synthetic RBSs (R4, R15, and R6) with different strengths were successfully isolated by fluorescence-activated cell sorting (FACS). Using synthetic RBS, we optimized the expression of three homologous genes responsible for BC production, pgm, galU, and ndp, and thereby greatly increased it under both static and shaking culture conditions. The final titer of BC under static and shaking conditions was 5.28 and 3.67 g/l, respectively. Our findings demonstrate that reinforced metabolic flux towards BC through quantitative gene expression represents a practical strategy for the improvement of BC productivity.


Sujet(s)
Voies de biosynthèse/génétique , Cellulose/métabolisme , Gluconacetobacter xylinus/métabolisme , Ribosomes/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Séquence nucléotidique , Sites de fixation/génétique , Cellulose/génétique , Banque de gènes , Gluconacetobacter xylinus/génétique , Génie métabolique , Analyse des flux métaboliques
18.
Methods Mol Biol ; 2149: 73-87, 2020.
Article de Anglais | MEDLINE | ID: mdl-32617930

RÉSUMÉ

Komagataeibacter xylinus synthesizes cellulose in an analogous fashion to plants. Through fermentation of K. xylinus in media containing cell wall polysaccharides from the hemicellulose and/or pectin families, composites with cellulose can be produced. These serve as general models for the assembly, structure, and properties of plant cell walls. By studying structure/property relationships of cellulose composites, the effects of defined hemicellulose and/or pectin polysaccharide structures can be investigated. The macroscopic nature of the composites also allows composite mechanical properties to be characterized.The method for producing cellulose-based composites involves reviving and then culturing K. xylinus in the presence of desired hemicelluloses and/or pectins. Different conditions are required for construction of hemicellulose- and pectin-containing composites. Fermentation results in a floating mat or pellicle of cellulose-based composite that can be recovered, washed, and then studied under hydrated conditions without any need for intermediate drying.


Sujet(s)
Acetobacteraceae/métabolisme , Cellulose/métabolisme , Fermentation , Pectine/métabolisme , Polyosides/métabolisme , Cellulose/biosynthèse , Deutérium/métabolisme , Glucanes/métabolisme , Xylanes/métabolisme
19.
J Food Sci Technol ; 57(7): 2524-2533, 2020 Jul.
Article de Anglais | MEDLINE | ID: mdl-32549603

RÉSUMÉ

This study was aimed to optimize the production of bacterial cellulose (BC) by Komagataeibacter xylinus PTCC 1734 using mixture of date syrup and cheese whey as carbon sources as well as ascorbic acid as a supplementary agent and to characterize the properties of produced BC. The results showed the highest BC production on the 10th day. The 50:50 ratio of date syrup and cheese whey lead to the highest BC production. Three samples were selected in optimal cultivation conditions until the 10th day, with different ascorbic acid concentrations (0, 0.1 and 0.4%). SEM results showed no difference in the morphology of BC product in the optimal samples, where the average diameter of cellulose nanofibers produced was in the range of nanometer. The FTIR test results showed no difference in the chemical structure of cellulose product in different ascorbic acid concentrations. According to XRD and TGA analyses, the highest degree of BC crystallinity and thermal resistance was obtained at maximum ascorbic acid concentration (0.04%). Consequently, the 50:50 ratio of date syrup and cheese whey and 10th day of fermentation time were selected as the best conditions for BC production. Though ascorbic acid reduced production efficiency, it improved the physical properties of the BC product.

20.
Biotechnol Bioeng ; 117(7): 2165-2176, 2020 07.
Article de Anglais | MEDLINE | ID: mdl-32270472

RÉSUMÉ

Diverse applications of bacterial cellulose (BC) have different requirements in terms of its structural characteristics. culturing Komagataeibacter xylinus CGMCC 2955, BC structure changes with alterations in oxygen tension. Here, the K. xylinus CGMCC 2955 transcriptome was analyzed under different oxygen tensions. Transcriptome and genome analysis indicated that BC structure is related to the rate of BC synthesis and cell growth, and galU is an essential gene that controls the carbon metabolic flux between the BC synthesis pathway and the pentose phosphate (PP) pathway. The CRISPR interference (CRISPRi) system was utilized in K. xylinus CGMCC 2955 to control the expression levels of galU. By overexpressing galU and interfering with different sites of galU sequences using CRISPRi, we obtained strains with varying expression levels of galU (3.20-3014.84%). By testing the characteristics of BC, we found that the porosity of BC (range: 62.99-90.66%) was negative with galU expression levels. However, the crystallinity of BC (range: 56.25-85.99%) was positive with galU expression levels; galU expression levels in engineered strains were lower than those in the control strains. Herein, we propose a new method for regulating the structure of BC to provide a theoretical basis for its application in different fields.


Sujet(s)
Protéines bactériennes/génétique , Cellulose/génétique , Gluconacetobacter xylinus/génétique , UTP glucose 1-phosphate uridylyltransferase/génétique , Systèmes CRISPR-Cas , Cellulose/composition chimique , Clustered regularly interspaced short palindromic repeats , Régulation négative , Transcriptome
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE