Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 107
Filtrer
1.
Sci Rep ; 14(1): 20625, 2024 09 04.
Article de Anglais | MEDLINE | ID: mdl-39232051

RÉSUMÉ

Improved understanding of mosquito-plant feeding interactions can reveal insights into the ecological dynamics of pathogen transmission. In wild malaria vectors Anopheles gambiae s.l. and An. funestus group surveyed in selected dryland ecosystems of Kenya, we found a low level of plant feeding (2.8%) using biochemical cold anthrone test but uncovered 14-fold (41%) higher rate via DNA barcoding targeting the chloroplast rbcL gene. Plasmodium falciparum positivity was associated with either reduced or increased total sugar levels and varied by mosquito species. Gut analysis revealed the mosquitoes to frequently feed on acacia plants (~ 89%) (mainly Vachellia tortilis) in the family Fabaceae. Chemical analysis revealed 1-octen-3-ol (29.9%) as the dominant mosquito attractant, and the sugars glucose, sucrose, fructose, talose and inositol enriched in the vegetative parts, of acacia plants. Nutritional analysis of An. longipalpis C with high plant feeding rates detected fewer sugars (glucose, talose, fructose) compared to acacia plants. These results demonstrate (i) the sensitivity of DNA barcoding to detect plant feeding in malaria vectors, (ii) Plasmodium infection status affects energetic reserves of wild anopheline vectors and (iii) nutrient content and olfactory cues likely represent potent correlates of acacia preferred as a host plant by diverse malaria vectors. The results have relevance in the development of odor-bait control strategies including attractive targeted sugar-baits.


Sujet(s)
Anopheles , Codage à barres de l'ADN pour la taxonomie , Écosystème , Vecteurs moustiques , Plasmodium falciparum , Animaux , Vecteurs moustiques/parasitologie , Vecteurs moustiques/génétique , Anopheles/parasitologie , Anopheles/génétique , Anopheles/métabolisme , Kenya , Plasmodium falciparum/génétique , Plasmodium falciparum/métabolisme , Paludisme/transmission , Paludisme/parasitologie , Acacia/métabolisme , Acacia/parasitologie , Acacia/génétique , Comportement alimentaire/physiologie , Ribulose bisphosphate carboxylase/métabolisme , Ribulose bisphosphate carboxylase/génétique
2.
Med Vet Entomol ; 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-39031697

RÉSUMÉ

This study explores the influence of small dams on the exposure to malaria vectors during the dry season in Kasungu district, Malawi, an area recently identified as high priority for malaria interventions by the National Malaria Control Programme. Small dam impoundments provide communities with a continuous supply of water for domestic and agricultural activities across sub-Saharan Africa and are considered vital to food security and climate change resilience. However, these permanent water bodies also create ideal breeding sites for mosquitoes in typically arid landscapes. The study focuses on a specific dam impoundment and its vicinity, aiming to assess its spatial and temporal influence on indoor vector densities. From May to August 2021, CDC light traps were used to measure indoor mosquito densities for two consecutive nights per month in three communities located at increasing distances from the dam (0, ~1 and ~2 km). Simultaneously, drone imagery was captured for each community, enabling the identification of additional standing water within approximately 400 m of selected households. Larval sampling was carried out within the impoundment periphery and in additional water bodies identified in the drone imagery. Generalised linear mixed models (GLMMs) were employed to analyse the indoor Anopheles abundance data, estimating the effects of household structure (open/closed eaves), month, temperature and water proximity on malaria vector exposure. Throughout 685 trapping nights, a total of 1256 mosquitoes were captured, with 33% (412) being female Anopheles. Among these, 91% were morphologically identified as Anopheles funestus s.l., and 5% as Anopheles gambiae s.l. Catches progressively decline in each consecutive trapping month as the environment became drier. This decline was much slower in Malangano, the community next to the dam, with abundance being notably higher in June and July. Further, the majority of An. gambiae s.l. were caught in May, with none identified in July and August. Anopheles larvae were found both in the impoundment and other smaller water bodies such as irrigation wells in each survey month; however, the presence of these smaller water bodies did not have a significant impact on adult female mosquito catches in the GLMM. The study concludes that proximity to the dam impoundment was the primary driver of differences between survey communities with the abundance in Chikhombwe (~1 km away) and Chiponde (~2 km away) being 0.35 (95% confidence interval [CI], 0.19-0.66) and 0.28 (95% CI, 0.16-0.47) lower than Malangano, respectively, after adjusting for other factors. These findings underscore the importance of targeted interventions, such as larval source management or housing improvements, near small dams to mitigate malaria transmission risks during the dry season. Further research is needed to develop cost-effective strategies for vector control within and around these impoundments.

3.
Parasit Vectors ; 17(1): 257, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38867296

RÉSUMÉ

Macroinvertebrate predators such as backswimmers (Heteroptera: Notonectidae), dragonflies (Odonata: Aeshnidae), and predatory diving beetles (Coleoptera: Dytiscidae) naturally inhabit aquatic ecosystems. Some aquatic ecosystems inhabited by these macroinvertebrate predator taxa equally form malaria vector larval habitats. The presence of these predators in malaria vector larval habitats can negatively impact on development, adult body size, fecundity, and longevity of the malaria vectors, which form important determinants of their fitness and future vectorial capacity. These potential negative impacts caused by aquatic macroinvertebrate predators on malaria vectors warrant their consideration as biocontrol agents in an integrated program to combat malaria. However, the use of these macroinvertebrate predators in malaria biocontrol is currently constrained by technical bottlenecks linked to their generalist predatory tendencies and often long life cycles, demanding complex rearing systems. We reviewed the literature on the use of aquatic macroinvertebrate predators for biocontrol of malaria vectors from the An. gambiae s.l. complex. The available information from laboratory and semi-field studies has shown that aquatic macroinvertebrates have the potential to consume large numbers of mosquito larvae and could thus offer an additional approaches in integrated malaria vector management strategies. The growing number of semi-field structures available in East and West Africa provides an opportunity to conduct ecological experimental studies to reconsider the potential of using aquatic macroinvertebrate predators as a biocontrol tool. To achieve a more sustainable approach to controlling malaria vector populations, additional, non-chemical interventions could provide a more sustainable approach, in comparison with the failing chemical control tools, and should be urgently considered for integration with the current mosquito vector control campaigns.


Sujet(s)
Anopheles , Paludisme , Lutte contre les moustiques , Vecteurs moustiques , Lutte biologique contre les nuisibles , Comportement prédateur , Animaux , Anopheles/physiologie , Lutte contre les moustiques/méthodes , Paludisme/prévention et contrôle , Paludisme/transmission , Lutte biologique contre les nuisibles/méthodes , Vecteurs moustiques/physiologie , Écosystème , Larve/physiologie , Heteroptera/physiologie , Odonata/physiologie , Coléoptères/physiologie , Agents de lutte biologique , Invertébrés/physiologie
4.
BMC Biol ; 22(1): 117, 2024 May 20.
Article de Anglais | MEDLINE | ID: mdl-38764011

RÉSUMÉ

BACKGROUND: Malaria, a deadly disease caused by Plasmodium protozoa parasite and transmitted through bites of infected female Anopheles mosquitoes, remains a significant public health challenge in sub-Saharan Africa. Efforts to eliminate malaria have increasingly focused on vector control using insecticides. However, the emergence of insecticide resistance (IR) in malaria vectors pose a formidable obstacle, and the current IR mapping models remain static, relying on fixed coefficients. This study introduces a dynamic spatio-temporal approach to characterize phenotypic resistance in Anopheles gambiae complex and Anopheles arabiensis. We developed a cellular automata (CA) model and applied it to data collected from Ethiopia, Nigeria, Cameroon, Chad, and Burkina Faso. The data encompasses georeferenced records detailing IR levels in mosquito vector populations across various classes of insecticides. In characterizing the dynamic patterns of confirmed resistance, we identified key driving factors through correlation analysis, chi-square tests, and extensive literature review. RESULTS: The CA model demonstrated robustness in capturing the spatio-temporal dynamics of confirmed IR states in the vector populations. In our model, the key driving factors included insecticide usage, agricultural activities, human population density, Land Use and Land Cover (LULC) characteristics, and environmental variables. CONCLUSIONS: The CA model developed offers a robust tool for countries that have limited data on confirmed IR in malaria vectors. The embrace of a dynamical modeling approach and accounting for evolving conditions and influences, contribute to deeper understanding of IR dynamics, and can inform effective strategies for malaria vector control, and prevention in regions facing this critical health challenge.


Sujet(s)
Anopheles , Résistance aux insecticides , Paludisme , Vecteurs moustiques , Animaux , Anopheles/parasitologie , Anopheles/génétique , Résistance aux insecticides/génétique , Paludisme/transmission , Vecteurs moustiques/parasitologie , Vecteurs moustiques/génétique , Vecteurs moustiques/physiologie , Phénotype , Insecticides/pharmacologie , Analyse spatio-temporelle , Afrique subsaharienne , Femelle
5.
Malar J ; 23(1): 164, 2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38789998

RÉSUMÉ

BACKGROUND: Nets containing pyriproxyfen, an insect growth regulator that sterilizes adult mosquitoes, have become available for malaria control. Suitable methods for investigating vector susceptibility to pyriproxyfen and evaluating its efficacy on nets need to be identified. The sterilizing effects of pyriproxyfen on adult malaria vectors can be assessed by measuring oviposition or by dissecting mosquito ovaries to determine damage by pyriproxyfen (ovary dissection). METHOD: Laboratory bioassays were performed to compare the oviposition and ovary dissection methods for monitoring susceptibility to pyriproxyfen in wild malaria vectors using WHO bottle bioassays and for evaluating its efficacy on nets in cone bioassays. Blood-fed mosquitoes of susceptible and pyrethroid-resistant strains of Anopheles gambiae sensu lato were exposed to pyriproxyfen-treated bottles (100 µg and 200 µg) and to unwashed and washed pieces of a pyriproxyfen long-lasting net in cone bioassays. Survivors were assessed for the sterilizing effects of pyriproxyfen using both methods. The methods were compared in terms of their reliability, sensitivity, specificity, resources (cost and time) required and perceived difficulties by trained laboratory technicians. RESULTS: The total number of An. gambiae s.l. mosquitoes assessed for the sterilizing effects of pyriproxyfen were 1745 for the oviposition method and 1698 for the ovary dissection method. Fertility rates of control unexposed mosquitoes were significantly higher with ovary dissection compared to oviposition in both bottle bioassays (99-100% vs. 34-59%, P < 0.05) and cone bioassays (99-100% vs. 18-33%, P < 0.001). Oviposition rates of control unexposed mosquitoes were lower with wild pyrethroid-resistant An. gambiae s.l. Cové, compared to the laboratory-maintained reference susceptible An gambiae sensu stricto Kisumu (18-34% vs. 58-76%, P < 0.05). Sterilization rates of the Kisumu strain in bottle bioassays with the pyriproxyfen diagnostic dose (100 µg) were suboptimal with the oviposition method (90%) but showed full susceptibility with ovary dissection (99%). Wild pyrethroid-resistant Cové mosquitoes were fully susceptible to pyriproxyfen in bottle bioassays using ovary dissection (> 99%), but not with the oviposition method (69%). Both methods showed similar levels of sensitivity (89-98% vs. 89-100%). Specificity was substantially higher with ovary dissection compared to the oviposition method in both bottle bioassays (99-100% vs. 34-48%) and cone tests (100% vs.18-76%). Ovary dissection was also more sensitive for detecting the residual activity of pyriproxyfen in a washed net compared to oviposition. The oviposition method though cheaper, was less reliable and more time-consuming. Laboratory technicians preferred ovary dissection mostly due to its reliability. CONCLUSION: The ovary dissection method was more accurate, more reliable and more efficient compared to the oviposition method for evaluating the sterilizing effects of pyriproxyfen on adult malaria vectors in susceptibility bioassays and for evaluating the efficacy of pyriproxyfen-treated nets.


Sujet(s)
Anopheles , Insecticides , Ovaire , Oviposition , Pyridines , Animaux , Pyridines/pharmacologie , Anopheles/effets des médicaments et des substances chimiques , Anopheles/physiologie , Femelle , Oviposition/effets des médicaments et des substances chimiques , Ovaire/effets des médicaments et des substances chimiques , Insecticides/pharmacologie , Lutte contre les moustiques/méthodes , Vecteurs moustiques/effets des médicaments et des substances chimiques , Dosage biologique/méthodes
6.
Trends Parasitol ; 40(6): 487-499, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38760256

RÉSUMÉ

Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in 'curing' Anopheles vectors of the malaria parasite.


Sujet(s)
Animal génétiquement modifié , Anopheles , Paludisme , Lutte contre les moustiques , Vecteurs moustiques , Animaux , Paludisme/prévention et contrôle , Paludisme/transmission , Lutte contre les moustiques/méthodes , Vecteurs moustiques/génétique , Vecteurs moustiques/parasitologie , Anopheles/génétique , Anopheles/parasitologie , Humains
7.
Res Sq ; 2024 Mar 18.
Article de Anglais | MEDLINE | ID: mdl-38562903

RÉSUMÉ

The two main Afrotropical malaria vectors - Anopheles coluzzii and An. gambiae - are genetically distinct and reproductively isolated across West Africa. However, populations at the western extreme of their range are assigned as "intermediate" between the two species by whole genome sequence (WGS) data, and as hybrid forms by conventional molecular diagnostics. By exploiting WGS data from 1,190 specimens collected across west Africa via the Anopheles gambiae 1000 Genomes network, we identify a novel putative taxon in the far-west (provisionally named Bissau molecular form), which did not arise by admixture but rather originated at the same time as the split between An. coluzzii and An. gambiae. Intriguingly, these populations lack insecticide resistance mechanisms commonly observed in the two main species. These findings lead to a change of perspective on malaria vector species in the far-west region with potential for epidemiological implications, and a new challenge for genetic-based mosquito control approaches.

8.
Parasitol Res ; 123(4): 194, 2024 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-38656453

RÉSUMÉ

Light-Emitting Diodes (LEDs) have been effective light sources in attracting Anopheles mosquitoes, but the broad-spectrum white light, even with a wide-ranging application in lighting, have not been evaluated yet. In this study, the white light was field evaluated against the green one in the light trapping of anopheline mosquitoes by using two non-suction Silva traps and two CDC-type suction light traps. Anopheline mosquitoes were captured for two 21-night periods of collecting (2022 and 2023). In the first period, two LEDs were used per Silva trap, but three were used in the second one to increase the luminance/illuminance at traps. A CDC-type suction light trap equipped with an incandescent lamp was used in 2022 and a CDC-type suction light trap equipped with a 6 V-white light (higher luminance/illuminance) in 2023. A total of eight species and 3,289 specimens were captured in both periods. The most frequent species were Anopheles triannulatus s.l., An. goeldii, An. evansae and An. argyritarsis. In 2022, white LEDs were less attractive to anopheline mosquitoes than the other light sources, but without statistical difference among treatments (F = 2.703; P = 0.0752; df = 2). In 2023, even with an increased luminance/illuminance at traps, no statistical difference was found between the two LED-baited Silva traps (F = 6.690; P = 0.0024; df = 2), but rather between the 6 V-white-baited CDC-type suction light trap and green-baited Silva traps. Due to some drawbacks and the lower abundance of individuals caught by using white LEDs, the narrow-banded green LEDs is preferable to white ones for attracting anophelines.


Sujet(s)
Anopheles , Lumière , Lutte contre les moustiques , Animaux , Anopheles/physiologie , Anopheles/effets des radiations , Lutte contre les moustiques/méthodes , Lutte contre les moustiques/instrumentation
9.
Malar J ; 23(1): 122, 2024 Apr 26.
Article de Anglais | MEDLINE | ID: mdl-38671462

RÉSUMÉ

BACKGROUND: Anopheles coluzzii is a primary vector of malaria found in West and Central Africa, but its presence has hitherto never been documented in Kenya. A thorough understanding of vector bionomics is important as it enables the implementation of targeted and effective vector control interventions. Malaria vector surveillance efforts in the country have tended to focus on historically known primary vectors. The current study sought to determine the taxonomic status of samples collected from five different malaria epidemiological zones in Kenya as well as describe the population genetic structure and insecticide resistance profiles in relation to other An. coluzzii populations. METHODS: Mosquitoes were sampled as larvae from Busia, Kwale, Turkana, Kirinyaga and Kiambu counties, representing the range of malaria endemicities in Kenya, in 2019 and 2021 and emergent adults analysed using Whole Genome Sequencing (WGS) data processed in accordance with the Anopheles gambiae 1000 Genomes Project phase 3. Where available, historical samples from the same sites were included for WGS. Comparisons were made with An. coluzzii cohorts from West and Central Africa. RESULTS: This study reports the detection of An. coluzzii for the first time in Kenya. The species was detected in Turkana County across all three time points from which samples were analyzed and its presence confirmed through taxonomic analysis. Additionally, there was a lack of strong population genetic differentiation between An. coluzzii from Kenya and those from the more northerly regions of West and Central Africa, suggesting they represent a connected extension to the known species range. Mutations associated with target-site resistance to DDT and pyrethroids and metabolic resistance to DDT were found at high frequencies up to 64%. The profile and frequencies of the variants observed were similar to An. coluzzii from West and Central Africa but the ace-1 mutation linked to organophosphate and carbamate resistance present in An. coluzzii from coastal West Africa was absent in Kenya. CONCLUSIONS: These findings emphasize the need for the incorporation of genomics in comprehensive and routine vector surveillance to inform on the range of malaria vector species, and their insecticide resistance status to inform the choice of effective vector control approaches.


Sujet(s)
Anopheles , Résistance aux insecticides , Vecteurs moustiques , Animaux , Anopheles/génétique , Anopheles/effets des médicaments et des substances chimiques , Anopheles/classification , Résistance aux insecticides/génétique , Kenya , Vecteurs moustiques/génétique , Vecteurs moustiques/effets des médicaments et des substances chimiques , Génétique des populations , Afrique de l'Ouest , Insecticides/pharmacologie , Afrique centrale , Femelle
10.
Article de Anglais | MEDLINE | ID: mdl-38406770

RÉSUMÉ

Understanding the dynamics of malaria vectors and their interactions with environmental factors is crucial for effective malaria control. This study investigated the abundance, species composition, seasonal variations, and malaria infection status of female mosquitoes in malaria transmission and non-transmission areas in Western Thailand. Additionally, the susceptibility of malaria vectors to pyrethroid insecticides was assessed. Entomological field surveys were conducted during the hot, wet, and cold seasons in both malaria transmission areas (TA) and non-transmission areas (NTA). The abundance and species composition of malaria vectors were compared between TA and NTA. The availability of larval habitats and the impact of seasonality on vector abundance were analyzed. Infection with Plasmodium spp. in primary malaria vectors was determined using molecular techniques. Furthermore, the susceptibility of malaria vectors to pyrethroids was evaluated using the World Health Organization (WHO) susceptibility test. A total of 9799 female mosquitoes belonging to 54 species and 11 genera were collected using various trapping methods. The number of malaria vectors was significantly higher in TA compared to NTA (P < 0.001). Anopheles minimus and An. aconitus were the predominant species in TA, comprising over 50% and 30% of the total mosquitoes collected, respectively. Seasonality had a significant effect on the availability of larval habitats in both areas (P < 0.05) but did not impact the abundance of adult vectors (P > 0.05). The primary malaria vectors tested were not infected with Plasmodium spp. The WHO susceptibility test revealed high susceptibility of malaria vectors to pyrethroids, with mortality rates of 99-100% at discriminating concentrations. The higher abundance of malaria vectors in the transmission areas underscores the need for targeted control measures in these regions. The susceptibility of malaria vectors to pyrethroids suggests the continued effectiveness of this class of insecticides for vector control interventions. Other factors influencing malaria transmission risk in the study areas are discussed. These findings contribute to our understanding of malaria vectors and can inform evidence-based strategies for malaria control and elimination efforts in Western Thailand.

11.
Res Sq ; 2024 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-38410447

RÉSUMÉ

Background: Anopheles coluzzii is a primary vector of malaria found in West and Central Africa, but its presence has hitherto never been documented in Kenya. A thorough understanding of vector bionomics is important as it enables the implementation of targeted and effective vector control interventions. Malaria vector surveillance efforts in the country have tended to focus on historically known primary vectors. In the current study, we sought to determine the taxonomic status of samples collected from five different malaria epidemiological zones in Kenya as well asdescribe the population genetic structure and insecticide resistance profiles in relation to other An. coluzzi populations. Methods: Mosquitoes were sampled as larvae from Busia, Kwale, Turkana, Kirinyaga and Kiambu counties, representing the range of malaria endemicities in Kenya, in 2019 and 2021 and emergent adults analysed using Whole Genome Sequencing data processed in accordance with the Anopheles gambiae 1000 Genomes Project phase 3. Where available, historical samples from the same sites were included for WGS. Results: This study reports the detection of Anopheles coluzzii for the first time in Kenya. The species was detected in Turkana County across all three time points sampled and its presence confirmed through taxonomic analysis. Additionally, we found a lack of strong population genetic differentiation between An. coluzzii from Kenya and those from the more northerly regions of West and Central Africa, suggesting they represent a connected extension to the known species range. Mutations associated with target-site resistance to DDT and pyrethroids and metabolic resistance to DDT were found at high frequencies of ~60%. The profile and frequencies of the variants observed were similar to An. coluzzii from West and Central Africa but the ace-1 mutation linked to organophosphate and carbamate resistance present in An. coluzzii from coastal West Africa was absent in Kenya. Conclusions: These findings emphasise the need for the incorporation of genomics in comprehensive and routine vector surveillance to inform on the range of malaria vector species, and their insecticide resistance status to inform the choice of effective vector control approaches.

12.
Malar J ; 23(1): 29, 2024 Jan 19.
Article de Anglais | MEDLINE | ID: mdl-38243220

RÉSUMÉ

BACKGROUND: In 2015, Tanzania National Malaria Control Programme (NMCP) established a longitudinal malaria vector entomological surveillance (MVES). The MVES is aimed at a periodical assessment of malaria vector composition and abundance, feeding and resting behaviours, and Plasmodium falciparum infection in different malaria epidemiological strata to guide the NMCP on the deployment of appropriate malaria vector interventions. This work details the dynamics of malaria vector composition and transmission in different malaria epidemiological strata. METHODS: The MVES was conducted from 32 sentinel district councils across the country. Mosquitoes were collected by the trained community members and supervised by the NMCP and research institutions. Three consecutive night catches (indoor collection with CDC light trap and indoor/outdoor collection using bucket traps) were conducted monthly in three different households selected randomly from two to three wards within each district council. Collected mosquitoes were sorted and morphologically identified in the field. Thereafter, the samples were sent to the laboratory for molecular characterization using qPCR for species identification and detection of P. falciparum infections (sporozoites). ELISA technique was deployed for blood meal analysis from samples of blood-fed mosquitoes to determine the blood meal indices (BMI). RESULTS: A total of 63,226 mosquitoes were collected in 32 district councils from January 2017 to December 2021. Out of which, 39,279 (62%), 20,983 (33%) and 2964 (5%) were morphologically identified as Anopheles gambiae sensu lato (s.l.), Anopheles funestus s.l., and as other Anopheles species, respectively. Out of 28,795 laboratory amplified mosquitoes, 13,645 (47%) were confirmed to be Anopheles arabiensis, 9904 (34%) as An. funestus sensu stricto (s.s.), and 5193 (19%) as An. gambiae s.s. The combined average entomological inoculation rates (EIR) were 0.46 (95% CI 0.028-0.928) for An. gambiae s.s., 0.836 (95% CI 0.138-1.559) for An. arabiensis, and 0.58 (95% CI 0.165-0.971) for An. funestus s.s. with variations across different malaria transmission strata. Anopheles funestus s.s. and An. arabiensis were predominant in the Lake and South-Eastern zones, respectively, mostly in high malaria transmission areas. Monthly mosquito densities displayed seasonal patterns, with two peaks following the rainy seasons, varying slightly across species and district councils. CONCLUSION: Anopheles arabiensis remains the predominant vector species followed by An. funestus s.s. in the country. Therefore, strengthening integrated vector management including larval source management is recommended to address outdoor transmission by An. arabiensis to interrupt transmission particularly where EIR is greater than the required elimination threshold of less than one (< 1) to substantially reduce the prevalence of malaria infection.


Sujet(s)
Anopheles , Chlorphentermine/analogues et dérivés , Paludisme à Plasmodium falciparum , Paludisme , Animaux , Humains , Paludisme/prévention et contrôle , Plasmodium falciparum , Tanzanie/épidémiologie , Vecteurs moustiques , Comportement alimentaire , Paludisme à Plasmodium falciparum/prévention et contrôle
13.
Acta Trop ; 251: 107104, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38185187

RÉSUMÉ

Disease surveillance, including entomological surveillance, serves as the basis for all vector control program activities. How to do this in the most ecologically sensible way, so that the most suitable, naturalistic method, of control for that population can be identified, should be a priority. Here we describe a set of techniques, whose only energy requirement is a torch (flashlight), that can be used to collect both endo and exophagic and endo and exophilic malaria vectors. The data obtained over a number of years from an individual sentinel house in a village in Mozambique and from a village in Cambodia using these kinds of collection techniques, is presented.


Sujet(s)
Anopheles , Paludisme , Animaux , Humains , Paludisme/épidémiologie , Paludisme/prévention et contrôle , Vecteurs insectes , Vecteurs moustiques , Afrique/épidémiologie , Lutte contre les moustiques/méthodes
14.
BMC Med ; 22(1): 41, 2024 01 29.
Article de Anglais | MEDLINE | ID: mdl-38281908

RÉSUMÉ

BACKGROUND: Conventional vector control strategies have significantly reduced the malaria burden. The sustainability of these methods is currently challenged. Odour-based traps are emerging technologies that can complement the existing tools. Implementation of odour-based traps for mass trapping is limited due to the restricted range of vectors caught with available carbon dioxide-dependent lures, and the lack of comprehensive field studies. The objective of this study was to assess the impact of odour-mediated mass trapping targeting outdoor vectors, using a synthetic cattle urine lure that attracts a wide range of vector species in a variety of physiological states, on malaria prevalence and entomological parameters to determine malaria transmission intensities. METHODS: A controlled before-and-after study was conducted in two rural communities in southern Ethiopia. Baseline monthly entomological and seasonal cross-sectional malaria prevalence surveys were conducted in both communities for a year. Then, mass trapping of mosquitoes was conducted in one of the villages, while the monthly entomological surveillance and seasonal malaria prevalence surveys continued in both villages. Generalised linear mixed models were constructed and tested to determine which factors were significantly affected by the intervention. RESULTS: Mass trapping contributed to the reduction of the population of the principal malaria vector, Anopheles arabiensis, and the associated entomological indicators, the human bite rate (HBR) and the entomological inoculation rate (EIR), in the intervention village compared to the control village. The intervention village had an average HBR by An. arabiensis of 3.0 (95% CI 1.4-4.6) during the peak malaria transmission season, compared to 10.5 (95% CI - 0.5-21.5; P < 0.0001) in the control village. The intervention village (mean 0.02, 95% CI - 0.05-0.4.8) had a daily EIR eight times lower than the control village (mean 0.17, 95% CI), which likely contributed to the reduced malaria prevalence in the intervention community following its introduction by ca. 60% (95% CI 55-63). CONCLUSIONS: The combined use of odour-based mass trapping and conventional control strategies coincided with a reduction of human-vector contact and malaria prevalence, providing support for odour-baited technologies as a viable option for next-generation vector control tools. Further cluster-randomised control studies are recommended in different eco-epidemiological settings with varying malaria transmission intensities.


Sujet(s)
Anopheles , Paludisme , Humains , Animaux , Bovins , Paludisme/épidémiologie , Paludisme/prévention et contrôle , Anopheles/physiologie , Odorisants , Études transversales , Vecteurs moustiques , Lutte contre les moustiques/méthodes
15.
Malar J ; 23(1): 20, 2024 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-38225627

RÉSUMÉ

BACKGROUND: Malaria remains a major public health problem in sub-Saharan Africa, particularly in Benin. The present study aims to evaluate the different Plasmodium species transmitted by malaria vectors in the communes of Cove, Zagnanado and Ouinhi, Southern Benin. METHODS: The study was conducted between December 2021 and October 2022 in 60 villages spread over the three study communes. Adult mosquitoes were collected from four houses in each village using human landing catches (HLCs). After morphological identification, a subsample of Anopheles gambiae, Anopheles funestus and Anopheles nili was analysed by PCR to test for their infection to the different Plasmodium species. RESULTS: Anopheles gambiae was collected at higher frequency in all the three study communes, representing 93.5% (95% CI 92.9-94) of all collected mosquitoes (n = 10,465). In total, five molecular species were found, An. gambiae sensu stricto (s.s.) and Anopheles coluzzii of the Gambiae complex, An. funestus and Anopheles leesoni of the Funestus group, and An. nili s.s., the sole species of the Nili group. From the five molecular species, four (An. gambiae s.s., An. coluzzii, An. funestus s.s. and An. nili s.s.) were found to be infected. Plasmodium falciparum was the main Plasmodium species in the study area, followed by Plasmodium vivax and Plasmodium ovale. Only An. gambiae s.s. was infected with all three Plasmodium species, while An. coluzzii was infected with two species, P. falciparum and P. vivax. CONCLUSIONS: Plasmodium falciparum was the only species tested for in malaria vectors in Benin, and remains the only one against which most control tools are directed. It is, therefore, necessary that particular attention be paid to secondary Plasmodium species for an efficient control of the disease. The presence of P. vivax emphasizes the need for an update of case management for malaria.


Sujet(s)
Anopheles , Paludisme à Plasmodium falciparum , Paludisme à Plasmodium vivax , Paludisme , Plasmodium , Animaux , Adulte , Humains , Bénin , Plasmodium vivax , Vecteurs moustiques , Afrique de l'Ouest , Plasmodium falciparum
16.
mBio ; 15(1): e0219223, 2024 Jan 16.
Article de Anglais | MEDLINE | ID: mdl-38063396

RÉSUMÉ

IMPORTANCE: Microsporidia MB is a symbiont with a strong malaria transmission-blocking phenotype in Anopheles arabiensis. It spreads in mosquito populations through mother-to-offspring and sexual transmission. The ability of Microsporidia MB to block Plasmodium transmission, together with its ability to spread within Anopheles populations and its avirulence to the host, makes it a very attractive candidate for developing a key strategy to stop malaria transmissions. Here, we report tissue tropism and localization patterns of Microsporidia MB, which are relevant to its transmission. We find that Microsporidia MB accumulates in Anopheles arabiensis tissues, linked to its sexual and vertical transmission. Its prevalence and intensity in the tissues over the mosquito life cycle suggest adaptation to maximize transmission and avirulence in Anopheles arabiensis. These findings provide the foundation for understanding the factors that may affect Microsporidia MB transmission efficiency. This will contribute to the development of strategies to maximize Microsporidia MB transmission to establish and sustain a high prevalence of the symbiont in Anopheles mosquito populations for malaria transmission blocking.


Sujet(s)
Anopheles , Paludisme , Microsporidia , Animaux , Humains , Microsporidia/génétique , Cellules germinales , Tropisme
17.
Heliyon ; 9(11): e21968, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-38027803

RÉSUMÉ

Regular monitoring of insecticide resistance status is an important step in implementing appropriate and adapted insecticide-based strategies for vector control. In Senegal, Indoor Residual Spraying (IRS) and a national distribution campaign for long-lasting insecticide-treated net (LLIN) have been implemented since 2007 and 2009, respectively to prevent malaria transmission. To expand and ensure the sustainability of these strategies, we conducted a study on the status of insecticide resistance in malaria vectors in the seaside area of Mbour and its suburbs where no data were previously available. Anopheles larvae were sampled from four study sites (two in both coastal and inland areas) and reared to adulthood in the insectarium. Non-blood-fed females aged 3-5 days were then tested for susceptibility to permethrin, deltamethrin, lambdacyhalothrin, bendiocarb and pirimiphos-methyl. PCR amplification was used to identify sibling species of the An. gambiae complex and genotyping for the presence of resistance knockdown (kdr) L1014S, L1014F and Ace-1 G119S. Anopheles arabiensis was the only species present in the area. At all four sites, mosquitoes were resistant to deltamethrin, permethrin, and lambdacyhalothrin, and exhibited varying degrees of resistance to bendiocarb and pirimiphos-methyl. Overall, high levels of leucine-serine/phenylalanine substitutions at position 1014 (L1014S/L1014F) were observed, with frequencies ranging from 76.4 to 85.2 % for L1014F, and from 43.2 to 66.7 % for L1014S, compared to 8.1 to 28.3 for the Ace-1 G119S mutation. These results indicate a high level of phenotypic and genotypic resistance to insecticides, which is alarming, as it could have a significant impact on the operational effectiveness of current vector control tools that rely on pyrethroids. However, in the case of bendiocarb and pirimiphos-methyl, while some level of tolerance was observed, their potential use requires regular monitoring to prevent operational failure, as their deployment could potentially lead to an increase in resistance to them.

18.
Parasit Vectors ; 16(1): 376, 2023 Oct 21.
Article de Anglais | MEDLINE | ID: mdl-37864217

RÉSUMÉ

BACKGROUND: Designing, implementing, and upscaling of effective malaria vector control strategies necessitates an understanding of when and where transmission occurs. This study assessed the biting patterns of potentially infectious malaria vectors at various hours, locations, and associated human behaviors in different ecological settings in western Kenya. METHODS: Hourly indoor and outdoor catches of human-biting mosquitoes were sampled from 19:00 to 07:00 for four consecutive nights in four houses per village. The human behavior study was conducted via questionnaire surveys and observations. Species within the Anopheles gambiae complex and Anopheles funestus group were distinguished by polymerase chain reaction (PCR) and the presence of Plasmodium falciparum circumsporozoite proteins (CSP) determined by enzyme-linked immunosorbent assay (ELISA). RESULTS: Altogether, 2037 adult female anophelines were collected comprising the An. funestus group (76.7%), An. gambiae sensu lato (22.8%), and Anopheles coustani (0.5%). PCR results revealed that Anopheles arabiensis constituted 80.5% and 79% of the An. gambiae s.l. samples analyzed from the lowland sites (Ahero and Kisian, respectively). Anopheles gambiae sensu stricto (hereafter An. gambiae) (98.1%) was the dominant species in the highland site (Kimaeti). All the An. funestus s.l. analyzed belonged to An. funestus s.s. (hereafter An. funestus). Indoor biting densities of An. gambiae s.l. and An. funestus exceeded the outdoor biting densities in all sites. The peak biting occurred in early morning between 04:30 and 06:30 in the lowlands for An. funestus both indoors and outdoors. In the highlands, the peak biting of An. gambiae occurred between 01:00 and 02:00 indoors. Over 50% of the study population stayed outdoors from 18:00 to 22:00 and woke up at 05:00, coinciding with the times when the highest numbers of vectors were collected. The sporozoite rate was higher in vectors collected outdoors, with An. funestus being the main malaria vector in the lowlands and An. gambiae in the highlands. CONCLUSION: This study shows heterogeneity of anopheline distribution, high outdoor malaria transmission, and early morning peak biting activity of An. funestus when humans are not protected by bednets in the lowland sites. Additional vector control efforts targeting the behaviors of these vectors, such as the use of non-pyrethroids for indoor residual spraying and spatial repellents outdoors, are needed.


Sujet(s)
Anopheles , Morsures et piqûres , Paludisme , Animaux , Humains , Femelle , Paludisme/épidémiologie , Paludisme/prévention et contrôle , Écosystème , Vecteurs moustiques , Kenya/épidémiologie , Comportement alimentaire
19.
Malar J ; 22(1): 233, 2023 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-37573300

RÉSUMÉ

BACKGROUND: Anopheles funestus, which is considered as secondary vector of malaria in Ethiopia, is known to have several morphologically indistinguishable (sibling) species. Accurate identification of sibling species is crucial to understand their biology, behaviour and vector competence. In this study, molecular identification was conducted on the Ethiopian An. funestus populations. Moreover, insecticide resistance mechanism markers were detected, including ace N485I, kdr L1014F, L1014S, and CYP6P9a TaqMan qPCR was used to detect the infective stage of the parasite from field collected adult female An. funestus populations. METHODS: Adult female mosquito collection was conducted from Lare, Gambella Regional State of Ethiopia between June 2018 to July 2020 using CDC light traps and HLC. Sub-samples of the morphologically identified An. funestus mosquitoes were molecularly identified using species-specific PCR, and the possible presence of insecticide resistance alleles was investigated using TaqMan qPCR (N485I-Ace-1), PCR-Sanger sequencing (L1014F-kdr), and PCR-RFLP (CYP6P9a resistance allele). Following head/thorax dissection, the TaqMan qPCR assay was used to investigate the presence of the infective stage Plasmodium parasite species. RESULTS: A total of 1086 adult female An. funestus mosquitoes were collected during the study period. All sub-samples (N = 20) that were morphologically identified as An. funestus sensu lato (s.l.) were identified as An. funestus sensu stricto (s.s.) using species- specific PCR assay. The PCR-RFLP assay that detects the CYP6P9a resistance allele that confers pyrethroid resistance in An. funestus was applied in N = 30 randomly selected An. funestus s.l. SPECIMENS: None of the specimens showed a digestion pattern consistent with the presence of the CYP6P9a resistance allele in contrast to what was observed in the positive control. Consequently, all samples were characterized as wild type. The qPCR TaqMan assay that detects the N485I acetylcholinesterase-1 mutation conferring resistance to organophosphates/carbamates in An. funestus was used in (N = 144) samples. All samples were characterized as wild type. The kdr L1014F and L1014S mutations in the VGSC gene that confer resistance to pyrethroids and DDT were analysed with direct Sanger sequencing after PCR and clean-up of the PCR products were also characterized as wild type. None of the samples (N = 169) were found positive for Plasmodium (P. falciparum/ovale/malariae/vivax) detection. CONCLUSION: All An. funestus s.l. samples from Lare were molecularly identified as An. funestus s.s. No CYP6P9, N485I acetylcholinesterase 1, kdr L1014F or L1014S mutations were detected in the An. funestus samples. None of the An. funestus samples were positive for Plasmodium. Although the current study did not detect any insecticide resistant mechanism, it provides a reference for future vector monitoring programmes. Regular monitoring of resistance mechanisms covering wider geographical areas of Ethiopia where this vector is distributed is important for improving the efficacy of vector control programs.


Sujet(s)
Anopheles , Insecticides , Paludisme , Pyréthrines , Animaux , Femelle , Anopheles/génétique , Acetylcholinesterase , Allèles , Éthiopie , Vecteurs moustiques/génétique , Insecticides/pharmacologie , Résistance aux insecticides/génétique
20.
Parasit Vectors ; 16(1): 270, 2023 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-37559080

RÉSUMÉ

BACKGROUND: Insecticide-based malaria vector control is increasingly undermined due to the development of insecticide resistance in mosquitoes. Insecticide resistance may partially be related to the use of pesticides in agriculture, while the level and mechanisms of resistance might differ between agricultural practices. The current study aimed to assess whether phenotypic insecticide resistance and associated molecular resistance mechanisms in Anopheles gambiae sensu lato differ between agricultural practices. METHODS: We collected An. gambiae s.l. larvae in six sites with three different agricultural practices, including rice, vegetable and cocoa cultivation. We then exposed the emerging adult females to discriminating concentrations of bendiocarb (0.1%), deltamethrin (0.05%), DDT (4%) and malathion (5%) using the standard World Health Organization insecticide susceptibility test. To investigate underlying molecular mechanisms of resistance, we used multiplex TaqMan qPCR assays. We determined the frequency of target-site mutations, including Vgsc-L995F/S and Vgsc-N1570Y, and Ace1-G280S. In addition, we measured the expression levels of genes previously associated with insecticide resistance in An. gambiae s.l., including the cytochrome P450-dependent monooxygenases CYP4G16, CYP6M2, CYP6P1, CYP6P3, CYP6P4, CYP6Z1 and CYP9K1, and the glutathione S-transferase GSTe2. RESULTS: The An. gambiae s.l. populations from all six agricultural sites were resistant to bendiocarb, deltamethrin and DDT, while the populations from the two vegetable cultivation sites were additionally resistant to malathion. Most tested mosquitoes carried at least one mutant Vgsc-L995F allele that is associated with pyrethroid and DDT resistance. In the cocoa cultivation sites, we observed the highest 995F frequencies (80-87%), including a majority of homozygous mutants and several in co-occurrence with the Vgsc-N1570Y mutation. We detected the Ace1 mutation most frequently in vegetable-growing sites (51-60%), at a moderate frequency in rice (20-22%) and rarely in cocoa-growing sites (3-4%). In contrast, CYP6M2, CYP6P3, CYP6P4, CYP6Z1 and CYP9K1, previously associated with metabolic insecticide resistance, showed the highest expression levels in the populations from rice-growing sites compared to the susceptible Kisumu reference strain. CONCLUSION: In our study, we observed intriguing associations between the type of agricultural practices and certain insecticide resistance profiles in the malaria vector An. gambiae s.l. which might arise from the use of pesticides deployed for protecting crops.


Sujet(s)
Anopheles , Insecticides , Paludisme , Pyréthrines , Animaux , Femelle , Insecticides/pharmacologie , Résistance aux insecticides/génétique , DDT , Côte d'Ivoire , Malathion , Vecteurs moustiques/génétique , Pyréthrines/pharmacologie , Agriculture
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE