Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 16 de 16
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167450, 2024 10.
Article de Anglais | MEDLINE | ID: mdl-39111631

RÉSUMÉ

Defense against intracellular acidification of breast cancer tissue depends on net acid extrusion via Na+,HCO3--cotransporter NBCn1/Slc4a7 and Na+/H+-exchanger NHE1/Slc9a1. NBCn1 is increasingly recognized as breast cancer susceptibility protein and promising therapeutic target, whereas evidence for targeting NHE1 is discordant. Currently, selective small molecule inhibitors exist against NHE1 but not NBCn1. Cellular assays-with some discrepancies-link NHE1 activity to proliferation, migration, and invasion; and disrupted NHE1 expression can reduce triple-negative breast cancer growth. Studies on human breast cancer tissue associate high NHE1 expression with reduced metastasis and-in some molecular subtypes-improved patient survival. Here, we evaluate Na+/H+-exchange and therapeutic potential of the NHE1 inhibitor cariporide/HOE-642 in murine ErbB2-driven breast cancer. Ex vivo, cariporide inhibits net acid extrusion in breast cancer tissue (IC50 = 0.18 µM) and causes small decreases in steady-state intracellular pH (pHi). In vivo, we deliver cariporide orally, by osmotic minipumps, and by intra- and peritumoral injections to address the low oral bioavailability and fast metabolism. Prolonged cariporide administration in vivo upregulates NBCn1 expression, shifts pHi regulation towards CO2/HCO3--dependent mechanisms, and shows no net effect on the growth rate of ErbB2-driven primary breast carcinomas. Cariporide also does not influence proliferation markers in breast cancer tissue. Oral, but not parenteral, cariporide elevates serum glucose by ∼1.5 mM. In conclusion, acute administration of cariporide ex vivo powerfully inhibits net acid extrusion from breast cancer tissue but lowers steady-state pHi minimally. Prolonged cariporide administration in vivo is compensated via NBCn1 and we observe no discernible effect on growth of ErbB2-driven breast carcinomas.


Sujet(s)
Tumeurs du sein , Prolifération cellulaire , Guanidines , Récepteur ErbB-2 , Échangeur-1 de sodium-hydrogène , Sulfones , Guanidines/pharmacologie , Femelle , Animaux , Récepteur ErbB-2/métabolisme , Récepteur ErbB-2/génétique , Récepteur ErbB-2/antagonistes et inhibiteurs , Échangeur-1 de sodium-hydrogène/métabolisme , Échangeur-1 de sodium-hydrogène/antagonistes et inhibiteurs , Échangeur-1 de sodium-hydrogène/génétique , Souris , Humains , Sulfones/pharmacologie , Prolifération cellulaire/effets des médicaments et des substances chimiques , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/anatomopathologie , Tumeurs du sein/métabolisme , Tumeurs du sein/génétique , Symporteurs des ions sodium-bicarbonate/métabolisme , Symporteurs des ions sodium-bicarbonate/génétique , Symporteurs des ions sodium-bicarbonate/antagonistes et inhibiteurs , Lignée cellulaire tumorale , Concentration en ions d'hydrogène
2.
J Enzyme Inhib Med Chem ; 38(1): 2247181, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37587861

RÉSUMÉ

Carbonic anhydrase 12 is considered an oncogenic and acidic microenvironmental factor in cancer cells. To verify the role of histamine signalling as an anti-cancer signal, we determined the roles of CA12 and its associated bicarbonate transporters. In this study, histamine stimulation mediated mislocalization of CA12 in lung cancer cells. Histamine receptor activation-mediated CA12 endocytosis and pH were restored by CaMKII inhibition. CA12-associated AE2 expression was enhanced, whereas NBCn1 expression and its activity were reduced by histamine stimulation. Histamine receptor activation-mediated acidification was induced by internalised CA12 and NBCn1 and, at the same time by increased bicarbonate efflux through enhanced AE2 expression. Inhibition of protein trafficking by bafilomycin restored CA12 and AE2 localisation and diminished cellular acidosis. Thus, we verified that histamine stimulation induced an acidic scenario, which revealed trafficking of CA12 and its associated bicarbonate transporters in lung cancer cells and its dysregulated pH modulation may be involved in the histamine signalling-mediated anti-cancer process.


Sujet(s)
Carbonic anhydrases , Tumeurs du poumon , Humains , Histamine/pharmacologie , Hydrogénocarbonates/pharmacologie
3.
Life Sci ; 312: 121219, 2023 Jan 01.
Article de Anglais | MEDLINE | ID: mdl-36435222

RÉSUMÉ

Two alkalinizing mechanisms coexist in cardiac myocytes to maintain intracellular pH: sodium/bicarbonate cotransporter (electroneutral isoform NBCn1 and electrogenic isoform NBCe1) and sodium/proton exchanger (NHE1). Dysfunction of these transporters has previously been reported to be responsible for the development of cardiovascular diseases. The aim of this study was to evaluate the contribution of the downregulation of the NBCe1 to the development of cardiac hypertrophy. To specifically reduce NBCe1 expression, we cloned shRNA into a cardiotropic adeno-associated vector (AAV9-shNBCe1). After 28 days of being injected with AAV9-shNBCe1, the expression and the activity of NBCe1 in the rat heart were reduced. Strikingly, downregulation of NBCe1 causes significant hypertrophic heart growth, lengthening of the action potential in isolated myocytes, an increase in the duration of the QT interval and an increase in the frequency of Ca2+ waves without any significant changes in Ca2+ transients. An increased compensatory expression of NBCn1 and NHE1 was also observed. We conclude that reduction of NBCe1 is sufficient to induce cardiac hypertrophy and modify the electrical features of the rat heart.


Sujet(s)
Hydrogénocarbonates , Symporteurs des ions sodium-bicarbonate , Rats , Animaux , Symporteurs des ions sodium-bicarbonate/génétique , Symporteurs des ions sodium-bicarbonate/métabolisme , Hydrogénocarbonates/métabolisme , Cardiomégalie/génétique , Cardiomégalie/métabolisme , Sodium/métabolisme , Isoformes de protéines/métabolisme , Concentration en ions d'hydrogène
4.
Mol Cell ; 82(17): 3284-3298.e7, 2022 09 01.
Article de Anglais | MEDLINE | ID: mdl-35772404

RÉSUMÉ

Bicarbonate (HCO3-) ions maintain pH homeostasis in eukaryotic cells and serve as a carbonyl donor to support cellular metabolism. However, whether the abundance of HCO3- is regulated or harnessed to promote cell growth is unknown. The mechanistic target of rapamycin complex 1 (mTORC1) adjusts cellular metabolism to support biomass production and cell growth. We find that mTORC1 stimulates the intracellular transport of HCO3- to promote nucleotide synthesis through the selective translational regulation of the sodium bicarbonate cotransporter SLC4A7. Downstream of mTORC1, SLC4A7 mRNA translation required the S6K-dependent phosphorylation of the translation factor eIF4B. In mTORC1-driven cells, loss of SLC4A7 resulted in reduced cell and tumor growth and decreased flux through de novo purine and pyrimidine synthesis in human cells and tumors without altering the intracellular pH. Thus, mTORC1 signaling, through the control of SLC4A7 expression, harnesses environmental bicarbonate to promote anabolic metabolism, cell biomass, and growth.


Sujet(s)
Hydrogénocarbonates , Complexe-1 cible mécanistique de la rapamycine , Nucléotides , Symporteurs des ions sodium-bicarbonate , Hydrogénocarbonates/métabolisme , Humains , Complexe-1 cible mécanistique de la rapamycine/génétique , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Nucléotides/biosynthèse , Phosphorylation , Symporteurs des ions sodium-bicarbonate/génétique , Symporteurs des ions sodium-bicarbonate/métabolisme
5.
Curr Issues Mol Biol ; 44(3): 1284-1293, 2022 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-35723309

RÉSUMÉ

The sodium bicarbonate cotransporter NBCn1 is an electroneutral transporter with a channel activity that conducts Na+ in a HCO3--independent manner. This channel activity was suggested to functionally affect other membrane proteins which permeate Na+ influx. We previously reported that NBCn1 is associated with the NMDA receptors (NMDARs) at the molecular and physiological levels. In this study, we examined whether NBCn1 channel activity affects NMDAR currents and whether this effect involves the interaction between the two proteins. NBCn1 and the NMDAR subunits GluN1A/GluN2A were expressed in Xenopus oocytes, and glutamate currents produced by the receptors were measured using two-electrode voltage clamp. In the absence of CO2/HCO3-, NBCn1 channel activity decreased glutamate currents mediated by GluN1A/GluN2A. NBCn1 also decreased the slope of the current-voltage relationships for the glutamate current. Similar effects on the glutamate current were observed with and without PSD95, which can cluster NBCn1 and NMDARs. The channel activity was also observed in the presence of CO2/HCO3-. We conclude that NBCn1 channel activity decreases NMDAR function. Given that NBCn1 knockout mice develop a downregulation of NMDARs, our results are unexpected and suggest that NBCn1 has dual effects on NMDARs. It stabilizes NMDAR expression but decreases receptor function by its Na+ channel activity. The dual effects may play an important role in fine-tuning the regulation of NMDARs in the brain.

6.
Front Oncol ; 10: 687, 2020.
Article de Anglais | MEDLINE | ID: mdl-32457840

RÉSUMÉ

Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer-related death, with a 5-year survival of <10% and severely limited treatment options. PDAC hallmarks include profound metabolic acid production and aggressive local proliferation and invasiveness. This phenotype is supported by upregulated net acid extrusion and epithelial-to-mesenchymal transition (EMT), the latter typically induced by aberrant transforming growth factor-ß (TGFß) signaling. It is, however, unknown whether TGFß-induced EMT and upregulation of acid extrusion are causally related. Here, we show that mRNA and protein expression of the net acid extruding transporters Na+/H+ exchanger 1 (NHE1, SLC9A1) and Na+, HCO 3 - cotransporter 1 (NBCn1, SLC4A7) are increased in a panel of human PDAC cell lines compared to immortalized human pancreatic ductal epithelial (HPDE) cells. Treatment of Panc-1 cells (which express SMAD4, required for canonical TGFß signaling) with TGFß-1 for 48 h elicited classical EMT with down- and upregulation of epithelial and mesenchymal markers, respectively, in a manner inhibited by SMAD4 knockdown. Accordingly, less pronounced EMT was induced in BxPC-3 cells, which do not express SMAD4. TGFß-1 treatment elicited a SMAD4-dependent increase in NHE1 expression, and a smaller, SMAD4-independent increase in NBCn1 in Panc-1 cells. Consistent with this, TGFß-1 treatment led to elevated intracellular pH and increased net acid extrusion capacity in Panc-1 cells, but not in BxPC-3 cells, in an NHE1-dependent manner. Proliferation was increased in Panc-1 cells and decreased in BxPC-3 cells, upon TGFß-1 treatment, and this, as well as EMT per se, was unaffected by NHE1- or NBCn1 inhibition. TGFß-1-induced EMT was associated with a 4-fold increase in Panc-1 cell invasiveness, which further increased ~10-fold upon knockdown of the tumor suppressor Merlin (Neurofibromatosis type 2). Knockdown of NHE1 or NBCn1 abolished Merlin-induced invasiveness, but not that induced by TGFß-1 alone. In conclusion, NHE1 and NBCn1 expression and NHE-dependent acid extrusion are upregulated during TGFß-1-induced EMT of Panc-1 cells. NHE1 upregulation is SMAD4-dependent, and SMAD4-deficient BxPC-3 cells show no change in pHi regulation. NHE1 and NBCn1 are not required for EMT per se or EMT-associated proliferation changes, but are essential for the potentiation of invasiveness induced by Merlin knockdown.

7.
Cell Physiol Biochem ; 52(5): 1017-1038, 2019.
Article de Anglais | MEDLINE | ID: mdl-30977986

RÉSUMÉ

BACKGROUND/AIMS: Enterocytes express a number of NHE isoforms with presumed localization in the apical (NHE2, 3 and 8) or basolateral (NHE1) membrane. Functional activity and localization of enterocyte NHE isoforms were assessed using fully differentiated Caco-2BBe cells, whose genetic expression profile closely resembles mature enterocytes. METHODS: The activity of the different NHEs was analyzed by fluorometric pHi-metry in a perfusion chamber with separate apical and basolateral perfusion, using specific inhibitors and shRNA knockdown of NHE2. The expression of the NHEs and of other relevant acid extrusion transporters was quantified by qPCR. RESULTS: Quantitative comparison of the mRNA expression levels of the different NHE isoforms in 14 day-differentiated Caco-2BBe cells showed the following order: NHE2>NHE8>NHE3>NHE1. Acid-activated NHE exchange rates in the basolateral membrane were >6-fold higher than in the apical membrane. 79 ± 3 % of the acid-activated basolateral Na⁺/H⁺ exchange rate displayed a NHE1-typical inhibitor profile, and no NHE2/3/8 typical activity could be observed. Analysis of the apical Na⁺/H⁺ exchange rates revealed that approximately 51 ± 3 % of the total apical activity displayed a NHE2/8-typical inhibitor profile and 31 ± 6 % a NHE3-typical inhibitor profile. Because no selective NHE2 inhibitor is available, a stable NHE2 knockdown cell line (C2NHE2KD) was generated. C2NHE2KD displayed a reduced NHE2-typical apical Na⁺/H⁺ exchange rate and maintained a lower steady-state pHi, despite high expression levels of other acid extruders, in particular NBCn1 (Slc4a7). CONCLUSION: Differentiated Caco-2BBe cells display particularly high mRNA expression levels of NHE2, which can be functionally identified in the apical membrane. Although at low intracellular pH, NHE2 transport rate was far lower than that of NHE1. NHE2 activity was nevertheless essential for the maintenance of the steady-state pHi of these cells.


Sujet(s)
Membrane cellulaire/métabolisme , Régulation de l'expression des gènes , ARN messager/biosynthèse , Échangeur-1 de sodium-hydrogène/biosynthèse , Antiport des ions sodium-hydrogène/biosynthèse , Cellules Caco-2 , Humains , Concentration en ions d'hydrogène , Isoformes de protéines/biosynthèse
8.
Cell Host Microbe ; 23(6): 766-774.e5, 2018 06 13.
Article de Anglais | MEDLINE | ID: mdl-29779931

RÉSUMÉ

Macrophages represent the first line of immune defense against pathogens, and phagosome acidification is a necessary step in pathogen clearance. Here, we identified the bicarbonate transporter SLC4A7, which is strongly induced upon macrophage differentiation, as critical for phagosome acidification. Loss of SLC4A7 reduced acidification of phagocytosed beads or bacteria and impaired the intracellular microbicidal capacity in human macrophage cell lines. The phenotype was rescued by wild-type SLC4A7, but not by SLC4A7 mutants, affecting transport capacity or cell surface localization. Loss of SLC4A7 resulted in increased cytoplasmic acidification during phagocytosis, suggesting that SLC4A7-mediated, bicarbonate-driven maintenance of cytoplasmic pH is necessary for phagosome acidification. Altogether, we identify SLC4A7 and bicarbonate-driven cytoplasmic pH homeostasis as an important element of phagocytosis and the associated microbicidal functions in macrophages.


Sujet(s)
Hydrogénocarbonates/métabolisme , Macrophages/métabolisme , Phagosomes/métabolisme , Symporteurs des ions sodium-bicarbonate/physiologie , Systèmes CRISPR-Cas , Transporteurs de cations/métabolisme , Cytoplasme/métabolisme , Techniques de knock-out de gènes , Homéostasie , Humains , Concentration en ions d'hydrogène , Phagocytose , Symporteurs des ions sodium-bicarbonate/génétique , Cellules THP-1 , Transcriptome , Cellules U937
9.
Acta Physiol (Oxf) ; 223(3): e13068, 2018 07.
Article de Anglais | MEDLINE | ID: mdl-29575508

RÉSUMÉ

Precise spatiotemporal regulation of intracellular pH (pHi ) is a prerequisite for normal cell function, and changes in pHi or pericellular pH (pHe ) exert important signalling functions. It is well established that proliferation of mammalian cells is dependent on a permissive pHi in the slightly alkaline range (7.0-7.2). It is also clear that mitogen signalling in nominal absence of HCO3- is associated with an intracellular alkalinization (~0.3 pH unit above steady-state pHi ), which is secondary to activation of Na+ /H+ exchange. However, it remains controversial whether this increase in pHi is part of the mitogenic signal cascade leading to cell cycle entry and progression, and whether it is relevant under physiological conditions. Furthermore, essentially all studies of pHi in mammalian cell proliferation have focused on the mitogen-induced G0-G1 transition, and the regulation and roles of pHi during the cell cycle remain poorly understood. The aim of this review is to summarize and critically discuss the possible roles of pHi and pHe in cell cycle progression. While the focus is on the mammalian cell cycle, important insights from studies in lower eukaryotes are also discussed. We summarize current evidence of links between cell cycle progression and pHi and discuss possible pHi - and pHe sensors and signalling pathways relevant to mammalian proliferation control. The possibility that changes in pHi during cell cycle progression may be an integral part of the checkpoint control machinery is explored. Finally, we discuss the relevance of links between pH and proliferation in the context of the perturbed pH homoeostasis and acidic microenvironment of solid tumours.


Sujet(s)
Cycle cellulaire , Prolifération cellulaire , Animaux , Homéostasie , Humains , Concentration en ions d'hydrogène , Biosynthèse des protéines , Transduction du signal
10.
Int J Cancer ; 142(12): 2529-2542, 2018 06 15.
Article de Anglais | MEDLINE | ID: mdl-29363134

RÉSUMÉ

High metabolic and proliferative rates in cancer cells lead to production of large amounts of H+ and CO2 , and as a result, net acid extruding transporters are essential for the function and survival of cancer cells. We assessed protein expression of the Na+ /H+ exchanger NHE1, the Na+ - HCO3- cotransporter NBCn1, and the lactate-H+ cotransporters MCT1 and -4 by immunohistochemical analysis of a large cohort of breast cancer samples. We found robust expression of these transporters in 20, 10, 4 and 11% of samples, respectively. NHE1 and NBCn1 expression both correlated positively with progesterone receptor status, NHE1 correlated negatively and NBCn1 positively with HER2 status, whereas MCT4 expression correlated with lymph node status. Stable shRNA-mediated knockdown (KD) of either NHE1 or NBCn1 in the MDA-MB-231 triple-negative breast cancer (TNBC) cell line significantly reduced steady-state intracellular pH (pHi ) and capacity for pHi recovery after an acid load. Importantly, KD of any of the three transporters reduced in vivo primary tumor growth of MDA-MB-231 xenografts. However, whereas KD of NBCn1 or MCT4 increased tumor-free survival and decreased in vitro proliferation rate and colony growth in soft agar, KD of NHE1 did not have these effects. Moreover, only MCT4 KD reduced Akt kinase activity, PARP and CD147 expression and cell motility. This work reveals that different types of net acid extruding transporters, NHE1, NBCn1 and MCT4, are frequently expressed in patient mammary tumor tissue and demonstrates for the first time that they promote growth of TNBC human mammary tumors in vivo via distinct but overlapping mechanisms.


Sujet(s)
Marqueurs biologiques tumoraux/analyse , Tumeurs du sein/anatomopathologie , Transporteurs d'acides monocarboxyliques/métabolisme , Protéines du muscle/métabolisme , Symporteurs des ions sodium-bicarbonate/métabolisme , Échangeur-1 de sodium-hydrogène/métabolisme , Animaux , Tumeurs du sein/métabolisme , Tumeurs du sein/mortalité , Survie sans rechute , Femelle , Hétérogreffes , Humains , Estimation de Kaplan-Meier , Souris
11.
Basic Res Cardiol ; 112(2): 14, 2017 03.
Article de Anglais | MEDLINE | ID: mdl-28120038

RÉSUMÉ

NBC Na+/HCO3- cotransporter (NBCn1) and NHE1 Na+/H+ exchanger have been associated with cardiac disorders and recently located in coronary endothelial cells (CEC) and cardiomyocytes mitochondria, respectively. Mitochondrial NHE1 blockade delays permeability transition pore (MPTP) opening and reduces superoxide levels, two critical events exacerbated in cells of diseased hearts. Conversely, activation of NBCn1 prevented apoptosis in CEC subjected to ischemic stress. We characterized the role of the NHE1 and NBCn1 transporters in heart mitochondria from hypertrophic (SHR) and control (Wistar) rats. Expression of NHE1 was analyzed in left ventricular mitochondrial lysates (LVML), by immunoblots. NHE1 expression increased by ~40% in SHR compared to control (P < 0.05, n = 4). To examine NHE1-mediated Na+/H+ exchange activity in cardiac hypertrophy, mitochondria were loaded with BCECF-AM dye and the maximal rate of pHm change measured after the addition of 50 mM NaCl. SHR mitochondria had greater changes in pHm compared to Wistar, 0.10 ± 0.01 vs. 0.06 ± 0.01, respectively (P < 0.05, n = 5). In addition, mitochondrial suspensions from SHR and control myocardium were exposed to 200 µM CaCl2 to induce MPTP opening (light-scattering decrease, LSD) and swelling. Surprisingly, SHR rats showed smaller LSD and a reduction in mitochondrial swelling, 67 ± 10% (n = 15), compared to control, 100 ± 8% (n = 13). NBC inhibition with S0859 (1 µM) significantly increased swelling in both control 139 ± 10% (n = 8) and SHR 115 ± 10% (n = 4). Finally, NBCn1 Na+/HCO3- cotransporter increased by twofold its expression in SHR LVML, compared to normal (P < 0.05, n = 5). We conclude that increased NBCn1 activity may play a compensatory role in hypertrophic hearts, protecting mitochondria from Ca2+-induced MPTP opening and swelling.


Sujet(s)
Cardiomégalie/métabolisme , Mitochondries/anatomopathologie , Gonflement mitochondrial , Symporteurs des ions sodium-bicarbonate/métabolisme , Animaux , Cardiomégalie/anatomopathologie , Modèles animaux de maladie humaine , Cellules HEK293 , Humains , Immunotransfert , Immunohistochimie , Microscopie confocale , Protéines de transport de la membrane mitochondriale/métabolisme , Pore de transition de perméabilité mitochondriale , Myocytes cardiaques , Rats , Rats de lignée SHR , Rat Wistar
12.
Physiol Genomics ; 49(3): 167-176, 2017 03 01.
Article de Anglais | MEDLINE | ID: mdl-28087757

RÉSUMÉ

Genome-wide association studies have identified the single nucleotide polymorphism (SNP) rs3278 in the human SLC4A7 gene as one of the marker loci for addiction vulnerability. This marker is located in an intron of the gene, and its genomic role has been unknown. In this study, we examined rs3278 and three adjacent SNPs prevalent in alcoholics for their effects on an alternative promoter that would lead to the production of the NH2-terminally truncated protein NBCn1ΔN450, missing the first 450 amino acids. Analysis of the transcription start site database and a promoter prediction algorithm identified a cluster of three promoters in intron 7 and two short CpG-rich sites in intron 6. The promoter closest to rs3278 showed strong transcription activity in luciferase reporter gene assays. Major-to-minor allele substitution at rs3278 resulted in increased transcription activity. Equivalent substitutions at adjacent rs3772723 (intron 7) and rs13077400 (exon 8) had negligible effect; however, the substitution at nonsynonymous rs3755652 (exon 8) increased the activity by more than twofold. The concomitant substitution at rs3278/rs3755652 produced an additive effect. The rs3755652 had more profound effects on the promoter than the upstream regulatory CpG sites. The amino acid change E326K caused by rs3755652 had negligible effect on transporter function. In HEK 293 cells, NBCn1ΔN450 was expressed in plasma membranes, but at significantly lower levels than the nontruncated NBCn1-E. The pH change mediated by NBCn1ΔN450 was also low. We conclude that rs3278 and rs3755652 stimulate an alternative transcription of the SLC4A7 gene, increasing the production of a defective transporter.


Sujet(s)
Polymorphisme de nucléotide simple/génétique , Symporteurs des ions sodium-bicarbonate/génétique , Transcription génétique , Allèles , Substitution d'acide aminé/génétique , Animaux , Ilots CpG/génétique , Cellules HEK293 , Humains , Concentration en ions d'hydrogène , Introns/génétique , Protéines mutantes/métabolisme , Régions promotrices (génétique) , Symporteurs des ions sodium-bicarbonate/métabolisme , Site d'initiation de la transcription , Xenopus
13.
Mol Cancer ; 15(1): 45, 2016 06 06.
Article de Anglais | MEDLINE | ID: mdl-27266704

RÉSUMÉ

BACKGROUND: The 3-dimensional (3D) microenvironment of breast carcinomas is characterized by profoundly altered pH homeostasis, reflecting increased metabolic acid production and a confined extracellular space characterized by poor diffusion, yet the relative contributions of specific pH-regulatory transporters to 3D growth are poorly understood. The aim of this work was to determine how 3D spheroid growth of breast cancer cells impacts the expression and spatial organization of major acid extruding proteins, and how these proteins in turn are required for spheroid growth. METHODS: MCF-7 (Luminal-A) and MDA-MB-231 (Triple-negative) human breast cancer cells were grown as ~700-950 µm diameter spheroids, which were subjected to Western blotting for relevant transporters (2- and 3D growth), quantitative immunohistochemical analysis, and spheroid growth assays. Individual transporter contributions were assessed (i) pharmacologically, (ii) by stable shRNA- and transient siRNA-mediated knockdown, and (iii) by CRISPR/Cas9 knockout. RESULTS: In MCF-7 spheroids, expression of the lactate-H(+) cotransporter MCT1 (SLC16A1) increased from the spheroid periphery to its core, the Na(+),HCO3 (-) cotransporter NBCn1 (SLC4A7) was most highly expressed at the periphery, and the Na(+)/H(+) exchanger NHE1 (SLC9A1) and MCT4 (SLC16A3) were evenly distributed. A similar pattern was seen in MDA-MB-231 spheroids, except that these cells do not express MCT1. The relative total expression of NBCn1 and NHE1 was decreased in 3D compared to 2D, while that of MCT1 and MCT4 was unaltered. Inhibition of MCT1 (AR-C155858) attenuated MCF-7 spheroid growth and this was exacerbated by addition of S0859, an inhibitor of Na(+),HCO3 (-) cotransporters and MCTs. The pharmacological data was recapitulated by stable knockdown of MCT1 or NBCn1, whereas knockdown of MCT4 had no effect. CRISPR/Cas9 knockout of NHE1, but neither partial NHE1 knockdown nor the NHE1 inhibitor cariporide, inhibited MCF-7 spheroid growth. In contrast, growth of MDA-MB-231 spheroids was inhibited by stable or transient NHE1 knockdown and by NHE1 knockout, but not by knockdown of NBCn1 or MCT4. CONCLUSIONS: This work demonstrates the distinct expression and localization patterns of four major acid-extruding transporters in 3D spheroids of human breast cancer cells and reveals that 3D growth is dependent on these transporters in a cell type-dependent manner, with potentially important implications for breast cancer therapy.


Sujet(s)
Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Transporteurs d'anions organiques/métabolisme , Tumeurs du sein/génétique , Lignée cellulaire tumorale , Prolifération cellulaire , Femelle , Techniques de knock-down de gènes , Humains , Concentration en ions d'hydrogène , Hypoxie/métabolisme , Transporteurs d'acides monocarboxyliques/génétique , Transporteurs d'acides monocarboxyliques/métabolisme , Transporteurs d'anions organiques/génétique , Symporteurs des ions sodium-bicarbonate/génétique , Symporteurs des ions sodium-bicarbonate/métabolisme , Sphéroïdes de cellules , Cellules cancéreuses en culture , Microenvironnement tumoral
14.
World J Biol Chem ; 5(3): 334-45, 2014 Aug 26.
Article de Anglais | MEDLINE | ID: mdl-25225601

RÉSUMÉ

Bicarbonate is one of the major anions in mammalian tissues and extracellular fluids. Along with accompanying H(+), HCO3 (-) is generated from CO2 and H2O, either spontaneously or via the catalytic activity of carbonic anhydrase. It serves as a component of the major buffer system, thereby playing a critical role in pH homeostasis. Bicarbonate can also be utilized by a variety of ion transporters, often working in coupled systems, to transport other ions and organic substrates across cell membranes. The functions of HCO3 (-) and HCO3 (-)-transporters in epithelial tissues have been studied extensively, but their functions in heart are less well understood. Here we review studies of the identities and physiological functions of Cl(-)/HCO3 (-) exchangers and Na(+)/HCO3 (-) cotransporters of the SLC4A and SLC26A families in heart. We also present RNA Seq analysis of their cardiac mRNA expression levels. These studies indicate that slc4a3 (AE3) is the major Cl(-)/HCO3 (-) exchanger and plays a protective role in heart failure, and that Slc4a4 (NBCe1) is the major Na(+)/HCO3 (-) cotransporter and affects action potential duration. In addition, previous studies show that HCO3 (-) has a positive inotropic effect in the perfused heart that is largely independent of effects on intracellular Ca(2+). The importance of HCO3 (-) in the regulation of contractility is supported by experiments showing that isolated cardiomyocytes exhibit sharply enhanced contractility, with no change in Ca(2+) transients, when switched from Hepes-buffered to HCO3 (-)- buffered solutions. These studies demonstrate that HCO3 (-) and HCO3 (-)-handling proteins play important roles in the regulation of cardiac function.

15.
Front Physiol ; 5: 130, 2014.
Article de Anglais | MEDLINE | ID: mdl-24795638

RÉSUMÉ

A unifying feature of solid tumors is a markedly altered pH profile compared to normal tissues. This reflects that solid tumors, despite completely different origins, often share several phenotypic properties with implications for intra- and extracellular pH. These include: a metabolic shift in most cancer cells toward more acid-producing pathways, reflecting both oncogenic signaling and the development of hypoxia in poorly perfused regions of the tumors; the poorly perfused and often highly dense tumor microenvironment, reducing the diffusive flux of acid equivalents compared to that in normal tissues; and the markedly altered regulation of the expression and activity of pH-regulatory transport proteins in cancer cells. While some of these properties of tumors have been well described in recent years, the great majority of the research in this clinically important area has focused on proton transport, in particular via the Na(+)/H(+) exchanger 1 (SLC9A1, NHE1) and various H(+) ATPases. We have, however, recently demonstrated that at least under some conditions, including in vitro models of HER2 positive breast cancer, and measurements obtained directly in freshly dissected human mammary carcinomas, bicarbonate transporters such as the electroneutral Na(+), HCO(-) 3 cotransporter (SLC4A7, NBCn1), are upregulated and play central roles in pH regulation. In this review, we summarize and discuss the current knowledge regarding the regulation and roles of bicarbonate transporters in cancer. Furthermore, we present new analyses of publicly available expression data demonstrating widely altered expression levels of SLC4- and SLC26 family transporters in breast-, lung-, and colon cancer patients, and we hypothesize that bicarbonate transporter dysregulation may have both diagnostic and therapeutic potential in cancer treatment.

16.
Am J Physiol Renal Physiol ; 305(12): F1765-74, 2013 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-24005470

RÉSUMÉ

The NBCn1 Na(+)/HCO3(-) cotransporter catalyzes the electroneutral movement of 1 Na(+):1 HCO3(-) into kidney cells. We characterized the intracellular pH (pHi) regulation in human embryonic kidney cells (HEK) subjected to NH4Cl prepulse acid loading, and we examined the NBCn1 expression and function in HEK cells subjected to 24-h elevated Pco2 (10-15%). After acid loading, in the presence of HCO3(-), ∼50% of the pHi recovery phase was blocked by the Na(+)/H(+) exchanger inhibitors EIPA (10-50 µM) and amiloride (1 mM) and was fully cancelled by 30 µM EIPA under nominally HCO3(-)-free conditions. In addition, in the presence of HCO3(-), pHi recovery after acid loading was completely blocked when Na(+) was omitted in the buffer. pHi recovery after acidification in HEK cells was repeated in the presence of the NBC inhibitor S0859, and the pHi recovery was inhibited by S0859 in a dose-dependent manner (Ki = 30 µM, full inhibition at 60 µM), which confirmed NBC Na(+)/HCO3(-) cotransporter activation. NBCn1 expression increased threefold after 24-h exposure of cultured HEK cells to 10% CO2 and sevenfold after exposure to 15% CO2, examined by immunoblots. Finally, exposure of HEK cells to high CO2 significantly increased the HCO3(-)-dependent recovery of pHi after acid loading. We conclude that HEK cells expressed the NBCn1 Na(+)/HCO3(-) cotransporter as the only HCO3(-)-dependent mechanism responsible for cellular alkaline loading. NBCn1, which expresses in different kidney cell types, was upregulated by 24-h high-Pco2 exposure of HEK cells, and this upregulation was accompanied by increased NBCn1-mediated HCO3(-) transport.


Sujet(s)
Dioxyde de carbone/pharmacologie , Cellules HEK293/effets des médicaments et des substances chimiques , Cellules HEK293/métabolisme , Symporteurs des ions sodium-bicarbonate/métabolisme , Régulation positive/effets des médicaments et des substances chimiques , Amiloride/analogues et dérivés , Amiloride/pharmacologie , Hydrogénocarbonates/métabolisme , Relation dose-effet des médicaments , Cellules HEK293/cytologie , Humains , Concentration en ions d'hydrogène , Facteurs temps
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE