Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 179
Filtrer
1.
Carbohydr Polym ; 343: 122441, 2024 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-39174122

RÉSUMÉ

Plant-derived biomaterials have great application prospects in solving environmental pollution and sustainable resource utilization, but the insufficient mechanical strength and lack of functional responsiveness often limit their further development. Inspired by natural small molecules functionalization, a vacuum-assisted filtration nanofibrillated cellulose (NFC)-based film with excellent antibacterial properties, mechanical strength, and electrothermal/photothermal dual-responsiveness was fabricated. As a natural bioactive molecule, antibacterial cinnamaldehyde (CA) is grafted onto tannic acid (TA) rich in pyrogallols via a small molecule self-assembly strategy, and then co-assembled with zinc acetate (ZA) through ion crosslinking to synthesize the functional TACA@ZA nanospheres. After incorporating the MXene and TACA@ZA, an inorganic-organic 3D network system was established in the NFC matrix through dynamic intermolecular hydrogen bonding and strong ionic cross-linking. The mechanical strength and toughness of hybrid composites are remarkably improved by 83.6 % and 418.9 %, respectively. Due to the synergistic effects of MXene and TACA@ZA, the designed NFC-based film also shows significantly enhanced antibacterial activity, UV-blocking ability, as well as photothermal and electrothermal performance. This bioinspired small molecule functionalization strategy opens an innovative design concept for the fabrication of multirole NFC-based biomaterials, which has great application prospects in the commercial fields of multifunctional adhesives, electronic devices, UV shielding coatings, and antibacterial materials.

2.
J Food Sci ; 89(8): 5031-5046, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38992871

RÉSUMÉ

Nanofibrillated cellulose (NFC) from plant biomass is becoming popular, attributed to the protective encapsulation of bioactive compounds in Pickering emulsion, preventing degradation and stabilizing the emulsion. NFC, as a natural dietary fiber, is a prominent fat replacer, providing a quality enhancement to reduced-fat products. In this study, NFC Pickering emulsions were prepared at NFC concentrations of 0.2%, 0.4%, 0.6%, 0.8%, and 1% to encapsulate carotenoids. The NFC Pickering emulsions at NFC concentrations of 0.4%, 0.6%, 0.8%, and 1% were incorporated into margarine-like reduced fat (3%) spreads as the aqueous phase. Characterization of both NFC Pickering emulsion and the incorporated NFC Pickering emulsion, margarine-like reduced fat spreads, was conducted with mastersizer, rheometer, spectrophotometer, and texture analyzer. The particle size (73.67 ± 0.35 to 94.73 ± 2.21 nm), viscosity (138.36 ± 3.35 to 10545.00 ± 567.10 mPa s), and creaming stability (25% to 100% stable) of the NFC Pickering emulsions were increased significantly when increasing the NFC concentration, whereas the encapsulation efficiency was highest at NFC 0.4% and 0.6%. Although imitating the viscoelastic solid-like behavior of margarine was difficult, the NFC Pickering emulsion properties were still able to enhance hardness, slip melting point, and color of the reduced fat spreads compared to the full-fat margarine, especially at 0.6% of NFC. Overall, extensive performances of NFC can be seen in encapsulating carotenoids, especially at NFC concentrations of 0.4% and 0.6%, with the enhancement of Pickering emulsion stability while portraying futuristic possibilities as a fat replacer in margarine optimally at 0.6% of NFC concentration. PRACTICAL APPLICATION: Nanocellulose extracted from palm dried long fiber was utilized to encapsulate carotenoids and replace fats in margarine-like reduced fat (3%) spreads. Our study portrayed high encapsulation efficiency and successful fat replacement with promising stability performances. Hence, nanocellulose displayed extensive potential as encapsulating agents and fat replacers while providing quality and sustainability enhancements in reduced-fat food.


Sujet(s)
Caroténoïdes , Cellulose , Nanofibres , Huile de palme , Huile de palme/composition chimique , Margarine , Cellulose/composition chimique , Nanofibres/composition chimique , Nanofibres/ultrastructure , Caroténoïdes/composition chimique , Taille de particule , Émulsions/composition chimique , Viscosité , Température , Élasticité , Oxydoréduction , Couleur , Substituts de matières grasses/composition chimique , Capsules/composition chimique , Arecaceae/composition chimique
4.
Macromol Rapid Commun ; 45(15): e2400129, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38778746

RÉSUMÉ

Biopolymeric implantable patches are popular scaffolds for myocardial regeneration applications. Besides being biocompatible, they can be tailored to have required properties and functionalities for this application. Recently, fibrillar biobased nanostructures prove to be valuable in the development of functional biomaterials for tissue regeneration applications. Here, periodate-oxidized nanofibrillated cellulose (OxNFC) is blended with lysozyme amyloid nanofibrils (LNFs) to prepare a self-crosslinkable patch for myocardial implantation. The OxNFC:LNFs patch shows superior wet mechanical properties (60 MPa for Young's modulus and 1.5 MPa for tensile stress at tensile strength), antioxidant activity (70% scavenging activity under 24 h), and bioresorbability ratio (80% under 91 days), when compared to the patches composed solely of NFC or OxNFC. These improvements are achieved while preserving the morphology, required thermal stability for sterilization, and biocompatibility toward rat cardiomyoblast cells. Additionally, both OxNFC and OxNFC:LNFs patches reveal the ability to act as efficient vehicles to deliver spermine modified acetalated dextran nanoparticles, loaded with small interfering RNA, with 80% of delivery after 5 days. This study highlights the value of simply blending OxNFC and LNFs, synergistically combining their key properties and functionalities, resulting in a biopolymeric patch that comprises valuable characteristics for myocardial regeneration applications.


Sujet(s)
Cellulose , Lysozyme , Infarctus du myocarde , Nanofibres , Nanoparticules , Lysozyme/composition chimique , Lysozyme/métabolisme , Animaux , Rats , Nanofibres/composition chimique , Infarctus du myocarde/anatomopathologie , Cellulose/composition chimique , Nanoparticules/composition chimique , Amyloïde/composition chimique , ARN/composition chimique , Régénération/effets des médicaments et des substances chimiques , Myocarde/métabolisme , Matériaux biocompatibles/composition chimique , Matériaux biocompatibles/pharmacologie
5.
Carbohydr Polym ; 336: 122138, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38670763

RÉSUMÉ

Water-soluble silver nanoclusters (AgNCs) as a new type of fluorescent material have attracted much attention for their remarkable optical properties and excellent cytocompatibility. However, it is still challenging to synthesize water-soluble AgNCs with good cytocompatibility and excellent fluorescence. Herein, the dialdehyde nanofibrillated cellulose (DANFC)- reduced water-soluble AgNCs capped by glutathione (GSH) with tunable fluorescence emissions were first reported. The DANFC provides a mild reduction environment and crystal growth system for the coordination between silver ions and GSH compared to conventional methods using strong reducing agents. The AgNCs with intense red fluorescence (R-AgNCs@GSH, size ∼2.24 nm) and green fluorescence (G-AgNCs@GSH, size ∼1.93 nm) were produced by varying the ratios of silver sources and ligands, and could maintain stable fluorescence intensity over 6 months. Moreover, the CCK-8 study demonstrated that the R-AgNCs@GSH and G-AgNCs@GSH reduced by DANFC of excellent cytocompatibility (cell viability >90 %) and enable precise multicolor intracellular imaging of Hela cells in 1 h. This work proposes a novel method to synthesize water-soluble AgNCs with tunable fluorescence emission at room temperature based on the classical silver- mirror reaction (SMR) using DANFC as reducing agent, and the synthesized fluorescent AgNCs have great potential as novel luminescent nanomaterials in biological research.


Sujet(s)
Cellulose , Nanoparticules métalliques , Argent , Solubilité , Eau , Argent/composition chimique , Humains , Cellulose/composition chimique , Cellules HeLa , Nanoparticules métalliques/composition chimique , Eau/composition chimique , Glutathion/composition chimique , Nanofibres/composition chimique , Survie cellulaire/effets des médicaments et des substances chimiques , Imagerie optique/méthodes , Fluorescence , Colorants fluorescents/composition chimique
6.
Int J Biol Macromol ; 267(Pt 1): 131587, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38631587

RÉSUMÉ

Composite films of nanofibrillated cellulose (NFC) and chitosan (CS) were prepared by spray deposition method, and the influence of polymers ratio and protonation degree (α) of chitosan was evaluated. Films were characterized using morphological, mechanical, and surface techniques. Higher NFC content increased Young's modulus of film composites and reduced air permeability, while higher CS content increased water contact angle. Variations in the degree of protonation of chitosan from non-protonated (α = 0) to fully protonated (α = 1) in the NFC/CS composite film with a fixed composition allowed to modulate surface, mechanical, and structural properties, such as water contact angle (31.3-109.2°), Young's modulus (1.7-5.3 GPa), elongation at break (3.1-1.2 %), oxygen transmission rate (9.0-5.5 cm3/m2day) and air permeability (2074-426 s). Highly protonated chitosan composite films showed similar contact angles to pure chitosan films, while low protonated chitosan composite films presented contact angles similar to pure NFC films, suggesting a possible coating effect of NFC by CS through electrostatic interactions, evidenced by microscopy and spectroscopy analysis. By mixing both polymers and adjusting composition and protonation degree it was possible to enhance their properties, making pH adjustment a useful tool for NFC/CS composite films formation.


Sujet(s)
Cellulose , Chitosane , Nanofibres , Protons , Propriétés de surface , Chitosane/composition chimique , Cellulose/composition chimique , Nanofibres/composition chimique , Perméabilité , Module d'élasticité , Phénomènes mécaniques , Eau/composition chimique
7.
Gels ; 10(3)2024 Mar 21.
Article de Anglais | MEDLINE | ID: mdl-38534630

RÉSUMÉ

Defibrillating cellulose through various grinding steps and incorporating it into hydrogels introduces unique properties that warrant thorough exploration. This study investigates cellulose defibrillation at different steps (15-120) using an ultra-fine friction grinder, blended with high-molecular-weight polyvinyl alcohol (PVA), and crosslinked via freeze-thawing. A critical discovery is the influence of defibrillation on the hydrogel structure, as evidenced by reduced crystallinity, thermal degradation, and the enhanced swelling of PVA chains. Despite an increased elastic modulus of up to 120 steps, the synthesized material maintains remarkable strength under hydrated conditions, holding significant promise in biomaterial applications.

8.
Drug Chem Toxicol ; : 1-9, 2024 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-38326987

RÉSUMÉ

Tobacco stalk is a cellulose-rich material and a sustainable alternative to be applied as a plant-based nanofibrillated cellulose (NFC) source. NFC use has garnered attention in the development of oral pharmaceutical forms, despite concerns about its safety due to the adverse effects of nicotine on health. Therefore, we aimed at establishing the safety of NFC derived from tobacco stalk for its potential use as a novel pharmaceutical excipient, exploring its potential functions for tablet production. We conducted acute and subchronic oral toxicity tests in adult female Wistar rats. Initially, individual animals received sequential doses (175-5,000 mg·kg-1) for 24 hours followed by a careful observation of any toxic effects. Subsequently, 20 rats were divided into four groups for a subchronic assay, evaluating toxicity signs, body weight changes, hematological, biochemical, and histopathological parameters. No deaths or other clinical toxicity signs were observed in either the acute or the subchronic assays. We noticed a significant reduction in body weight gain (p < 0.05) after 14 days. We found statistical differences for hematological and biochemical parameters, unrelated to dosage. There were no observed toxic effects, and tobacco stalk ingestion did not adversely affect organ morphology in the histopathological evaluation. The oral administration of NFC at 5,000 mg·kg-1 per day for 28 days was well-tolerated by treated rats, with no reported deaths. In conclusion, NFC derived from tobacco stalk has shown to be a sustainable and safe alternative for use as an excipient at experimental doses, demonstrating compatibility with its proposed applications.

9.
Int J Biol Macromol ; 263(Pt 2): 130407, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38417747

RÉSUMÉ

This study focuses on enhancing interventional medical devices, specifically catheters, using a novel composite material. Challenges like corrosion and contamination in vivo, often caused by body fluids' pH, bacteria, and proteins, lead to mechanical damage, bacterial colonization, and biofilm formation on devices like catheters. The objective of this study was to prepare a versatile composite (HFs) by designing polyurethanes (HPU) with an ionic chain extender (HIID) and blending them with amphiphilic nanofibrillated cellulose (Am-CNF). The composite leverages dynamic interactions such as hydrogen bonding and electrostatic forces, as evidenced by Molecular Mechanics (MM) calculations. The H4F0.75 composite exhibited exceptional properties: 99 % length recovery post 600 stretching cycles at 100 % strain, rapid self-healing in artificial urine, high bactericidal activity, and excellent cell viability. Moreover, mechanical aging tests and UV-vis spectral analysis confirmed the material's durability and safety. These findings suggest that the HFs composite holds significant promise for improving catheters' performance in medical applications.


Sujet(s)
Encrassement biologique , Cellulose , Cellulose/pharmacologie , Cellulose/composition chimique , Polyuréthanes/pharmacologie , Polyuréthanes/composition chimique , Encrassement biologique/prévention et contrôle , Cathéters , Antibactériens/pharmacologie , Antibactériens/composition chimique
10.
J Control Release ; 368: 397-412, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38423475

RÉSUMÉ

Platelet-rich plasma (PRP) is a source of growth factors, which are implicated in active tissue regeneration. However, after transplantation the efficacy of these bioactive compounds is often diminished due to rapid degradation and untargeted localization. For this reason, we evaluated the potential of nanofibrillated cellulose (NFC) hydrogel as a PRP carrier. NFC hydrogel is an animal-free biomaterial that, when doped with cellulase, can assist the release of PRP in a wound site. In this study, we examined the effects of 0.5% (m/v) NFC hydrogel formulations, including PRP and cellulase, on the migration and proliferation of skin cells via an in vitro scratch wound model. The suitability of the 0.8% NFC hydrogel formulations for accelerated wound healing and PRP carrying was studied in vitro in diffusion studies and in vivo in a full-thickness excisional wound model in SKH1 mice. None of the NFC hydrogel formulations with or without PRP and cellulase disturbed the normal cell behavior in vitro, and cellulase was successfully used to degrade NFC. NFC hydrogel slowed fibroblast migration rate in vitro. In vivo, NFC hydrogel treatment showed significantly enhanced re-epithelialization compared to control and supported collagen deposition. In addition, angiogenesis was significantly induced via PRP release after degrading NFC hydrogel with cellulase without abnormal host reaction. This study demonstrates the potential of NFC hydrogel with cellulase as a carrier for PRP with controlled release in future skin tissue engineering applications.


Sujet(s)
Cellulases , Plasma riche en plaquettes , Souris , Animaux , Hydrogels/pharmacologie , Cellulose , Cicatrisation de plaie , Cellulases/pharmacologie
11.
Data Brief ; 52: 109944, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38293579

RÉSUMÉ

This article describes data related to the research paper "Simplification of gel point characterization of cellulose nano and microfiber suspensions" [1]. The characterization of fibrillated celluloses that include cellulose nano and microfibrils (CMNFs) is a challenge for their production on an industrial scale, requiring easy techniques that control their quality and reproducibility. Gel point is a convenient parameter commonly used to estimate the aspect ratio (AR) of CMNFs. However, this estimation requires many sedimentation experiments, which are tedious and time consuming. The dataset includes all information related to the traditional experiments and to the simplified experiments for estimating gel point and AR based on only one sedimentation experiment. The full data set is useful to select the initial concentration to carry out the experimentation. This dataset also includes the information for the validation of the proposed simplified methodology and shows that the errors are lower than 7% for the gel point calculation and of 3% for the AR estimation. A larger databased of nanocellulose suspensions can be built with the reuse of this data to allow the estimation of nanocellulose properties in a future.

12.
Int J Biol Macromol ; 256(Pt 1): 128419, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38013080

RÉSUMÉ

Chitosan-based aerogels were fabricated through utilizing of nanofibrillated cellulose (NFC)/CaCO3 composites. Chitosan aerogel and extra three aerogels loaded different concentrations of NFC/CaCO3 were investigated to explore their release efficiency of Tebuconazole pesticides. Results obtained from ATR-FTIR showed a remarkable decline of the characterized chitosan hydroxyl group peak prolonging with appearance of new peaks assigned to the inclusion of inorganic calcium element. Also, SEM images showed chitosan aerogel with regular porous structure increased by incorporation with of NFC/CaCO3 nanocomposite, while EDS affirmed the presence of calcium element rather pristine chitosan aerogel. In addition to this, the physical characterizations showed significant improvement in swelling properties for aerogels incorporated NFC/CaCO3 nanocomposite at low ratios. Chitosan aerogel reinforced NFC/CaCO3 nanocomposite exhibited benefit on loading and release efficiency of Tebuconazole. All samples showed accessibility to column release method with fastest release at low slow rate 2 mL/min as giving chance for diffusion and solubility of ingredient, while release increase as heat increase as result of pore expansion. In conclusion, chitosan aerogels incorporated calcium carbonate showed better-sustained release of Tebuconazole pesticides than pristine chitosan aerogel. The produced aerogels loaded NFC/CaCO3 nanocomposite could be promising for controlled release of pesticides at water-streams in agriculture sector.


Sujet(s)
Chitosane , Nanocomposites , Pesticides , Triazoles , Chitosane/composition chimique , Cellulose/composition chimique , Calcium , Préparations à action retardée
13.
Int J Biol Macromol ; 256(Pt 1): 128327, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38000597

RÉSUMÉ

Frequent oil spills and illegal industrial pollutant discharge cause ecological and resource damages, so it is necessary to establish efficient adsorption and recovery strategies for oils in wastewater. Herein, inspired by solar-driven viscosity-breaking, we propose a facile approach to fabricate multifunctional nanofibrillated cellulose-based aerogel with high elasticity, excellent photothermal conversion, efficient selective oil adsorption and antibacterial properties. Firstly, copper sulfide (CuS) nanoparticles were in situ deposited on the template of oxidative nanofibrillated cellulose (ONC), aiming at achieving efficient photothermal effect and antibacterial properties. Ethylene glycol diglycidyl ether (EGDE) was employed to establish multiple crosslinking network between CuS@ONC and polyethyleneimine (PEI). A thin hydrophobic PMTS layer deposited on the surface of aerogel via a facile gas-solid reaction ensured stable oil selectivity. The resulting composite aerogel can rapidly adsorb oil under solar self-heating, significantly reducing the adsorption time from 25 to 5 min. Furthermore, it exhibits excellent adsorption capacities for various oils, retaining over 92 % of its initial capacity even after 20 adsorption-desorption cycles, and the antibacterial properties extend its lifespan. This work offers a promising method for constructing multifunctional aerogels for efficient oil-water separation, especially beneficial for high-viscosity and high-melting-point oil cleanup.


Sujet(s)
Cellulose , Pollution pétrolière , Cellulose/composition chimique , Pollution pétrolière/analyse , Viscosité , Gels/composition chimique , Huiles/composition chimique , Antibactériens
14.
ACS Appl Bio Mater ; 6(12): 5596-5608, 2023 Dec 18.
Article de Anglais | MEDLINE | ID: mdl-38050684

RÉSUMÉ

Hybrid collagen (Coll) bioscaffolds have emerged as a promising solution for tissue engineering (TE) and regenerative medicine. These innovative bioscaffolds combine the beneficial properties of Coll, an important structural protein of the extracellular matrix, with various other biomaterials to create platforms for long-term cell growth and tissue formation. The integration or cross-linking of Coll with other biomaterials increases mechanical strength and stability and introduces tailored biochemical and physical factors that mimic the natural tissue microenvironment. This work reports on the fabrication of chemically cross-linked hybrid bioscaffolds with enhanced properties from the combination of Coll, nanofibrillated cellulose (NFC), carboxymethylcellulose (CMC), and citric acid (CA). The bioscaffolds were prepared by 3D printing ink containing Coll-NFC-CMC-CA followed by freeze-drying, dehydrothermal treatment, and neutralization. Cross-linking through the formation of ester bonds between the polymers and CA in the bioscaffolds was achieved by exposing the bioscaffolds to elevated temperatures in the dry state. The morphology, pores/porosity, chemical composition, structure, thermal behavior, swelling, degradation, and mechanical properties of the bioscaffolds in the dry and wet states were investigated as a function of Coll concentration. The bioscaffolds showed no cytotoxicity to MG-63 human bone osteosarcoma cells as tested by different assays measuring different end points. Overall, the presented hybrid Coll bioscaffolds offer a unique combination of biocompatibility, stability, and structural support, making them valuable tools for TE.


Sujet(s)
Ingénierie tissulaire , Structures d'échafaudage tissulaires , Humains , Structures d'échafaudage tissulaires/composition chimique , Matériaux biocompatibles/pharmacologie , Matériaux biocompatibles/composition chimique , Collagène/composition chimique , Cellulose/pharmacologie , Cellulose/composition chimique , Impression tridimensionnelle
15.
Foods ; 12(22)2023 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-38002193

RÉSUMÉ

In response to rising concerns over the environmental and human health ramifications of polymers derived from petroleum, particularly in the food packaging industry, research has pivoted towards more sustainable materials. Poly(butylene succinate) (PBS), selected as the polymer matrix, stands out as one of the most promising bio-based and biodegradable polymers suitable for film blowing and lamination. A layered spray-coating technique was employed to apply 1, 5, 10, and 20 layers of nanofibrillated cellulose (NFC) between blown PBS films, creating a three-layer laminate structure. NFC sourced from minimally processed hemp stalk waste highlights the potential for minimizing environmental impact. The water vapor transmission rate (WVTR) of these films, a critical parameter for food packaging, was assessed in a controlled environment at 38 °C and 90% relative humidity over a period of two months. The integration of a single NFC layer, constituting 0.35% of the composite's weight, was observed to significantly reduce the WVTR by up to 5.5-fold. It was noted that higher NFC layer counts above 10 reduced the adhesion within the laminate layers. Morphological assessments showed that the number of structural defects increased with a higher count of NFC layers. As the count of NFC layers increased, the optical transparency of the laminates dropped from approximately 65% to 25% in the visible light spectrum. Notably, by weight percent, NFC proved to be an effective barrier even without chemical modification. The developed laminates stand out as a viable, green option for food packaging, offering a sustainable and renewable solution.

16.
Int J Biol Macromol ; 253(Pt 7): 127462, 2023 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-37852404

RÉSUMÉ

To enhance the mechanical properties and interfacial compatibility of thermoplastic starch (TPS) highly filled poly(butylene adipate co-terephthalate) (PBAT) composite films, esterified NFC was innovatively fabricated and introduced into the composite system. The influences of NFC content and ball-milling treatment were thoroughly investigated. Interestingly, the amphiphilic esterified NFC provided a "bridge-like" effect between TPS and PBAT interfaces, which significantly improved the interfacial compatibility and mechanical properties. Notably, the tensile properties of the composite films reached their maximums at a 7 wt% NFC content, displaying a tensile strength of 6.2 MPa and an elastic modulus of 263 MPa. These values corresponded to a 59 % and 180 % increase, respectively, compared to the composition without NFC. More importantly, ball-milling contributed to uniform dispersion and surface activation of NFC, preventing starch retrogradation, and enhancing the tensile strength and elastic modulus by 30.3 % and 56.6 %, respectively. Additionally, the film exhibited excellent UV-blocking, foldable, writable, and transparent performance. These findings provide valuable data supporting the expanded applications of starch-based composite films.


Sujet(s)
Cellulose , Amidon , Module d'élasticité , Résistance à la traction , Polyesters
17.
Bioengineering (Basel) ; 10(8)2023 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-37627871

RÉSUMÉ

Cellulose micro/nanomaterials (CMNMs) are innovative materials with a wide spectrum of industrial and biomedical applications. Although cellulose has been recognized as a safe material, the unique properties of its nanosized forms have raised concerns about their safety for human health. Genotoxicity is an endpoint that must be assessed to ensure that no carcinogenic risks are associated with exposure to nanomaterials. In this study, we evaluated the genotoxicity of two types of cellulose micro/nanofibrils (CMF and CNF) and one sample of cellulose nanocrystals (CNC), obtained from industrial bleached Eucalyptus globulus kraft pulp. For that, we exposed co-cultures of human alveolar epithelial A549 cells and THP-1 monocyte-derived macrophages to a concentration range of each CMNM and used the micronucleus (MN) and comet assays. Our results showed that only the lowest concentrations of the CMF sample were able to induce DNA strand breaks (FPG-comet assay). However, none of the three CMNMs produced significant chromosomal alterations (MN assay). These findings, together with results from previous in vitro studies using monocultures of A549 cells, indicate that the tested CNF and CNC are not genotoxic under the conditions tested, while the CMF display a low genotoxic potential.

18.
Int J Biol Macromol ; 252: 126448, 2023 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-37625741

RÉSUMÉ

A versatile foam based on Schiff base crosslinking of oxidized nanofibrillated cellulose (ONFC) with amino modified graphene oxide (NGO) and chitosan (CS) was prepared for the efficacious selective removal of anionic dyes. (3-aminopropyl) triethoxysilane (APTES) was employed as a surface modifier to yield an amino modified graphene oxide (NGO). Meanwhile, ONFC was obtained via a periodate oxidation process to produce dialdehyde groups. Thus, the Schiff base crosslinking of ONFC with NGO and CS enabled to be readily accomplished, producing a versatile NGO/ONFC/CS foam. Systematical characterizations confirmed the successful covalent crosslinking and formation of NGO/ONFC/CS foams. Selective adsorption of Allura Red (AR) and orange G (OG) over cationic dye methylene blue (MB) by NGO/ONFC/CS was confirmed. It was found the maximum adsorption capacities of AR and OG at 303 K were 416.7 and 300.5 mg g-1, while it was 14.60 mg g-1 for MB. Thus, the new Schiff base crosslinked NGO/ONFC/CS paves the way for developing versatile graphene based foams in the applications of water treatment.


Sujet(s)
Oxycellulose , Chitosane , Graphite , Polluants chimiques de l'eau , Agents colorants , Bases de Schiff , Adsorption , Bleu de méthylène
19.
Int J Biol Macromol ; 251: 126212, 2023 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-37567533

RÉSUMÉ

The present study developed the formulation of active bionanocomposites films endowed with the abilities of high biodegradability and antimicrobials for active packaging applications. The aim of this work was to prepare poly (lactic acid)/poly (butylene succinate) (PLA/PBS) blended films reinforced with different concentrations of nanofibrillated cellulose (NFC) and 9 % of thymol essential oil (EO) using the casting method. The active films were further evaluated through Fourier transform infrared spectroscopy (FTIR); as well as mechanical, physical, water vapour permeability (WVP), thermal analysis (TGA), biodegradation, morphological, and antimicrobial (% reduction of bacteria) testing. The tensile strength (TS) of PLA/PBS blend films increased by 12 % with the incorporation of 2 wt% of NFC. The PLA/PBS/NFC with 9 % thymol EO has a good water barrier performance with its tensile strength, elongation at break, and tensile modulus was 13.2 MPa, 13.1 %, and 513 MPa respectively. The presence of NFC promoted the disintegration of PLA/PBS films by 70.5 %. These films promoted the antibacterial activity against S. aureus and E. coli. The study demonstrates that the developed films improved the qualities of chicken fillets and have great potential to be used as active bionanocomposites in food packaging applications.

20.
Polymers (Basel) ; 15(14)2023 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-37514487

RÉSUMÉ

In this study, we are reporting the fabrication of a nanocellulose (NFC) paper-based food indicator for chicken breast spoilage detection by both visual color change observation and smartphone image analysis. The indicator consists of a nanocellulose paper (nanopaper) substrate and a pH-responsive dye, bromocresol green (BCG), that adsorbs on the nanopaper. The nanopaper is prepared through vacuum filtration and high-pressure compression. The nanopaper exhibits good optical transparency and strong mechanical strength. The color change from yellow to blue in the nanopaper indicator corresponding to an increase in the solution pH and chicken breast meat storage data were observed and analyzed, respectively. Further, we were able to use color differences determined by the RGB values from smartphone images to analyze the results, which indicates a simple, sensitive, and readily deployable approach toward the development of future smartphone-based food spoilage tests.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE