Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 309
Filtrer
1.
Curr Opin Plant Biol ; 81: 102601, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38991464

RÉSUMÉ

Prenylated phenolics occur in over 4000 species in the plant kingdom, most of which are known as specialized metabolites with high chemical diversity. Many of them have been identified as pharmacologically active compounds from various medicinal plants, in which prenyl residues play a key role in these activities. Prenyltransferases (PTs) responsible for their biosynthesis have been intensively studied in the last two decades. These enzymes are membrane-bound proteins belonging to the UbiA superfamily that occurs from bacteria to humans, and in particular those involved in plant specialized metabolism show strict specificities for both substrates and products. This article reviews the enzymatic features of plant UbiA PTs, including C- and O-prenylation, molecular evolution, and application of UbiA PTs in synthetic biology.

2.
Chemistry ; 30(37): e202400860, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38699858

RÉSUMÉ

2,5-Dimethyl-2,4-hexadiene is a readily available and easily managable compound, whose symmetric and polymethylated dienic structure should be prone to engage in cross-metathesis reactions with other alkenes, but this has not been apparently exploited so far. Here we show that this reactant enables the easy synthesis of tri- and tetra-susbtituted alkenes (i. e. isobutylenyl and prenyl groups) from simple alkenes under mild reaction conditions, not only with the conventional 2nd generation Grubbs catalyst but also with other Grela-type catalyts such as StickyCat,TM AquaMetTM and GreenCatTM. The use of liquid and low volatile 2,5-dimethyl-2,4-hexadiene avoids the use of gaseous alkene reactants and, besides, showcases the reactivity of polyisoprene (rubber), thus allowing to optimize the reaction conditions for rubber upcycling, after metathesis reaction of the pristine or used polymer with simple alkenes. These results bring low volatile isoprene-type compounds as privileged poly-substituted reactants for alkene cross-metathesis reactions.

3.
Int J Mol Sci ; 25(10)2024 May 13.
Article de Anglais | MEDLINE | ID: mdl-38791363

RÉSUMÉ

Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This process often causes proteins to associate with the membrane and participate in signal transduction pathways. The most common substrates of FTase are proteins that have C-terminal tetrapeptide CaaX box sequences where the cysteine is the site of modification. However, recent work has shown that five amino acid sequences can also be recognized, including the pentapeptides CMIIM and CSLMQ. In this work, peptide libraries were initially used to systematically vary the residues in those two parental sequences using an assay based on Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). In addition, 192 pentapeptide sequences from the human proteome were screened using that assay to discover additional extended CaaaX-box motifs. Selected hits from that screening effort were rescreened using an in vivo yeast reporter protein assay. The X-ray crystal structure of CMIIM bound to FTase was also solved, showing that the C-terminal tripeptide of that sequence interacted with the enzyme in a similar manner as the C-terminal tripeptide of CVVM, suggesting that the tripeptide comprises a common structural element for substrate recognition in both tetrapeptide and pentapeptide sequences. Molecular dynamics simulation of CMIIM bound to FTase further shed light on the molecular interactions involved, showing that a putative catalytically competent Zn(II)-thiolate species was able to form. Bioinformatic predictions of tetrapeptide (CaaX-box) reactivity correlated well with the reactivity of pentapeptides obtained from in vivo analysis, reinforcing the importance of the C-terminal tripeptide motif. This analysis provides a structural framework for understanding the reactivity of extended CaaaX-box motifs and a method that may be useful for predicting the reactivity of additional FTase substrates bearing CaaaX-box sequences.


Sujet(s)
Biologie informatique , Banque de peptides , Humains , Biologie informatique/méthodes , Spécificité du substrat , Farnesyltranstransferase/métabolisme , Farnesyltranstransferase/composition chimique , Oligopeptides/composition chimique , Oligopeptides/métabolisme , Séquence d'acides aminés , Cristallographie aux rayons X , Spectrométrie de masse MALDI , Liaison aux protéines
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167177, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38636615

RÉSUMÉ

Mevalonate kinase deficiency (MKD) is an autosomal recessive metabolic disorder associated with recurrent autoinflammatory episodes. The disorder is caused by bi-allelic loss-of-function variants in the MVK gene, which encodes mevalonate kinase (MK), an early enzyme in the isoprenoid biosynthesis pathway. To identify molecular and cellular consequences of MKD, we studied primary fibroblasts from severely affected patients with mevalonic aciduria (MKD-MA) and more mildly affected patients with hyper IgD and periodic fever syndrome (MKD-HIDS). As previous findings indicated that the deficient MK activity in MKD impacts protein prenylation in a temperature-sensitive manner, we compared the subcellular localization and activation of the small Rho GTPases RhoA, Rac1 and Cdc42 in control, MKD-HIDS and MKD-MA fibroblasts cultured at physiological and elevated temperatures. This revealed a temperature-induced altered subcellular localization and activation in the MKD cells. To study if and how the temperature-induced ectopic activation of these signalling proteins affects cellular processes, we performed comparative transcriptome analysis of control and MKD-MA fibroblasts cultured at 37 °C or 40 °C. This identified cell cycle and actin cytoskeleton organization as respectively most down- and upregulated gene clusters. Further studies confirmed that these processes were affected in fibroblasts from both patients with MKD-MA and MKD-HIDS. Finally, we found that, similar to immune cells, the MK deficiency causes metabolic reprogramming in MKD fibroblasts resulting in increased expression of genes involved in glycolysis and the PI3K/Akt/mTOR pathway. We postulate that the ectopic activation of small GTPases causes inappropriate signalling contributing to the molecular and cellular aberrations observed in MKD.


Sujet(s)
Fibroblastes , Déficit en mévalonate kinase , Déficit en mévalonate kinase/génétique , Déficit en mévalonate kinase/métabolisme , Déficit en mévalonate kinase/anatomopathologie , Humains , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , Phosphotransferases (Alcohol Group Acceptor)/génétique , Phosphotransferases (Alcohol Group Acceptor)/métabolisme , Phosphotransferases (Alcohol Group Acceptor)/déficit , Cellules cultivées , Transduction du signal
5.
Bioorg Chem ; 147: 107365, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38636436

RÉSUMÉ

Protein prenylation is one example of a broad class of post-translational modifications where proteins are covalently linked to various hydrophobic moieties. To globally identify and monitor levels of all prenylated proteins in a cell simultaneously, our laboratory and others have developed chemical proteomic approaches that rely on the metabolic incorporation of isoprenoid analogues bearing bio-orthogonal functionality followed by enrichment and subsequent quantitative proteomic analysis. Here, several improvements in the synthesis of the alkyne-containing isoprenoid analogue C15AlkOPP are reported to improve synthetic efficiency. Next, metabolic labeling with C15AlkOPP was optimized to obtain useful levels of metabolic incorporation of the probe in several types of primary cells. Those conditions were then used to study the prenylomes of motor neurons (ES-MNs), astrocytes (ES-As), and their embryonic stem cell progenitors (ESCs), which allowed for the identification of 54 prenylated proteins from ESCs, 50 from ES-MNs, and 84 from ES-As, representing all types of prenylation. Bioinformatic analysis revealed specific enriched pathways, including nervous system development, chemokine signaling, Rho GTPase signaling, and adhesion. Hierarchical clustering showed that most enriched pathways in all three cell types are related to GTPase activity and vesicular transport. In contrast, STRING analysis showed significant interactions in two populations that appear to be cell type dependent. The data provided herein demonstrates that robust incorporation of C15AlkOPP can be obtained in ES-MNs and related primary cells purified via magnetic-activated cell sorting allowing the identification and quantification of numerous prenylated proteins. These results suggest that metabolic labeling with C15AlkOPP should be an effective approach for investigating the role of prenylated proteins in primary cells in both normal cells and disease pathologies, including ALS.


Sujet(s)
Alcynes , Astrocytes , Motoneurones , Prénylation des protéines , Astrocytes/métabolisme , Astrocytes/cytologie , Animaux , Alcynes/composition chimique , Alcynes/synthèse chimique , Motoneurones/métabolisme , Motoneurones/cytologie , Terpènes/composition chimique , Terpènes/synthèse chimique , Terpènes/métabolisme , Souris , Structure moléculaire , Cellules cultivées
6.
Yeast ; 41(5): 315-329, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38444057

RÉSUMÉ

Lipid binding domains and protein lipidations are essential features to recruit proteins to intracellular membranes, enabling them to function at specific sites within the cell. Membrane association can also be exploited to answer fundamental and applied research questions, from obtaining insights into the understanding of lipid metabolism to employing them for metabolic engineering to redirect fluxes. This review presents a broad catalog of membrane binding strategies focusing on the plasma membrane of Saccharomyces cerevisiae. Both lipid binding domains (pleckstrin homology, discoidin-type C2, kinase associated-1, basic-rich and bacterial phosphoinositide-binding domains) and co- and post-translational lipidations (prenylation, myristoylation and palmitoylation) are introduced as tools to target the plasma membrane. To provide a toolset of membrane targeting modules, respective candidates that facilitate plasma membrane targeting are showcased including their in vitro and in vivo properties. The relevance and versatility of plasma membrane targeting modules are further highlighted by presenting a selected set of use cases.


Sujet(s)
Membrane cellulaire , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Membrane cellulaire/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Transport des protéines , Métabolisme lipidique
7.
Physiol Rep ; 12(5): e15969, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38453353

RÉSUMÉ

Fast-twitch muscles are less susceptible to disuse atrophy, activate the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, and increase protein synthesis under prolonged muscle disuse conditions. However, the mechanism underlying prolonged muscle disuse-induced mTORC1 signaling activation remains unclear. The mevalonate pathway activates the mTORC1 signaling pathway via the prenylation and activation of Ras homolog enriched in brain (Rheb). Therefore, we investigated the effects of hindlimb unloading (HU) for 14 days on the mevalonate and mTORC1 signaling pathways in the plantaris muscle, a fast-twitch muscle, in adult male rats. Rats were divided into HU and control groups. The plantaris muscles of both groups were harvested after the treatment period, and the expression and phosphorylation levels of metabolic and intracellular signaling proteins were analyzed using Western blotting. We found that HU increased the expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the rate-limiting enzyme of the mevalonate pathway, and activated the mTORC1 signaling pathway without activating AKT, an upstream activator of mTORC1. Furthermore, HU increased prenylated Rheb. Collectively, these findings suggest that the activated mevalonate pathway may be involved in the activation of the Rheb/mTORC1 signaling pathway without AKT activation in fast-twitch muscles under prolonged disuse conditions.


Sujet(s)
Acide mévalonique , Protéines proto-oncogènes c-akt , Rats , Mâle , Animaux , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Acide mévalonique/métabolisme , Acide mévalonique/pharmacologie , Protéines proto-oncogènes c-akt/métabolisme , Sérine-thréonine kinases TOR/métabolisme , Suspension des membres postérieurs/physiologie , Transduction du signal/physiologie , Muscles squelettiques/métabolisme , Amyotrophie/métabolisme
8.
Nat Prod Res ; : 1-14, 2024 Mar 18.
Article de Anglais | MEDLINE | ID: mdl-38498692

RÉSUMÉ

Clusia is one of the most important genera of the Clusiaceae family, comprising up to 400 species. This review describes the identification of twenty-two flavonoids from Clusia species, which includes five flavonols (1-4 and 11), six flavones (5-10), one catechin (12), one flavanone (13), and nine biflavonoids (14-22). O- and C-glycosylation are frequently observed amongst these flavonoids. Furthermore, seven biphenyls (23-29) and nine xanthones (30-38) have been isolated from Clusia species. Biphenyls and xanthones show limited occurrence within the genus, but together with biosynthetic insights, they might offer important chemophenetics leads for the consolidation of the genus Clusia within the Clusiaceae family. Altogether, this work provides an overview of the chemistry of the genus Clusia in terms of flavonoids, biphenyls and xanthones, as well as it discusses biological activities and chemophenetics of the isolated compounds, when appropriate.

9.
Chem Biodivers ; 21(5): e202400491, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38470945

RÉSUMÉ

We have evaluated eight p-coumaric acid prenylated derivatives in vitro for their antileishmanial activity against Leishmania amazonensis promastigotes and their antischistosomal activity against Schistosoma mansoni adult worms. Compound 7 ((E)-3,4-diprenyl-4-isoprenyloxycinnamic alcohol) was the most active against L. amazonensis (IC50=45.92 µM) and S. mansoni (IC50=64.25 µM). Data indicated that the number of prenyl groups, the presence of hydroxyl at C9, and a single bond between C7 and C8 are important structural features for the antileishmanial activity of p-coumaric acid prenylated derivatives.


Sujet(s)
Antiprotozoaires , Acides coumariques , Leishmania , Tests de sensibilité parasitaire , Schistosoma mansoni , Animaux , Schistosoma mansoni/effets des médicaments et des substances chimiques , Acides coumariques/pharmacologie , Acides coumariques/composition chimique , Leishmania/effets des médicaments et des substances chimiques , Antiprotozoaires/pharmacologie , Antiprotozoaires/composition chimique , Antiprotozoaires/synthèse chimique , Relation structure-activité , Prénylation , Propionates/pharmacologie , Propionates/composition chimique , Structure moléculaire , Schistosomicides/pharmacologie , Schistosomicides/composition chimique , Schistosomicides/synthèse chimique , Relation dose-effet des médicaments
10.
Biochimie ; 222: 28-36, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38301884

RÉSUMÉ

Isoprenyl cysteine carboxyl methyltransferase (ICMT) catalyzes the last step of the prenylation pathway. Previously, we found that high ICMT levels enhance tumorigenesis in vivo and that its expression is repressed by the p53 tumor suppressor. Based on evidence suggesting that some ICMT substrates affect invasive traits, we wondered if this enzyme may promote metastasis. In this work, we found that ICMT overexpression enhanced lung metastasis in vivo. Accordingly, ICMT overexpression also promoted cellular functions associated with aggressive phenotypes such as migration and invasion in vitro. Considering that some ICMT substrates are involved in the regulation of actin cytoskeleton, we hypothesized that actin-rich structures, associated with invasion and metastasis, may be affected. Our findings revealed that ICMT enhanced the formation of invadopodia. Additionally, by analyzing cancer patient databases, we found that ICMT is overexpressed in several tumor types. Furthermore, the concurrent expression of ICMT and CTTN, which encodes a crucial component of invadopodia, showed a significant correlation with clinical outcome. In summary, our work identifies ICMT overexpression as a relevant alteration in human cancer that promotes the development of metastatic tumors.


Sujet(s)
Podosomes , Protein Methyltransferases , Animaux , Humains , Souris , Lignée cellulaire tumorale , Mouvement cellulaire , Cortactine/métabolisme , Cortactine/génétique , Régulation de l'expression des gènes tumoraux , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/secondaire , Tumeurs du poumon/génétique , Tumeurs du poumon/enzymologie , Invasion tumorale , Métastase tumorale , Tumeurs/anatomopathologie , Tumeurs/génétique , Tumeurs/enzymologie , Tumeurs/métabolisme , Podosomes/métabolisme , Protein Methyltransferases/métabolisme , Protein Methyltransferases/génétique
11.
Phytother Res ; 38(4): 1951-1970, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38358770

RÉSUMÉ

The herb Sophora flavescens displays anti-inflammatory activity and can provide a source of antipsoriatic medications. We aimed to evaluate whether S. flavescens extracts and compounds can relieve psoriasiform inflammation. The ability of flavonoids (maackiain, sophoraflavanone G, leachianone A) and alkaloids (matrine, oxymatrine) isolated from S. flavescens to inhibit production of cytokine/chemokines was examined in keratinocytes and macrophages. Physicochemical properties and skin absorption were determined by in silico molecular modeling and the in vitro permeation test (IVPT) to establish the structure-permeation relationship (SPR). The ethyl acetate extract exhibited higher inhibition of interleukin (IL)-6, IL-8, and CXCL1 production in tumor necrosis factor-α-stimulated keratinocytes compared to the ethanol and water extracts. The flavonoids demonstrated higher cytokine/chemokine inhibition than alkaloids, with the prenylated flavanones (sophoraflavanone G, leachianone A) led to the highest suppression. Flavonoids exerted anti-inflammatory effects via the extracellular signal-regulated kinase, p38, activator protein-1, and nuclear factor-κB signaling pathways. In the IVPT, prenylation of the flavanone skeleton significantly promoted skin absorption from 0.01 to 0.22 nmol/mg (sophoraflavanone G vs. eriodictyol). Further methoxylation of a prenylated flavanone (leachianone A) elevated skin absorption to 2.65 nmol/mg. Topical leachianone A reduced the epidermal thickness in IMQ-treated mice by 47%, and inhibited cutaneous scaling and cytokine/chemokine overexpression at comparable levels to a commercial betamethasone product. Thus, prenylation and methoxylation of S. flavescens flavanones may enable the design of novel antipsoriatic agents.


Sujet(s)
Alcaloïdes , Flavanones , Sophora , Souris , Animaux , Flavonoïdes/composition chimique , Sophora flavescens , Sophora/composition chimique , Flavanones/pharmacologie , Flavanones/composition chimique , Prénylation , Anti-inflammatoires/pharmacologie , Anti-inflammatoires/usage thérapeutique , Cytokines , Chimiokines
12.
Adv Sci (Weinh) ; 11(6): e2307372, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38059776

RÉSUMÉ

Post-translational prenylations, found in eukaryotic primary metabolites and bacterial secondary metabolites, play crucial roles in biomolecular interactions. Employing genome mining methods combined with AlphaFold2-based predictions of protein interactions, PalQ , a prenyltransferase responsible for the tryptophan prenylation of RiPPs produced by Paenibacillus alvei, is identified. PalQ differs from cyanobactin prenyltransferases because of its evolutionary relationship to isoprene synthases, which enables PalQ to transfer extended prenyl chains to the indole C3 position. This prenylation introduces structural diversity to the tryptophan side chain and also leads to conformational dynamics in the peptide backbone, attributed to the cis/trans isomerization that arises from the formation of a pyrrolidine ring. Additionally, PalQ exhibited pronounced positional selectivity for the C-terminal tryptophan. Such enzymatic characteristics offer a toolkit for peptide therapeutic lipidation.


Sujet(s)
Dimethylallyltransferase , Dimethylallyltransferase/génétique , Dimethylallyltransferase/composition chimique , Dimethylallyltransferase/métabolisme , Tryptophane/composition chimique , Tryptophane/génétique , Tryptophane/métabolisme , Prénylation , Maturation post-traductionnelle des protéines , Peptides/métabolisme
13.
Brain Res Bull ; 206: 110833, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38042502

RÉSUMÉ

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with unknown causes, which mainly affects motor neurons in the anterior horn of the spinal cord, brain stem, and cerebral cortex, also known as motor neuron disease. An important pathological feature of ALS is the formation of aggregates of mutant SOD1 protein, CTF25 of TDP-43, or other abnormal proteins in motor neurons, which require autophagy for degradation. Protein prenylation is known to participate in membrane association and proper localization of proteins. RABGGTB is the ß subunit of GGTase II (one of the prenyltransferases) that can regulate autophagy via Rab7 geranylgeranylation. In this study, we overexpressed RABGGTB via lentiviral transfection in NSC34-hSOD1G93A and TDP-43 cells. Overexpression of RABGGTB improved ALS cell proliferation by facilitating autophagosome-lysosome fusion. Furthermore, the abnormal aggregation of SOD1 protein was reduced. This indicates that protein prenylation is important for the proliferation and autophagy of cells autophagy. Enhanced autophagy has been observed in two of the most widely used ALS cell models. These findings indicate the widespread applicability of prenylation in ALS. In summary, overexpression of RABGGTB improved the geranylgeranylation of the Rab7 protein and had a positive effect on cells. These findings provide insights into the development of a novel therapeutic strategy for ALS.


Sujet(s)
Sclérose latérale amyotrophique , Maladies neurodégénératives , Humains , Sclérose latérale amyotrophique/métabolisme , Superoxide dismutase-1/génétique , Superoxide dismutase-1/métabolisme , Maladies neurodégénératives/métabolisme , Motoneurones/métabolisme , Moelle spinale/métabolisme , Protéines de liaison à l'ADN/métabolisme
14.
Genes (Basel) ; 14(12)2023 12 13.
Article de Anglais | MEDLINE | ID: mdl-38137028

RÉSUMÉ

Protein prenylation mediated by the Arabidopsis thaliana PLURIPETALA (AtPLP) gene plays a crucial role in plant growth, development, and environmental response by adding a 15-carbon farnesyl group or one to two 20-carbon geranylgeranyl groups onto one to two cysteine residues at the C-terminus of the target protein. However, the homologous genes and their functions of AtPLP in rapeseed are unclear. In this study, bioinformatics analysis and gene cloning demonstrated the existence of two homologous genes of AtPLP in the Brassica napus L. genome, namely, BnPLP1 and BnPLP2. Evolutionary analysis revealed that BnPLP1 originated from the B. rapa L. genome, while BnPLP2 originated from the B. oleracea L. genome. Genetic transformation analysis revealed that the overexpression of BnPLP1 in Arabidopsis plants exhibited earlier flowering initiation, a prolonged flowering period, increased plant height, and longer main inflorescence length compared to the wild type. Contrarily, the downregulation of BnPLP1 expression in B. napus plants led to delayed flowering initiation, shortened flowering period, decreased plant height, and reduced main inflorescence length compared to the wild type. These findings indicate that the BnPLP1 gene positively regulates flowering time, plant height, and main inflorescence length. This provides a new gene for the genetic improvement of flowering time and plant architecture in rapeseed.


Sujet(s)
Arabidopsis , Brassica napus , Brassica napus/génétique , Inflorescence/génétique , Gènes de plante , Arabidopsis/génétique , Carbone
15.
Metab Eng ; 80: 207-215, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37852432

RÉSUMÉ

Icariin (ICA) has wide applications in nutraceuticals and medicine with strong anticancer activities. However, the structural complexity and low abundance in plants of ICA lead to the unsustainable and high-cost supply from chemical synthesis and plant extraction. Here, the whole biosynthesis pathway of ICA was elucidated, then was constructed in Saccharomyces cerevisiae, including a 13-step heterologous ICA pathway from eleven kinds of plants as well as deletions or overexpression of ten yeast endogenous genes. Spatial regulation of 8-C-prenyltransferase to mitochondria and three-stage sequential control of 4'-O-methyltransferase, 3-OH rhamnosyltransferase, and 7-OH glycosyltransferase expression successfully achieved the de novo synthesis of ICA with a titer of 130 µg/L under shake-flask culture. The ICA synthesis from glucose represents the longest reconstructed pathway of flavonoid in microbe so far. This study provides a potential choice for the sustainable microbial production of number of complex flavonoids.


Sujet(s)
Génie métabolique , Saccharomyces cerevisiae , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Flavonoïdes/génétique , Glucose/métabolisme
16.
Appl Microbiol Biotechnol ; 107(22): 6887-6895, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37713115

RÉSUMÉ

Prenyltransferases (PTs) from the dimethylallyl tryptophan synthase (DMATS) superfamily are known as efficient biocatalysts and mainly catalyze regioselective Friedel-Crafts alkylation of tryptophan and tryptophan-containing cyclodipeptides (CDPs). They can also use other unnatural aromatic compounds as substrates and play therefore a pivotal role in increasing structural diversity and biological activities of a broad range of natural and unnatural products. In recent years, several prenylated dimeric CDPs have been identified with wide range of bioactivities. In this study, we demonstrate the production of prenylated dimeric CDPs by chemoenzymatic synthesis with a known promiscuous enzyme EchPT1, which uses cyclo-L-Trp-L-Ala as natural substrate for reverse C2-prenylation. High product yields were achieved with EchPT1 for C3-N1' and C3-C3' linked dimers of cyclo-L-Trp-L-Trp. Isolation and structural elucidation confirmed the product structures to be reversely C19/C19'-mono- and diprenylated cyclo-L-Trp-L-Trp dimers. Our study provides an additional example for increasing structural diversity by prenylation of complex substrates with known biosynthetic enzymes. KEY POINTS: • Chemoenzymatic synthesis of prenylated cyclo-L-Trp-L-Trp dimers • Same prenylation pattern and position for cyclodipeptides and their dimers. • Indole prenyltransferases such as EchPT1 can be widely used as biocatalysts.

17.
J Biol Chem ; 299(11): 105269, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37739036

RÉSUMÉ

Prenylation is an irreversible post-translational modification that supports membrane interactions of proteins involved in various cellular processes, including migration, proliferation, and survival. Dysregulation of prenylation contributes to multiple disorders, including cancers and vascular and neurodegenerative diseases. Prenyltransferases tether isoprenoid lipids to proteins via a thioether linkage during prenylation. Pharmacological inhibition of the lipid synthesis pathway by statins is a therapeutic approach to control hyperlipidemia. Building on our previous finding that statins inhibit membrane association of G protein γ (Gγ) in a subtype-dependent manner, we investigated the molecular reasoning for this differential inhibition. We examined the prenylation of carboxy-terminus (Ct) mutated Gγ in cells exposed to Fluvastatin and prenyl transferase inhibitors and monitored the subcellular localization of fluorescently tagged Gγ subunits and their mutants using live-cell confocal imaging. Reversible optogenetic unmasking-masking of Ct residues was used to probe their contribution to prenylation and membrane interactions of the prenylated proteins. Our findings suggest that specific Ct residues regulate membrane interactions of the Gγ polypeptide, statin sensitivity, and extent of prenylation. Our results also show a few hydrophobic and charged residues at the Ct are crucial determinants of a protein's prenylation ability, especially under suboptimal conditions. Given the cell and tissue-specific expression of different Gγ subtypes, our findings indicate a plausible mechanism allowing for statins to differentially perturb heterotrimeric G protein signaling in cells depending on their Gγ-subtype composition. Our results may also provide molecular reasoning for repurposing statins as Ras oncogene inhibitors and the failure of using prenyltransferase inhibitors in cancer treatment.


Sujet(s)
Protéines G hétérotrimériques , Prénylation des protéines , Humains , Motifs d'acides aminés , Résistance aux substances/génétique , Cellules HeLa , Protéines G hétérotrimériques/composition chimique , Protéines G hétérotrimériques/génétique , Protéines G hétérotrimériques/métabolisme , Inhibiteurs de l'hydroxyméthylglutaryl-CoA réductase/pharmacologie , Modèles moléculaires , Mutation , Prénylation des protéines/effets des médicaments et des substances chimiques , Structure tertiaire des protéines , Transport des protéines/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques
18.
Plants (Basel) ; 12(16)2023 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-37631227

RÉSUMÉ

Heavy metal-associated isoprenylated plant proteins (HIPPs) are a metallochaperone-like protein family comprising a combination of structural features unique to vascular plants. HIPPs possess both one or two heavy metal-binding domains and an isoprenylation site, facilitating a posttranslational protein lipid modification. Recent work has characterized individual HIPPs across numerous different species and provided evidence for varied functionalities. Interestingly, a significant number of HIPPs have been identified in proteomes of plasmodesmata (PD)-nanochannels mediating symplastic connectivity within plant tissues that play pivotal roles in intercellular communication during plant development as well as responses to biotic and abiotic stress. As characterized functions of many HIPPs are linked to stress responses, plasmodesmal HIPP proteins are potentially interesting candidate components of signaling events at or for the regulation of PD. Here, we review what is known about PD-localized HIPP proteins specifically, and how the structure and function of HIPPs more generally could link to known properties and regulation of PD.

19.
mBio ; 14(4): e0130923, 2023 08 31.
Article de Anglais | MEDLINE | ID: mdl-37548452

RÉSUMÉ

In the apicomplexans, endocytosed cargos (e.g., hemoglobin) are trafficked to a specialized organelle for digestion. This follows a unique endocytotic process at the micropore/cytostome in these parasites. However, the mechanism underlying endocytic trafficking remains elusive, due to the repurposing of classical endocytic proteins for the biogenesis of apical organelles. To resolve this issue, we have exploited the genetic tractability of the model apicomplexan Toxoplasma gondii, which ingests host cytosolic materials (e.g., green fluorescent protein[GFP]). We determined an association between protein prenylation and endocytic trafficking, and using an alkyne-labeled click chemistry approach, the prenylated proteome was characterized. Genome editing, using clustered regularly interspaced short palindromic repaet/CRISPR-associated nuclease 9 (CRISPR/Cas9), was efficiently utilized to generate genetically modified lines for the functional screening of 23 prenylated candidates. This identified four of these proteins that regulate the trafficking of endocytosed GFP vesicles. Among these proteins, Rab1B and YKT6.1 are highly conserved but are non-classical endocytic proteins in eukaryotes. Confocal imaging analysis showed that Rab1B and Ras are substantially localized to both the trans-Golgi network and the endosome-like compartments in the parasite. Conditional knockdown of Rab1B caused a rapid defect in secretory trafficking to the rhoptry bulb, suggesting a trafficking intersection role for the key regulator Rab1B. Further experiments confirmed a critical role for protein prenylation in regulating the stability/activity of these proteins (i.e., Rab1B and YKT6.1) in the parasite. Our findings define the molecular basis of endocytic trafficking and reveal a potential intersection function of Rab1B on membrane trafficking in T. gondii. This might extend to other related protists, including the malarial parasites. IMPORTANCE The protozoan Toxoplasma gondii establishes a permissive niche, in host cells, that allows parasites to acquire large molecules such as proteins. Numerous studies have demonstrated that the parasite repurposes the classical endocytic components for secretory sorting to the apical organelles, leaving the question of endocytic transport to the lysosome-like compartment unclear. Recent studies indicated that endocytic trafficking is likely to associate with protein prenylation in malarial parasites. This information promoted us to examine this association in the model apicomplexan T. gondii and to identify the key components of the prenylated proteome that are involved. By exploiting the genetic tractability of T. gondii and a host GFP acquisition assay, we reveal four non-classical endocytic proteins that regulate the transport of endocytosed cargos (e.g., GFP) in T. gondii. Thus, we extend the principle that protein prenylation regulates endocytic trafficking and elucidate the process of non-classical endocytosis in T. gondii and potentially in other related protists.


Sujet(s)
Toxoplasma , Toxoplasma/métabolisme , Protéome/métabolisme , Protéines de protozoaire/génétique , Transport des protéines , Endosomes/métabolisme , Protéines à fluorescence verte/métabolisme
20.
J Biol Chem ; 299(10): 105183, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37611828

RÉSUMÉ

Emerging research and clinical evidence suggest that the metabolic activity of oocytes may play a pivotal role in reproductive anomalies. However, the intrinsic mechanisms governing oocyte development regulated by metabolic enzymes remain largely unknown. Our investigation demonstrates that geranylgeranyl diphosphate synthase1 (Ggps1), the crucial enzyme in the mevalonate pathway responsible for synthesizing isoprenoid metabolite geranylgeranyl pyrophosphate from farnesyl pyrophosphate, is essential for oocyte maturation in mice. Our findings reveal that the deletion of Ggps1 that prevents protein prenylation in fully grown oocytes leads to subfertility and offspring metabolic defects without affecting follicle development. Oocytes that lack Ggps1 exhibit disrupted mitochondrial homeostasis and the mitochondrial defects arising from oocytes are inherited by the fetal offspring. Mechanistically, the excessive farnesylation of mitochondrial ribosome protein, Dap3, and decreased levels of small G proteins mediate the mitochondrial dysfunction induced by Ggps1 deficiency. Additionally, a significant reduction in Ggps1 levels in oocytes is accompanied by offspring defects when females are exposed to a high-cholesterol diet. Collectively, this study establishes that mevalonate pathway-protein prenylation is vital for mitochondrial function in oocyte maturation and provides evidence that the disrupted protein prenylation resulting from an imbalance between farnesyl pyrophosphate and geranylgeranyl pyrophosphate is the major mechanism underlying impairment of oocyte quality induced by high cholesterol.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...