Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.154
Filtrer
1.
Fish Shellfish Immunol ; 152: 109768, 2024 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-39013534

RÉSUMÉ

Acute hepatopancreatic necrosis disease (AHPND) caused by toxin-producing Vibrio parahaemolyticus (VpAHPND) has severely affected shrimp production. Long non-coding RNA (lncRNA), a regulatory non-coding RNA, which can play important function in shrimp disease responses. This study aimed to identify and investigate the role of lncRNA involved in VpAHPND infection in Pacific white shrimp, Litopenaeus vannamei. From a total of 368,736 de novo assembled transcripts, 67,559 were identified as putative lncRNAs, and only 72 putative lncRNAs showed differential expression between VpAHPND-infected and normal shrimp. The six candidate lncRNAs were validated for their expression profiles during VpAHPND infection and tissue distribution using RT-qPCR. The role of lnc2088 in response to VpAHPND infection was investigated through RNA interference. The result indicated that the suppression of lnc2088 expression led to an increase in shrimp mortality after VpAHPND infection. To explore the set of genes involved in lnc2088 knockdown, RNA sequencing was performed. A total of 275 differentially expressed transcripts were identified in the hepatopancreas of lnc2088 knockdown shrimp. The expression profiles of five candidate metabolic and immune-related genes were validated in lnc2088 knockdown and VpAHPND-infected shrimp. The result showed that the expression of ChiNAG was significantly increased, while that of NCBP1, WIPF2, and NFKB1 was significantly downregulated in ds2088-injected shrimp. Additionally, the expression of NFKB1, NCBP1 and WIPF2 was significantly increased, whereas that of ChiNAG and CUL5 were significantly decreased after infection with VpAHPND. Our work identified putative lncRNA profiles in L. vannamei in response to VpAHPND infection and investigated the role of lncRNA in shrimp immunity.

2.
Mar Pollut Bull ; 206: 116712, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39018820

RÉSUMÉ

To evaluate the antibiotic susceptibility of Vibrio parahaemolyticus from prawns and oysters marketed in Zhanjiang, Guangdong, China. 84 strains of V. parahaemolyticus were isolated from prawns and oysters sampled from 9 major markets. The results showed that 84 V. parahaemolyticus strains had the highest rate of antibiotic resistance to oxytetracycline (69.05 %, 58/84) and the lowest rate of antibiotic resistance to enrofloxacin (1.19 %, 1/84), ciprofloxacin (4.76 %, 4/84) and norfloxacin (7.14 %, 6/84) in quinolone. Meanwhile, 96.42 % of the strains showed multiple antibiotic resistance (MAR). PCR results showed that the resistance phenotype was closely related to the antibiotic resistance genes and efflux pump genes (p < 0.01), and the efflux pump gene was the key causing MAR. The combination of antibiotics significantly eliminated multidrug resistance. In addition, efflux pump inhibitors also reduce MAR. This study may provide information on antibiotic susceptibility, antibiotic resistance and strategies for the control of V. parahaemolyticus.

3.
J Appl Microbiol ; 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39020257

RÉSUMÉ

AIMS: This research aimed to analyze cutting board surfaces in seafood markets to find Vibrio parahaemolyticus, assess the isolates' ability to form biofilms, generate and evaluate characteristics of plasma-activated water (PAW), and compare the effect of PAW on planktonic and biofilm cells of the isolated V. parahaemolyticus strains. METHODS AND RESULTS: A total of 11 V. parahaemolyticus strains were isolated from 8.87% of the examined cutting boards. Biofilm-forming ability was evaluated for these isolates at temperatures of 10, 20, and 30°C using crystal violet staining. Four strains with the highest biofilm potential were selected for further analysis. The pH of the PAW used in the study was 3.41±0.04, and the initial concentrations of hydrogen peroxide, nitrate, and nitrite were 108±9.6 µM, 742±61 µM, and 36.3±2.9 µM, respectively. However, these concentrations decreased significantly within 3-4 days during storage at room temperature. PAW exhibited significant antimicrobial effects on V. parahaemolyticus planktonic cells, reducing viable bacteria up to 4.54 log CFU/ml within 20 minutes. PAW also reduced the number of biofilm cells on stainless steel (up to 3.55 log CFU/cm2) and high-density polyethylene (up to 3.06 log CFU/cm2) surfaces, although to a lesser extent than planktonic cells. CONCLUSIONS: PAW exhibited significant antibacterial activity against V. parahaemolyticus cells, although its antibacterial properties diminished over time. Furthermore, the antibacterial activity of PAW against biofilm cells of V. parahaemolyticus was less pronounced compared to the planktonic cells. Therefore, the actual effectiveness of PAW in seafood processing environments can be affected by biofilms that may form on various surfaces such as cutting boards if they are not cleaned properly.

4.
Fish Shellfish Immunol ; 151: 109753, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38977111

RÉSUMÉ

Bimetallic (Au/Ag) nanoparticles (BNPs) have shown enhanced antibacterial activity compared to their monometallic counterparts. Sulfated galactans (SG) are a naturally occurring polymer commonly found in red seaweed Gracilaria fisheri. They are biocompatible and biodegradable and environmentally friendly. In this study, we utilized SG in combination with BNPs to develop composite materials that potentially enhance antibacterial activity against shrimp pathogens Vibrio parahaemolyticus and Vibrio harveyi, compared to BNPs or SG alone. BNPs were coated with sulfated galactan (SGBNPs) and characterized using UV-vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, zeta potential, and transmission electron microscopy (TEM). UV-vis spectroscopy analysis revealed that the surface plasmon peaks of BNPs and SGBNPs appeared at 530 nm and 532 nm, respectively. Zeta potential measurements showed that SGBNPs had a negative charge of -32.4 mV, while the BNPs solution had a positive charge of 38.7 mV. TEM images demonstrated the spherical morphology of both BNPs and SGBNPs with narrow size distributions (3-10 nm). Analysis of the FTIR spectra indicated that SG maintained its backbone structure in SGBNPs, but some functional groups were altered. Notably, SGBNPs showed superior antimicrobial and antibiofilm activities against V. parahaemolyticus and V. harveyi compared to SG and BNPs. Furthermore, treatment with SGBNPs significantly down-regulated the expression of virulence-related genes (toxR, cpsQ, and mfpA) for V. parahaemolyticus 3HP compared to the respective control, bacteria treated with BNPs or SG. Diets supplemented with SGBNPs, BNPs, or SG showed no detrimental impact on the growth of shrimp Penaeus vannamei. Shrimp fed with SGBNPs-supplemented feed showed significantly higher survival rates than those fed with BNPs-supplemented feed when infected with 3HP after being on the supplemented feed for seven days and a subsequent number of fifteen days. These findings collectively demonstrate the benefit of using SG capped Au-Ag BNPs as an antibacterial agent for the prevention and control of Vibrio sp. Infection in shrimp while reducing the risk of environmental contamination.


Sujet(s)
Galactanes , Nanoparticules métalliques , Penaeidae , Vibrio parahaemolyticus , Vibrio , Animaux , Vibrio parahaemolyticus/effets des médicaments et des substances chimiques , Vibrio parahaemolyticus/physiologie , Penaeidae/immunologie , Nanoparticules métalliques/composition chimique , Galactanes/composition chimique , Galactanes/pharmacologie , Vibrio/effets des médicaments et des substances chimiques , Vibrio/physiologie , Antibactériens/pharmacologie , Antibactériens/composition chimique , Argent/pharmacologie , Argent/composition chimique , Or/composition chimique , Or/pharmacologie
5.
Anal Biochem ; 693: 115597, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-38969155

RÉSUMÉ

Vibrio parahaemolyticus (V. parahaemolyticus) is a major foodborne pathogen, which can cause serious foodborne illnesses like diarrhoea. Rapid on-site detection of foodborne pathogens is an ideal way to respond to foodborne illnesses. Herein, we provide an electrochemical sensor for rapid on-site detection. This sensor utilized a pH-sensitive metal-oxide material for the concurrent isothermal amplification and label-free detection of nucleic acids. Based on a pH-sensitive hydrated iridium oxide oxyhydroxide film (HIROF), the electrode transforms the hydrogen ion compound generated during nucleic acid amplification into potential, so as to achieve a real-time detection. The results can be transmitted to a smartphone via Bluetooth. Moreover, HIROF was applied in nucleic acid device detection, with a super-Nernst sensitivity of 77.6 mV/pH in the pH range of 6.0-8.5, and the sensitivity showed the best results so far. Detection of V. parahaemolyticus by this novel method showed a detection limit of 1.0 × 103 CFU/mL, while the time consumption was only 30 min, outperforming real-time fluorescence loop-mediated isothermal amplification (LAMP). Therefore, the characteristics of compact, portable, and fast make the sensor more widely used in on-site detection.


Sujet(s)
Techniques électrochimiques , Iridium , Vibrio parahaemolyticus , Vibrio parahaemolyticus/isolement et purification , Vibrio parahaemolyticus/génétique , Concentration en ions d'hydrogène , Techniques électrochimiques/méthodes , Iridium/composition chimique , Techniques d'amplification d'acides nucléiques/méthodes , Techniques de biocapteur/méthodes , Limite de détection , Électrodes
6.
Foods ; 13(13)2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38998622

RÉSUMÉ

Bacterial foodborne diseases caused by Vibrio parahaemolyticus pose persistent challenges to coastal cities in China. In this study, we employed multiple logistic regression analysis and distributed lag non-linear models (DLNM) to investigate the epidemiological characteristics and associated risk factors of vibriosis in the metropolitan area of Hangzhou from 2014 to 2018. Analysis of foodborne cases indicated that certain demographics and occupational factors, including age between 16 and 44 years; houseworkers or unemployed individuals; preference for aquatic and meat products; and dining in collective canteens or catering services contribute to an increased likelihood of V. parahaemolyticus infection. Moreover, a higher per capita GDP and exposure to high temperatures were identified as risk factors for vibriosis. This study highlights the significance of the daily mean temperature as a meteorological factor influencing V. parahaemolyticus infection, with varying lag effects observed depending on temperature conditions. At low temperatures, the risk of infection occurs after a lag of 21 days, whereas at high temperatures, the risk is highest on the same day, while the second infection risk period occurs after a lag of 21 days. These findings provide a spatiotemporal perspective of the risk analysis of foodborne diseases, with a daily timescale and street spatial scale, which contributes to the development of public health strategies and food safety protocols in coastal cities.

7.
Microbiol Resour Announc ; : e0004024, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38967463

RÉSUMÉ

Mobile clustered regularly interspaced palindromic repeats interference (Mobile-CRISPRi) is an established method for bacterial gene expression knockdown. The deactivated Cas9 protein and guide RNA are isopropyl ß-D-1-thiogalactopyranoside inducible, and all components are integrated into the chromosome via Tn7 transposition. Here, we optimized methods specific for applying Mobile-CRISPRi in multiple Vibrio species.

8.
J Infect Dev Ctries ; 18(6): 900-908, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38990990

RÉSUMÉ

INTRODUCTION: Vibrio parahaemolyticus is a common pathogen that can cause seafood-borne gastroenteritis in humans. We determined the prevalence and characteristics of V. parahaemolyticus isolated from clinical specimens and oysters in Thailand. METHODOLOGY: Isolates of V. parahaemolyticus from clinical specimens (n = 77) and oysters (n = 224) were identified by biochemical testing, polymerase chain reaction (PCR) assays, and serotyping. The toxin genes, antimicrobial resistance, and ß-lactamase production were determined. RESULTS: A total of 301 isolates were confirmed as V. parahaemolyticus by PCR using specific primers for the toxR gene. The majority of clinical isolates carried the tdh+/trh- genotype (82.1%), and one of each isolate was tdh-/trh+ and tdh+/trh+ genotypes. One isolate from oyster contained the tdh gene and another had the trh gene. Twenty-six serotypes were characterized among these isolates, and O3:K6 was the most common (37.7%), followed by OUT:KUT, and O4:K9. In 2010, most clinical and oyster isolates were susceptible to antibiotics, with the exception of ampicillin. In 2012, clinical isolates were not susceptible to cephalothin (52.4%), streptomycin (95.2%), amikacin (66.6%), kanamycin (61.9%), and erythromycin (95.2%), significantly more frequently than in 2010. More than 95% of isolates that were not susceptible to ampicillin produced ß-lactamase enzymes. CONCLUSIONS: We found toxin genes in two oyster isolates, and the clinical isolates that were initially determined to be resistant to several antibiotics. Toxin genes and antimicrobial susceptibility profiles of V. parahaemolyticus from seafood and environment should be continually monitored to determine the spread of toxin and antimicrobial resistance genes.


Sujet(s)
Ostreidae , Infections à Vibrio , Vibrio parahaemolyticus , Vibrio parahaemolyticus/génétique , Vibrio parahaemolyticus/isolement et purification , Vibrio parahaemolyticus/effets des médicaments et des substances chimiques , Vibrio parahaemolyticus/classification , Thaïlande/épidémiologie , Ostreidae/microbiologie , Humains , Animaux , Infections à Vibrio/microbiologie , Infections à Vibrio/épidémiologie , bêta-Lactamases/génétique , Antibactériens/pharmacologie , Tests de sensibilité microbienne , Sérotypie , Réaction de polymérisation en chaîne , Prévalence , Génotype , Résistance bactérienne aux médicaments/génétique , Toxines bactériennes/génétique , Mâle , Adulte , Femelle , Adulte d'âge moyen
9.
Infect Med (Beijing) ; 3(2): 100111, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38948389

RÉSUMÉ

Background: Swift and accurate detection of Vibrio parahaemolyticus, which is a prominent causative pathogen associated with seafood contamination, is required to effectively combat foodborne disease and wound infections. The toxR gene is relatively conserved within V. parahaemolyticus and is primarily involved in the expression and regulation of virulence genes with a notable degree of specificity. The aim of this study was to develop a rapid, simple, and constant temperature detection method for V. parahaemolyticus in clinical and nonspecialized laboratory settings. Methods: In this study, specific primers and CRISPR RNA were used to target the toxR gene to construct a reaction system that combines recombinase polymerase amplification (RPA) with CRISPR‒Cas13a. The whole-genome DNA of the sample was extracted by self-prepared sodium dodecyl sulphate (SDS) nucleic acid rapid extraction reagent, and visual interpretation of the detection results was performed by lateral flow dipsticks (LFDs). Results: The specificity of the RPA-CRISPR/Cas13a-LFD method was validated using V. parahaemolyticus strain ATCC-17802 and six other non-parahaemolytic Vibrio species. The results demonstrated a specificity of 100%. Additionally, the genomic DNA of V. parahaemolyticus was serially diluted and analysed, with a minimum detectable limit of 1 copy/µL for this method, which was greater than that of the TaqMan-qPCR method (102 copies/µL). The established methods were successfully applied to detect wild-type V. parahaemolyticus, yielding results consistent with those of TaqMan-qPCR and MALDI-TOF MS mass spectrometry identification. Finally, the established RPA-CRISPR/Cas13a-LFD method was applied to whole blood specimens from mice infected with V. parahaemolyticus, and the detection rate of V. parahaemolyticus by this method was consistent with that of the conventional PCR method. Conclusions: In this study, we describe an RPA-CRISPR/Cas13a detection method that specifically targets the toxR gene and offers advantages such as simplicity, rapidity, high specificity, and visual interpretation. This method serves as a valuable tool for the prompt detection of V. parahaemolyticus in nonspecialized laboratory settings.

10.
Front Microbiol ; 15: 1388511, 2024.
Article de Anglais | MEDLINE | ID: mdl-39027095

RÉSUMÉ

Anthropogenic carbon emissions have resulted in drastic oceanic changes, including increased acidity, increased temperature, and decreased salinity. Anthropogenic carbon emissions have resulted in drastic oceanic changes, including increased acidity, increased temperature, and decreased salinity. Few studies have directly assessed the compounded impact of alterations to oceanic conditions on oyster physiology and the relation to the presence of V. parahaemolyticus. This project investigated the relationship between projected climate scenarios and their influence on both eastern oyster, Crassostrea virginica, and the aquatic bacteria, Vibrio parahaemolyticus. Specifically, we examined whether an increase in water temperature and/or decrease in salinity would impair oyster resistance to V. parahaemolyticus, a human food and waterborne pathogen. Using a culture-dependent approach, our data revealed that the alterations in environmental conditions did not significantly impact the numbers of V. parahaemolyticus numbers within oyster hemolymph or tissues. However, we did observe a dramatic increase in the total amount of bacteria and pathogenic native Vibrio species, Vibrio aestuarianus and Vibrio harveyi. Despite detecting V. parahaemolyticus in most tissues at 7 days post-challenge, oysters were able to reduce bacterial levels below our limit of detection by 28 days of exposure. Furthermore, in our second experimental trial exploring single vs. multiple inoculation of bacteria, we observed that oysters were either able to reduce total bacterial levels to pre-treatment burdens (i.e., below our limit of detection) or die. This study demonstrates that the synergistic effects of elevated temperature and decreased salinity do not inhibit oysters from preventing the long-term colonization of exogenous V. parahaemolyticus. However, our data do show these environmental stressors impact oyster physiology and the native microbiota. This can lead to the proliferation of opportunistic pathogens, which could have impacts on oyster population numbers and ecosystem and human health.

11.
Food Chem ; 456: 139915, 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38852451

RÉSUMÉ

Vibrio parahaemolyticus is a food-borne pathogen that poses a serious threat to seafood safety and human health. An efficient, nontoxic, and sustainable disinfection material with a stable structure is urgently needed. Herein, silver (Ag)-hydroxyapatite (HAP) composite catalysts were prepared using HAP derived from waste fish bones. The Ag2.50%-HAP showed a 100% disinfection rate against V. parahaemolyticus, disinfecting nearly 7.0 lg CFU mL-1 within 15 min at a low concentration of 300 µg mL-1. This efficient disinfection activity could be attributed to the double-synergistic effect of Ag and superoxide radicals, which resulted in the destruction of bacterial cell structures and the leakage of intracellular proteins. Importantly, the composite also exhibited high activity in controlling the growth of pathogens during the storage process of Penaeus vannamei. These findings provided sustainable composite catalysts for disinfecting V. parahaemolyticus in seafood and a high-value utilization strategy for waste fish bones.

12.
J Hazard Mater ; 476: 135015, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38943886

RÉSUMÉ

The rapid proliferation of the halophilic pathogen Vibrio parahaemolyticus poses a severe health hazard to halobios and significantly impedes intensive mariculture. This study aimed to evaluate the potential application of gliding arc discharge plasma (GADP) to control the infection of Vibrio parahaemolyticus in mariculture. This study investigated the inactivation ability of GADP against Vibrio parahaemolyticus in artificial seawater (ASW), changes in the water quality of GADP-treated ASW, and possible inactivation mechanisms of GADP against Vibrio parahaemolyticus in ASW. The results indicate that GADP effectively inactivated Vibrio parahaemolyticus in ASW. As the volume of ASW increased, the time required for GADP sterilization also increased. However, the complete sterilization of 5000 mL of ASW containing Vibrio parahaemolyticus of approximately 1.0 × 104 CFU/mL was achieved within 20 min. Water quality tests of the GADP-treated ASW demonstrated that there were no significant changes in salinity or temperature when Vibrio parahaemolyticus (1.0 ×104 CFU/mL) was completely inactivated. In contrast to the acidification observed in plasma-activated water (PAW) in most studies, the pH of ASW did not decrease after treatment with GADP. The H2O2 concentration in the GADP-treated ASW decreased after post-treatment. The NO2-concentration in the GADP-treated ASW remained unchanged after post-treatment. Further analysis revealed that GADP induced oxidative stress in Vibrio parahaemolyticus, which increased cell membrane permeability and intracellular ROS levels of Vibrio parahaemolyticus. This study provides a viable solution for infection with the halophilic pathogen Vibrio parahaemolyticus and demonstrates the potential of GADP in mariculture.

13.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38906839

RÉSUMÉ

Vibrio parahaemolyticus utilizes a polar flagellum for swimming in liquids and employs multiple lateral flagella to swarm on surfaces and in viscous environments. The VPA0961 protein is an LysR family transcriptional regulator that can regulate the swimming and swarming motility of V. parahaemolyticus, but the detailed regulatory mechanisms are not yet fully understood. Herein, we designated the protein as AcsS, which stands for activator of swimming and swarming motility. Our data provided evidence that deleting the acsS gene significantly reduced both swimming and swarming motility of V. parahaemolyticus. Furthermore, AcsS was found to activate the expression of both polar (flgA, flgM, flgB, and flgK) and lateral (motY, fliM, lafA, and fliD) flagellar genes. Overexpression of AcsS in Escherichia coli induced the expression of flgA, motY, and lafA, but did not affect the expression of flgB, flgK, flgM, fliM, and fliD. Interestingly, His-tagged AcsS did not bind to the upstream DNA regions of all the tested genes, suggesting indirect regulation. In conclusion, AcsS positively regulated the swimming and swarming motility of V. parahaemolyticus by activating the transcription of polar and lateral flagellar genes. This work enriched our understanding of the gene expression regulation within the dual flagellar systems of V. parahaemolyticus.


Sujet(s)
Protéines bactériennes , Flagelles , Régulation de l'expression des gènes bactériens , Facteurs de transcription , Vibrio parahaemolyticus , Vibrio parahaemolyticus/génétique , Vibrio parahaemolyticus/physiologie , Flagelles/génétique , Flagelles/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Escherichia coli/génétique , Escherichia coli/métabolisme
14.
Comp Biochem Physiol B Biochem Mol Biol ; 274: 111001, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38908544

RÉSUMÉ

Mannose-binding lectin (MBL) is a vital member of the lectin family, crucial for mediating functions within the complement lectin pathway. In this study, following the cloning of the mannose-binding lectin (MBL) gene in the ridgetail white prawn, Exopalaemon carinicauda, we examined its expression patterns across various tissues and its role in combating challenges posed by Vibrio parahaemolyticus. The results revealed that the MBL gene spans 1342 bp, featuring an open reading frame of 972 bp. It encodes a protein comprising 323 amino acids, with a predicted relative molecular weight of 36 kDa and a theoretical isoelectric point of 6.18. The gene exhibited expression across various tissues including the eyestalk, heart, gill, hepatopancreas, stomach, intestine, ventral nerve cord, muscle, and hemolymph, with the highest expression detected in the hepatopancreas. Upon challenge with V. parahaemolyticus, RT-PCR analysis revealed a trend of MBL expression in hepatopancreatic tissues, characterized by an initial increase followed by a subsequent decrease, peaking at 24 h post-infection. Employing RNA interference to disrupt MBL gene expression resulted in a significant increase in mortality rates among individuals challenged with V. parahaemolyticus. Furthermore, we successfully generated the Pet32a-MBL recombinant protein through the construction of a prokaryotic expression vector for conducting in vitro bacterial inhibition assays, which demonstrated the inhibitory effect of the recombinant protein on V. parahaemolyticus, laying a foundation for further exploration into its immune mechanism in response to V. parahaemolyticus challenges.

15.
Microbiol Resour Announc ; 13(7): e0035224, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-38864604

RÉSUMÉ

A Pacific native lineage of Vibrio parahaemolyticus ST36 serotype O4:K12 was introduced into the Atlantic, which increased local source illnesses. To identify genetic determinants of virulence and ecological resiliency and track their transfer into endemic populations, we constructed a complete genome of a 2013 Atlantic-traced clinical isolate by hybrid assembly.

16.
Fish Shellfish Immunol ; 151: 109723, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38936519

RÉSUMÉ

This study was conducted to investigate whether optimal vitamin C (VC) levels can enhance non-specific immune response and antioxidant capacity and reduce mortality of Pacific white shrimp (Penaeus vannamei) post-larvae when infected with Vibrio parahaemolyticus. Six experimental diets were formulated to contain six different VC levels of 0, 40, 80, 120, 160 and 320 mg/kg diet (designated as C0, C40, C80, C120, C160 and C320, respectively). Shrimp post-larvae (39.1 ± 0.47 mg) were randomly distributed to 24 tanks with 40 shrimp per tank. Four replicate groups of shrimp were fed one of the diets for 43 days. VC supplemented groups showed significantly higher growth performance than C0 group. Shrimp fed C120 diet had significantly improved feed utilization efficiency than shrimp fed C0 diet. VC concentrations in hepatopancreas and gills were significantly higher with the increase in dietary VC levels. Optimal dietary VC levels significantly upregulated the expressions of growth and digestive enzyme-related genes such as IGF-1, IGF-BP, amylase, trypsin and chymotrypsin, and also upregulated the expressions of innate immunity and antioxidant-related genes such as prophenoloxidase, crustin, penaiedin-3a, superoxide dismutase, glutathione peroxidase and catalase in hepatopancreas. Shrimp fed C80, C120 and C160 diets showed significantly increased resistance to V. parahaemolyticus than shrimp fed C0 diet. The optimum dietary VC level for the shrimp post-larvae was established to be 80.2 mg/kg diet by a broken-line regression analysis based on the growth. The findings from the challenge test indicated that VC levels over 83.0 mg/kg diet could enhance disease resistance of the shrimp against V. parahaemolyticus.


Sujet(s)
Aliment pour animaux , Acide ascorbique , Régime alimentaire , Compléments alimentaires , Immunité innée , Penaeidae , Vibrio parahaemolyticus , Animaux , Penaeidae/immunologie , Penaeidae/croissance et développement , Penaeidae/microbiologie , Vibrio parahaemolyticus/physiologie , Acide ascorbique/administration et posologie , Acide ascorbique/pharmacologie , Régime alimentaire/médecine vétérinaire , Aliment pour animaux/analyse , Compléments alimentaires/analyse , Immunité innée/effets des médicaments et des substances chimiques , Répartition aléatoire , Relation dose-effet des médicaments
17.
Fish Shellfish Immunol ; 151: 109680, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38849108

RÉSUMÉ

This study investigated the effects of Cinnamomum osmophloeum leaf hot-water extract (CLWE) on nonspecific immune responses and resistance to Vibrio parahaemolyticus in white shrimp (Penaeus vannamei). Firstly, a cell viability assay demonstrated that the CLWE is safe to white shrimp heamocytes in the concentration of 0-500 mg L-1. Haemocytes incubated in vitro with 10 and 50 mg L-1 of CLWE showed significantly higher response in superoxide anion production, PO activity, and phagocytic activity. In the in vivo trials, white shrimp were fed with 0, 0.5, 1, 5, and 10 g kg-1 CLWE supplemented feeds (designated as CLWE 0, CLWE 0.5, CLWE 1, CLWE 5, and CLWE 10, respectively) over a period of 28 days. In vivo experiments demonstrated that CLWE 0.5 feeding group resulted in the highest total haemocyte count, superoxide anion production, phenoloxidase activity, and phagocytic activity. Moreover, CLWE 0.5 supplemented feed significantly upregulated the clotting system, antimicrobial peptides, pattern recognition receptors, pattern recognition proteins, and antioxidant defences in white shrimp. Furthermore, the shrimp were infected with V. parahaemolyticus injections after 14 days of feeding as challenge test. Based on the challenge test result, both CLWE 0.5 and CLWE 5 demonstrated a strong resistance to V. parahaemolyticus. These two dosages effectively reduced the number of nonviable cells and activated different haemocyte subpopulations. These findings indicated that treatment with CLWE 0.5 could promote nonspecific immune responses, immune-related gene expression, and resistance to V. parahaemolyticus in white shrimp.


Sujet(s)
Aliment pour animaux , Hémocytes , Immunité innée , Penaeidae , Extraits de plantes , Vibrio parahaemolyticus , Animaux , Vibrio parahaemolyticus/physiologie , Penaeidae/immunologie , Hémocytes/effets des médicaments et des substances chimiques , Hémocytes/immunologie , Extraits de plantes/pharmacologie , Extraits de plantes/administration et posologie , Extraits de plantes/composition chimique , Immunité innée/effets des médicaments et des substances chimiques , Aliment pour animaux/analyse , Feuilles de plante/composition chimique , Régime alimentaire/médecine vétérinaire , Compléments alimentaires/analyse , Cinnamomum/composition chimique
18.
Microbiol Spectr ; 12(7): e0017524, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38832768

RÉSUMÉ

Vibrio parahaemolyticus is a threat to human health and one of the leading bacterial causes of seafood-borne infection worldwide. This pathogen is autochtonous in the marine environment and is able to acquire antimicrobial resistance (AMR) mechanisms, which is a global concern. However, the emergence of AMR V. parahaemolyticus strains in seafood is still understudied, as interpretation criteria for this species for antimicrobial susceptibility tests are limited in the literature. In this study, we investigated the susceptibility profiles to clinically important antibiotics and the associated genetic determinants of V. parahaemolyticus isolates cultured from imported shrimps. Based on the analysis of the resistance phenotypes of 304 V. parahaemolyticus isolates, we have defined experimental epidemiological cutoff values (COWT) for 14/15 antibiotics tested. We observed that 19.1% of the bacterial isolates had acquired resistance to at least one antibiotic class. The highest number of resistance was associated with tetracycline (14.5% of the strains) and trimethoprim-sulfamethoxazole (3.6%). Moreover, seven strains were multidrug-resistant (MDR, resistant to at least three antibiotic classes). The most frequently identified genes in these strains were aph(3″)-Ib/aph(6)-Id (aminoglycoside resistance), sul2 (sulfonamide), tet(59) (tetracycline), and floR (chloramphenicol). The SXT/R391 family ICE and class 1 integron-integrase genes were detected by PCR in three and one MDR V. parahaemolyticus strains, respectively. Consequently, V. parahaemolyticus in seafood can act as a reservoir of AMR, constituting a health risk for the consumer.IMPORTANCEOur study on "Antimicrobial Resistance Profiles and Genetic Determinants of Vibrio parahaemolyticus Isolates from Imported Shrimps" addresses a critical gap in understanding the emergence of antimicrobial resistance (AMR) in this seafood-associated pathogen. Vibrio parahaemolyticus is a major cause of global seafood-borne infections, and our research reveals that 19.1% of isolates from imported shrimps display resistance to at least one antibiotic class, with multidrug resistance observed in seven strains. Importantly, we establish experimental epidemiological cutoff values for antibiotic susceptibility, providing valuable criteria specific to V. parahaemolyticus. Our findings underscore the potential risk to consumers, emphasizing the need for vigilant monitoring and intervention strategies. This study significantly contributes to the comprehension of AMR dynamics in V. parahaemolyticus, offering crucial insights for global public health. The dissemination of our research through Microbiology Spectrum ensures broad accessibility and impact within the scientific community and beyond.


Sujet(s)
Antibactériens , Tests de sensibilité microbienne , Produits de la mer , Vibrio parahaemolyticus , Vibrio parahaemolyticus/génétique , Vibrio parahaemolyticus/effets des médicaments et des substances chimiques , Vibrio parahaemolyticus/isolement et purification , Vibrio parahaemolyticus/classification , Animaux , Antibactériens/pharmacologie , Produits de la mer/microbiologie , Multirésistance bactérienne aux médicaments/génétique , Infections à Vibrio/microbiologie , Infections à Vibrio/épidémiologie , Penaeidae/microbiologie , Humains , Résistance bactérienne aux médicaments/génétique
19.
Arch Microbiol ; 206(7): 321, 2024 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-38907796

RÉSUMÉ

Vibrio parahaemolyticus possesses two distinct type VI secretion systems (T6SS), namely T6SS1 and T6SS2. T6SS1 is predominantly responsible for adhesion to Caco-2 and HeLa cells and for the antibacterial activity of V. parahaemolyticus, while T6SS2 mainly contributes to HeLa cell adhesion. However, it remains unclear whether the T6SS systems have other physiological roles in V. parahaemolyticus. In this study, we demonstrated that the deletion of icmF2, a structural gene of T6SS2, reduced the biofilm formation capacity of V. parahaemolyticus under low salt conditions, which was also influenced by the incubation time. Nonetheless, the deletion of icmF2 did not affect the biofilm formation capacity in marine-like growth conditions, nor did it impact the flagella-driven swimming and swarming motility of V. parahaemolyticus. IcmF2 was found to promote the production of the main components of the biofilm matrix, including extracellular DNA (eDNA) and extracellular proteins, and cyclic di-GMP (c-di-GMP) in V. parahaemolyticus. Additionally, IcmF2 positively influenced the transcription of cpsA, mfpA, and several genes involved in c-di-GMP metabolism, including scrJ, scrL, vopY, tpdA, gefA, and scrG. Conversely, the transcription of scrA was negatively impacted by IcmF2. Therefore, IcmF2-dependent biofilm formation was mediated through its effects on the production of eDNA, extracellular proteins, and c-di-GMP, as well as its impact on the transcription of cpsA, mfpA, and genes associated with c-di-GMP metabolism. This study confirmed new physiological roles for IcmF2 in promoting biofilm formation and c-di-GMP production in V. parahaemolyticus.


Sujet(s)
Protéines bactériennes , Biofilms , GMP cyclique , Systèmes de sécrétion de type VI , Vibrio parahaemolyticus , Vibrio parahaemolyticus/génétique , Vibrio parahaemolyticus/physiologie , Vibrio parahaemolyticus/métabolisme , Biofilms/croissance et développement , Systèmes de sécrétion de type VI/génétique , Systèmes de sécrétion de type VI/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , GMP cyclique/analogues et dérivés , GMP cyclique/métabolisme , Humains , Régulation de l'expression des gènes bactériens , Cellules HeLa
20.
Foods ; 13(11)2024 May 27.
Article de Anglais | MEDLINE | ID: mdl-38890902

RÉSUMÉ

Vibrio parahaemolyticus can cause acute gastroenteritis, wound infections, and septicemia in humans. The overuse of antibiotics in aquaculture may lead to a high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution of V. parahaemolyticus in aquatic animals and the mechanism of its antibiotic tolerance remain to be further deciphered. Here, we investigated the molecular basis of the antibiotic tolerance of V. parahaemolyticus isolates (n = 3) originated from shellfish and crustaceans using comparative genomic and transcriptomic analyses. The genome sequences of the V. parahaemolyticus isolates were determined (5.0-5.3 Mb), and they contained 4709-5610 predicted protein-encoding genes, of which 823-1099 genes were of unknown functions. Comparative genomic analyses revealed a number of mobile genetic elements (MGEs, n = 69), antibiotic resistance-related genes (n = 7-9), and heavy metal tolerance-related genes (n = 2-4). The V. parahaemolyticus isolates were resistant to sub-lethal concentrations (sub-LCs) of ampicillin (AMP, 512 µg/mL), kanamycin (KAN, 64 µg/mL), and streptomycin (STR, 16 µg/mL) (p < 0.05). Comparative transcriptomic analyses revealed that there were significantly altered metabolic pathways elicited by the sub-LCs of the antibiotics (p < 0.05), suggesting the existence of multiple strategies for antibiotic tolerance in V. parahaemolyticus. The results of this study enriched the V. parahaemolyticus genome database and should be useful for controlling the MDR pathogen worldwide.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE