Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 20
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Materials (Basel) ; 17(4)2024 Feb 09.
Article de Anglais | MEDLINE | ID: mdl-38399087

RÉSUMÉ

This study investigates the impact of hard coatings on the fatigue properties of pure titanium. A specialized fatigue test which ensured machine equivalence was conducted to compare the fatigue behavior of coated and uncoated metals. The findings reveal that the application of coatings adversely affects the fatigue properties of pure titanium due to stress concentration from the coating, which accelerates fatigue crack propagation within the substrate material. Notably, zigzag fatigue cracks at the interface between the coating and substrate and multiple micro-cracks initiated within the coating are found.

2.
J Esthet Restor Dent ; 35(7): 1008-1021, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-36932837

RÉSUMÉ

OBJECTIVE: To describe the clinical use of nitride-coated titanium CAD/CAM implant abutments in the maxillary esthetic zone in two patients with high esthetic and functional demands and, to highlight the advantages of nitride-coated milled titanium abutments when compared to stock/custom titanium, one-piece monolithic zirconia, and hybrid metal-zirconia implant abutments. CLINICAL CONSIDERATIONS: Due to the inherent mechanical and esthetic clinical challenges, single implant-supported reconstructions in the maxillary esthetic zone are a complex restorative treatment. While CAD/CAM technology has been suggested to enhance and ease implant abutment design and manufacturing, implant abutment material selection remains as a critical decision affecting restoration's long-term clinical outcomes. To date, considering the esthetic disadvantages of conventional titanium implant abutments, the mechanical limitations of one-piece zirconia abutments and the manufacturing time and costs associated with hybrid metal-zirconia abutments, no abutment material can be considered "ideal" for all clinical scenarios. Due to their biocompatibility, biomechanical characteristics (hardness and wear resistance), optical properties (yellow color), and peri-implant soft tissue esthetic integration, the use of CAD/CAM titanium nitride-coated implant abutments has been suggested as a predictable implant abutment material in mechanically challenging but esthetically demanding clinical situations, as the maxillary esthetic zone. CONCLUSIONS: Two patients requiring a combined tooth-implant restorative treatment in the maxillary esthetic zone were treated using CAD/CAM nitride coated titanium implant abutments. The principal advantages of TiN coated abutments include comparable clinical outcomes to stock abutments, optimal biocompatibility, adequate fracture, wear, and corrosion resistance, reduced bacterial adhesion, and excellent esthetic integration with adjacent soft tissues. CLINICAL SIGNIFICANCE: Clinical reports and short term mechanical, biological and esthetic clinical outcomes indicate that CAD/CAM nitride coated titanium implant abutments can represent a predictable restorative alternative to stock/custom and metal/zirconia implant abutments and be considered a clinical relevant option in mechanically challenging but esthetically demanding situations, as often found in the maxillary esthetic zone.


Sujet(s)
Conception d'implant dentaire et de pilier , Titane , Humains , Matériaux dentaires , Zirconium , Piliers dentaires , Conception assistée par ordinateur , Couronnes
3.
ACS Appl Mater Interfaces ; 15(4): 5998-6004, 2023 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-36683575

RÉSUMÉ

Flexible hard coatings with strong adhesion are critical requirements for several foldable devices and marine applications; however, only a few such coatings have been reported. Herein, we report a non-isocyanate polyurethane (NIPU) coating prepared by the epoxy-oligosiloxane nanocluster-amine curing reaction and cyclic carbonate-amine polyaddition, where the former provides the coating with ceramic-like hardness and polymer-like flexibility while the latter polymerization results in NIPU with strong substrate adhesion. The coating is transparent (>92% transmittance), hard (5-7 H), and flexible (2 mm bending diameter). It has strong adhesion to various substrates including aluminum alloy, titanium, steel, glass, ceramic, epoxy, and polyethylene terephthalate (2-8 MPa), which can be attributed to the high density of polar groups in NIPU. Moreover, we can facilely endow the coating with anti-icing, self-cleaning, and anti-smudge capabilities by incorporating amine-terminated low-surface-tension polydimethylsiloxane (PDMS) to replace a part of the amine curing agent. Particularly, the mechanical properties of NIPU coatings are only slightly affected by the introduction of low-content PDMS since it intends to enrich on the surface. The novel coating has promising future for use in fields of foldable devices and marine applications.

4.
Materials (Basel) ; 15(22)2022 Nov 17.
Article de Anglais | MEDLINE | ID: mdl-36431666

RÉSUMÉ

This study explored the structural characteristics, mechanical properties, and oxidation behavior of W-enriched TaWSiN films prepared through co-sputtering. The atomic ratios [W/(W + Ta)] of the as-deposited films maintained a range of 0.77-0.81. The TaWSiN films with a Si content of 0-13 at.% were crystalline, whereas the film with 20 at.% Si was amorphous. The hardness and Young's modulus of crystalline TaWSiN films maintained high levels of 26.5-29.9 GPa and 286-381 GPa, respectively, whereas the hardness and Young's modulus of the amorphous Ta7W33Si20N40 films exhibited low levels of 18.2 and 229 GPa, respectively. The oxidation behavior of TaWSiN films was investigated after annealing at 600 °C in a 1%O2-Ar atmosphere, and cone-like Ta0.3W0.7O2.85 oxides formed and extruded from the TaWSiN films.

5.
Materials (Basel) ; 15(18)2022 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-36143713

RÉSUMÉ

In the aeronautical industry, Al-Cu alloys are used as a structural material in the manufacturing of commercial aircraft due to their high mechanical properties and low density. One of the main issues with these Al-Cu alloy systems is their low corrosion resistance in aggressive substances; as a result, Al-Cu alloys are electrochemically treated by anodizing processes to increase their corrosion resistance. Hard anodizing realized on AA2024 was performed in citric and sulfuric acid solutions for 60 min with constant stirring using current densities 3 and 4.5 A/dm2. After anodizing, a 60 min sealing procedure in water at 95 °C was performed. Scanning electron microscopy (SEM) and Vickers microhardness (HV) measurements were used to characterize the microstructure and mechanical properties of the hard anodizing material. Electrochemical corrosion was carried out using cyclic potentiodynamic polarization curves (CPP) and electrochemical impedance spectroscopy (EIS) in a 3.5 wt. % NaCl solution. The results indicate that the corrosion resistance of Al-Cu alloys in citric acid solutions with a current density 4.5 A/dm2 was the best, with corrosion current densities of 2 × 10-8 and 2 × 10-9 A/cm2. Citric acid-anodized samples had a higher corrosion resistance than un-anodized materials, making citric acid a viable alternative for fabricating hard-anodized Al-Cu alloys.

6.
Materials (Basel) ; 15(16)2022 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-36013769

RÉSUMÉ

Coatings are now frequently used on cutting tool inserts in the metal production sector due to their better wear resistance and heat barrier effect. Protective hard coatings with a thickness of a few micrometers are created on cutting tools using physical or chemical vapor deposition (PVD, CVD) to increase their application performance. Different coating materials are utilized for a wide range of cutting applications, generally in bi-or multilayer stacks, and typically belong to the material classes of nitrides, carbides, carbonitrides, borides, boronitrides, or oxides. The current study examines typical hard coatings deposited by PVD and CVD in the corresponding material classes. The present state of research is reviewed, and pioneering work on this subject as well as recent results leading to the construction of complete "synthesis-structure-property-application performance" correlations of the different coatings are examined. When compared to uncoated tools, tool coatings prevent direct contact between the workpiece and the tool substrate, altering cutting temperature and machining performance. The purpose of this paper is to examine the effect of cutting-zone temperatures on multilayer coating characteristics during the metal-cutting process. Simplified summary and comparisons of various coating types on cutting tools based on distinct deposition procedures. Furthermore, existing and prospective issues for the hard coating community are discussed.

7.
Materials (Basel) ; 15(11)2022 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-35683318

RÉSUMÉ

This study proposes a novel use of laser heating to increase the adhesion between coatings fabricated by low-temperature PVD and replaceable cemented carbide cutting inserts, thus extending the life of these cutting tools in the machining of difficult-to-machine materials. Our previous studies conducted on CVD coatings showed that these coatings had higher adhesion due to a much higher process temperature. However, taking into account the fact that PVD coatings have better technological properties (e.g., lower structure porosity, higher hardness, and better tribological properties) than CVD coatings, it is fully justified to investigate ways of improving the PVD coating adhesion to the substrate. In this study, replaceable cutting inserts with different hard coatings of titanium nitride were used. Laser heating was conducted with different power densities. The adhesion strength of the tested coatings was determined via vibration spectrum analysis. In addition, 2D surface imaging, scanning electron microscopy, and X-ray fluorescence spectrometry were employed to examine the coatings after laser heating. A significant increase in the adhesion of single-layer (TiN) and double-layer (TiCN + TiN) coatings to the cemented carbide substrate, together with increased tool life, was observed after heating the samples with 40% of the maximum laser power. The application of a multilayer coating containing thermal shock-sensitive (TiAlSi) N did not increase the tool life. This paper attempts to interpret the obtained results.

8.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Article de Anglais | MEDLINE | ID: mdl-35458020

RÉSUMÉ

The micromechanism of the low-cycle fatigue of mono- and multilayer PVD coatings on cutting tools was investigated. Multilayer nanolaminate (TiAlCrSiY)N/(TiAlCr)N and monolayer (TiAlCrSiY)N PVD coatings were deposited on the cemented carbide ball nose end mills. Low-cycle fatigue resistance was studied using the cyclic nanoindentation technique. The obtained results were compared with the behaviour of the polycrystalline silicon reference sample. The fractal analysis of time-resolved curves for indenter penetration depth demonstrated regularities of damage accumulation in the coatings at the early stage of wear. The difference in low-cycle fatigue of the brittle silicon and nitride wear-resistant coatings is shown. It is demonstrated that when distinguished from the single layer (TiAlCrSiY)N coating, the nucleation and growth of microcracks in the multilayer (TiAlCrSiY)N/(TiAlCr)N coating is accompanied by acts of microplastic deformation providing a higher fracture toughness of the multilayer nanolaminate (TiAlCrSiY)N/(TiAlCr)N.

9.
Adv Sci (Weinh) ; 9(14): e2200268, 2022 May.
Article de Anglais | MEDLINE | ID: mdl-35274481

RÉSUMÉ

Hard yet flexible coatings with multi-functionalities are useful for foldable displays and marine industries but rare. In this study, a highly cross-linked multifunctional hybrid coating with ceramic-like hardness and polymer-like flexibility is reported. The coating is prepared via a step-by-step strategy, where two types of epoxy-oligosiloxane nanoclusters are first synthesized by sol-gel chemistry, and amine-terminated curing agents are used to cross-link them at room temperature. The coating is highly transparent (>92% transmittance), hard (6-7H), and flexible (10 mm bending diameter) because of the unique combination of siloxane nanoclusters and polymer networks. Meanwhile, since the coating contains fouling-resistant telomer and low-surface-tension liquid lubricant polydimethylsiloxane (PDMS), it exhibits excellent anti-biofouling and self-cleaning properties. The results indicate that the mechanical and antifouling properties of the coating can be easily tuned and prove that the step-by-step strategy is a promising and universal method. The novel coatings can meet the needs of applications in foldable displays, marine industries, and other fields.

10.
J Prosthodont ; 31(7): 571-578, 2022 Aug.
Article de Anglais | MEDLINE | ID: mdl-34731520

RÉSUMÉ

PURPOSE: To review the most up to date scientific evidence concerning the technical implications, soft tissue biocompatibility, and clinical applications derived from the use of titanium nitride hard thin film coatings on titanium alloy implant abutments. MATERIALS AND METHODS: A review was performed to answer the following focused question: "What is the clinical reliability of nitride coated titanium alloy abutments?". A MEDLINE search between 1980 and 2021 was performed for investigations pertaining to the clinical use of nitride coated titanium alloy implant abutments (TiN) in case reports, case series, and short- and long-term non/randomized controlled clinical trials. Literature analysis led to addition evaluation of research related to the technical and biological aspects, as well as the physicochemical characteristics of TiN hard thin film coatings and their impact on titanium abutment biocompatibility, mechanical properties, macroscopic surface topography, and optical properties. Therefore, preclinical data from biomechanical and in vitro investigations were also considered as inclusion criteria. RESULTS: The limited number of clinical investigations published made a systematic review and meta-analysis not possible, therefore a narrative review was conducted. TiN coatings have been applied to dental materials and instruments to improve their clinical longevity. Implant abutments are coated with titanium nitride to mask the titanium oxide surface and enhance its surface characteristics providing the TiN abutment surface with a low friction coefficient and a very high chemical inertness. TiN coating is suggested to reduce early bacterial colonization and biofilm formation and enhance fibroblast cell proliferation, attachment and adhesion when compared to Ti controls. Additionally, studies indicate that hard thin film coatings enhance the mechanical properties (hardness and wear resistance) of titanium alloy and appears as a yellow color when deposited on the titanium alloy substrate. To date, clinical investigations show that nitride coated titanium abutments provide promising short-term clinical outcomes. CONCLUSIONS: Published research on nitride-coated abutments is still limited, however, the available biomedical research, mechanical engineering tests, in vitro investigations, and short-term clinical trials have, to date, reported promising mechanical, biological, and esthetic outcomes.


Sujet(s)
Implants dentaires , Titane , Alliages/composition chimique , Piliers dentaires , Dentisterie esthétique , Reproductibilité des résultats , Propriétés de surface , Titane/composition chimique
11.
J Adv Res ; 29: 107-119, 2021 Mar.
Article de Anglais | MEDLINE | ID: mdl-33842009

RÉSUMÉ

INTRODUCTION: Hard coatings are primarily based on carbides, nitrides and carbonitrides of transition metal elements such as W, Ti, Zr, etc. Zr-based hard coatings show good resistance to wear, erosion, and corrosion as well as exhibit high hardness, high temperature stability, and biocompatibility, making them suitable candidates for tribological, biomedical, and electrical applications. OBJECTIVES: The present study aims to synthesize uniform and adherent hard Zr-based coatings that demonstrate sound mechanical integrity. METHODS: Stainless steel (SS316) samples were coated with single layers of Zr, Zr-nitride, and Zr-carbonitride using magnetron sputter deposition technique. Deposition conditions were controlled to produce each coating with two different thickness i.e., 2 and 3 µm. Calotest was employed to confirm coatings thickness. Scanning electron microscope fitted with energy dispersive x-ray spectrometer was used to ascertain the morphology and elemental constitution of coatings. Cross-sectional samples were examined to ascertain coatings thickness and adhesion. X-ray diffractometer was employed for structural analysis. Instrumented nanoindentation hardness and elastic modulus were determined with nanoindenter. Ratio of nanohardness to elastic modulus was evaluated to observe the effect of coatings thickness on tribological behavior. RESULTS: Three coating compositions were produced namely hcp-Zr, fcc-ZrN and fcc-Zr2CN. The highest hardness and elastic modulus were shown by ZrN coatings while pure Zr coatings showed the lowest values. CONCLUSION: All coating compositions were found to be relatively uniform, continuous and adherent with no evidence of decohesion at the coating-substrate interface. Coatings produced in this study are thought to be suitable for tribological applications.

12.
ACS Comb Sci ; 21(12): 782-793, 2019 12 09.
Article de Anglais | MEDLINE | ID: mdl-31689080

RÉSUMÉ

Cr-Al-N thin film materials libraries were synthesized by combinatorial reactive high power impulse magnetron sputtering (HiPIMS). Different HiPIMS repetition frequencies and peak power densities were applied altering the ion to growth flux ratio. Moreover, time-resolved ion energy distribution functions were measured with a retarding field energy analyzer (RFEA). The plasma properties were measured during the growth of films with different compositions within the materials library and correlated to the resulting film properties such as phase, grain size, texture, indentation modulus, indentation hardness, and residual stress. The influence of the ion to growth flux ratio on the film properties was most significant for films with high Al-content (xAl = 50 at. %). X-ray diffraction with a 2D detector revealed hcp-AlN precipitation starting from Al-concentration xAl ≥ 50 at. %. This precipitation might be related to the kinetically enhanced adatom mobility for a high ratio of ions per deposited atoms, leading to strong intermixing of the deposited species. A structure zone transition, induced by composition and flux ratio JI/JG, from zone T to zone Ic structure was observed which hints toward the conclusion that the combination of increasing flux ratio and Al-concentration lead to opposing trends regarding the increase in homologous temperature.


Sujet(s)
Aluminium/composition chimique , Chrome/composition chimique , Azote/composition chimique , Techniques de chimie combinatoire , Test de matériaux , Contrainte mécanique
13.
ACS Appl Mater Interfaces ; 11(10): 9685-9690, 2019 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-30794743

RÉSUMÉ

In this study, SiN x/BN periodical nanolayered coatings (PNCs) are developed. PNCs were deposited at the room temperature on plastic and glass substrates. They demonstrate the excellent mechanical durability of inorganic materials and optical transparency and flexibility of organic ones. The 150 nm thick PNC shows optical transparency, sapphire-like hardness, high wear protection, and flexibility. Such a coating with a superior combination of optical and mechanical properties has not been reported previously.

14.
Micron ; 115: 41-49, 2018 12.
Article de Anglais | MEDLINE | ID: mdl-30173001

RÉSUMÉ

This work addresses aspects for the analysis of industrial relevant materials via transmission electron microscopy (TEM). The complex phase chemistry and structural diversity of these materials require several characterization techniques to be employed simultaneously; unfortunately, different characterization techniques often lack connection to yield a complete and consistent picture. This paper describes a continuous path, starting with the acquisition of 3D diffraction data - alongside classical high-resolution imaging techniques - and linking the structural characterization of hard metal industrial samples with energy-loss fine-structure simulations, quantitative electron energy-loss (EEL) and energy-dispersive X-ray (EDX) spectroscopy. Thereby, the compositional analysis of a MAX phase indicated an offset of the hydrogenic, theoretical sensitivity factors, originating from poorly-adjusted screening factors. In a next step, these results were matched against quantitative compositions and parameters obtained from X-ray spectroscopy data, carried out synchronously with EELS.

15.
Nano Converg ; 4(1): 15, 2017.
Article de Anglais | MEDLINE | ID: mdl-28680798

RÉSUMÉ

We report on the oxidation behavior of AlN/CrN multilayers at 900 °C, deposited by radio frequency magnetron sputtering. It is shown that oxidation in this system is controlled by diffusion of Cr towards the surface and formation of Cr2O3. Cr diffusion is found to mainly occur along grain boundaries. Thus, coherent cubic AlN/CrN multilayer regions with coarse columnar grain structures are found to be oxidation resistant, whereas regions decomposed into hexagonal AlN/cubic CrN are prone to oxidation.

16.
Adv Mater ; 29(19)2017 May.
Article de Anglais | MEDLINE | ID: mdl-28295731

RÉSUMÉ

A flexible hard coating for foldable displays is realized by the highly cross-linked siloxane hybrid using structure-property relationships in organic-inorganic hybridization. Glass-like wear resistance, plastic-like flexibility, and highly elastic resilience are demonstrated together with outstanding optical transparency. It provides a framework for the application of siloxane hybrids in protective hard coatings with high scratch resistance and flexibility for foldable displays.

17.
J Mech Behav Biomed Mater ; 53: 239-249, 2016 Jan.
Article de Anglais | MEDLINE | ID: mdl-26344856

RÉSUMÉ

Laser remelting of commercially pure titanium (CP-Ti) surface was done in a nitrogen rich inert atmosphere to form in situ TiN/Ti composite coating. Laser surface remelting was performed at two different laser powers of 425 W and 475 W. At each power, samples were fabricated with one or two laser scans. The resultant material was a nitride rich in situ coating that was created on the surface. The cross sections revealed a graded microstructure. There was presence of nitride rich dendrites dispersed in α-Ti matrix at the uppermost region. The structure gradually changed with lesser dendrites and more heat affected α-Ti phase maintaining a smooth interface. With increasing laser power, the dendrites appeared to be larger in size. Samples with two laser scans showed discontinuous dendrites and more α-Ti phase as compared to the samples with one laser scan. The resultant composite of TiN along with Ti2N in α-Ti showed substantially higher hardness and wear resistance than the untreated CP-Ti substrate. Coefficient of friction was also found to reduce due to surface nitridation. Leaching of Ti(4+) ions during wear test in DI water medium was found to reduce due to laser surface nitriding.


Sujet(s)
Matériaux revêtus, biocompatibles/composition chimique , Lasers , Titane/composition chimique , Test de matériaux , Phénomènes mécaniques , Propriétés de surface , Eau
18.
ACS Appl Mater Interfaces ; 7(48): 26716-25, 2015 Dec 09.
Article de Anglais | MEDLINE | ID: mdl-26554497

RÉSUMÉ

A new approach was adopted to improve the corrosion resistance of CrN hard coatings by inserting a Al2O3 layer through atomic layer deposition. The influence of the addition of a Al2O3 interlayer, its thickness, and the position of its insertion on the microstructure, surface roughness, corrosion behavior, and mechanical properties of the coatings was investigated. The results indicated that addition of a dense atomic layer deposited Al2O3 interlayer led to a significant decrease in the average grain size and surface roughness and to greatly improved corrosion resistance and corrosion durability of CrN coatings while maintaining their mechanical properties. Increasing the thickness of the Al2O3 interlayer and altering its insertion position so that it was near the surface of the coating also resulted in superior performance of the coating. The mechanism of this effect can be explained by the dense Al2O3 interlayer acting as a good sealing layer that inhibits charge transfer, diffusion of corrosive substances, and dislocation motion.

19.
J Appl Crystallogr ; 46(Pt 4): 1064-1075, 2013 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-24046506

RÉSUMÉ

V-Al-C-N hard coatings with high carbon content were deposited by reactive radio-frequency magnetron sputtering using an experimental combinatorial approach, deposition from a segmented sputter target. The composition-dependent coexisting phases within the coating were analysed using the complementary methods of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine-structure spectroscopy (EXAFS). For the analysis of the X-ray absorption near-edge spectra, a new approach for evaluation of the pre-edge peak was developed, taking into account the self-absorption effects in thin films. Within the studied composition range, a mixed face-centred cubic (V,Al)(C,N) phase coexisting with a C-C-containing phase was observed. No indication of hexagonal (V,Al)(N,C) was found. The example of V-Al-C-N demonstrates how important a combination of complementary methods is for the detection of coexisting phases in complex multi-element coatings.

20.
Materials (Basel) ; 4(9): 1599-1618, 2011 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-28824159

RÉSUMÉ

We review results of recent combined theoretical and experimental studies of Ti1-xAlxN, an archetypical alloy system material for hard-coating applications. Theoretical simulations of lattice parameters, mixing enthalpies, and elastic properties are presented. Calculated phase diagrams at ambient pressure, as well as at pressure of 10 GPa, show a wide miscibility gap and broad region of compositions and temperatures where the spinodal decomposition takes place. The strong dependence of the elastic properties and sound wave anisotropy on the Al-content offers detailed understanding of the spinodal decomposition and age hardening in Ti1-xAlxN alloy films and multilayers. TiAlN/TiN multilayers can further improve the hardness and thermal stability compared to TiAlN since they offer means to influence the kinetics of the favorable spinodal decomposition and suppress the detrimental transformation to w-AlN. Here, we show that a 100 degree improvement in terms of w-AlN suppression can be achieved, which is of importance when the coating is used as a protective coating on metal cutting inserts.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE