Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 594
Filtrer
1.
Front Neurosci ; 18: 1424025, 2024.
Article de Anglais | MEDLINE | ID: mdl-38966756

RÉSUMÉ

In the dynamic landscape of biomedical science, the pursuit of effective treatments for motor neuron disorders like hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) remains a key priority. Central to this endeavor is the development of robust animal models, with the zebrafish emerging as a prime candidate. Exhibiting embryonic transparency, a swift life cycle, and significant genetic and neuroanatomical congruencies with humans, zebrafish offer substantial potential for research. Despite the difference in locomotion-zebrafish undulate while humans use limbs, the zebrafish presents relevant phenotypic parallels to human motor control disorders, providing valuable insights into neurodegenerative diseases. This review explores the zebrafish's inherent traits and how they facilitate profound insights into the complex behavioral and cellular phenotypes associated with these disorders. Furthermore, we examine recent advancements in high-throughput drug screening using the zebrafish model, a promising avenue for identifying therapeutically potent compounds.

5.
eNeurologicalSci ; 35: 100506, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38883204

RÉSUMÉ

Hereditary spastic paraplegia (HSP) is a group of genetically heterogenous neurodegenerative disorders characterized by progressive spasticity and weakness of lower limbs. We report a novel splicing variant (c.1617-2A>C) of the SPAST gene in a heterozygous carrier from an Italian family with autosomal dominant HSP. The case study describes a pure form of spastic paraparesis with the cardinal clinical features of SPG4. The novel variant affects a canonical splice site and is likely to disrupt RNA splicing. We conclude that the c.1617-2A>C substitution is a null variant, which could be classified as pathogenic; its penetrance should be further investigated.

6.
Autophagy ; : 1-3, 2024 Jun 23.
Article de Anglais | MEDLINE | ID: mdl-38909316

RÉSUMÉ

Mutations in the DDHD2 (DDHD domain containing 2) gene cause autosomal recessive spastic paraplegia type 54 (SPG54), a rare neurodegenerative disorder characterized by the early childhood onset of progressive spastic paraplegia. DDHD2 is reported as the principal brain triacylglycerol (TAG) lipase whose dysfunction causes massive lipid droplet (LD) accumulation in the brains of SPG54 patients. However, the precise functions of DDHD2 in regulating LD catabolism are not yet fully understood. In a recent study, we demonstrate that DDHD2 interacts with multiple members of the Atg8-family proteins (MAP1LC3/LC3s, GABARAPs), which play crucial roles in lipophagy. DDHD2 possesses two LC3-interacting region (LIR) motifs that contribute to its LD-eliminating activity. Moreover, DDHD2 enhances the colocalization between LC3B and LDs to promote lipophagy. LD·ATTEC, a compound that tethers LC3 to LDs to enhance their macroautophagic/autophagic clearance, effectively counteracts DDHD2 deficiency-induced LD accumulation. These findings provide insights into the dual functions of DDHD2 as a TAG lipase and cargo receptor for lipophagy in neuronal LD catabolism, and also suggest a potential therapeutic approach for treating SPG54 patients.

7.
Neurobiol Dis ; 199: 106556, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38851544

RÉSUMÉ

Mutation of the ATL1 gene is one of the most common causes of hereditary spastic paraplegia (HSP), a group of genetic neurodegenerative conditions characterised by distal axonal degeneration of the corticospinal tract axons. Atlastin-1, the protein encoded by ATL1, is one of three mammalian atlastins, which are homologous dynamin-like GTPases that control endoplasmic reticulum (ER) morphology by fusing tubules to form the three-way junctions that characterise ER networks. However, it is not clear whether atlastin-1 is required for correct ER morphology in human neurons and if so what the functional consequences of lack of atlastin-1 are. Using CRISPR-inhibition we generated human cortical neurons lacking atlastin-1. We demonstrate that ER morphology was altered in these neurons, with a reduced number of three-way junctions. Neurons lacking atlastin-1 had longer endosomal tubules, suggestive of defective tubule fission. This was accompanied by reduced lysosomal proteolytic capacity. As well as demonstrating that atlastin-1 is required for correct ER morphology in human neurons, our results indicate that lack of a classical ER-shaping protein such as atlastin-1 may cause altered endosomal tubulation and lysosomal proteolytic dysfunction. Furthermore, they strengthen the idea that defective lysosome function contributes to the pathogenesis of a broad group of HSPs, including those where the primary localisation of the protein involved is not at the endolysosomal system.

8.
Neurobiol Dis ; 199: 106564, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38876323

RÉSUMÉ

Biallelic variants in the SPG11 gene account for the most common form of autosomal recessive hereditary spastic paraplegia characterized by motor and cognitive impairment, with currently no therapeutic option. We previously observed in a Spg11 knockout mouse that neurodegeneration is associated with accumulation of gangliosides in lysosomes. To test whether a substrate reduction therapy could be a therapeutic option, we downregulated the key enzyme involved in ganglioside biosynthesis using an AAV-PHP.eB viral vector expressing a miRNA targeting St3gal5. Downregulation of St3gal5 in Spg11 knockout mice prevented the accumulation of gangliosides, delayed the onset of motor and cognitive symptoms, and prevented the upregulation of serum levels of neurofilament light chain, a biomarker widely used in neurodegenerative diseases. Importantly, similar results were observed when Spg11 knockout mice were administrated venglustat, a pharmacological inhibitor of glucosylceramide synthase expected to decrease ganglioside synthesis. Downregulation of St3gal5 or venglustat administration in Spg11 knockout mice strongly decreased the formation of axonal spheroids, previously associated with impaired trafficking. Venglustat had similar effect on cultured human SPG11 neurons. In conclusion, this work identifies the first disease-modifying therapeutic strategy in SPG11, and provides data supporting its relevance for therapeutic testing in SPG11 patients.

9.
Rev Neurol (Paris) ; 2024 May 02.
Article de Anglais | MEDLINE | ID: mdl-38702287

RÉSUMÉ

Distal hereditary motor neuropathies (dHMN) are a group of heterogeneous hereditary disorders characterized by a slowly progressive distal pure motor neuropathy. Electrophysiology, with normal motor and sensory conduction velocities, can suggest the diagnosis of dHMN and guide the genetic study. More than thirty genes are currently associated with HMNs, but around 60 to 70% of cases of dHMN remain uncharacterized genetically. Recent cohort studies showed that HSPB1, GARS, BICB2 and DNAJB2 are among the most frequent dHMN genes and that the prevalence of the disease was calculated as 2.14 and 2.3 per 100,000. The determination of the different genes involved in dHMNs made it possible to observe a genotypic overlap with some other neurogenetic disorders and other hereditary neuropathies such as CMT2, mainly with the HSPB1, HSPB8, BICD2 and TRPV4 genes of AD-inherited transmission and recently observed with SORD gene of AR transmission which seems relatively frequent and potentially curable. Distal hereditary motor neuropathy that predominates in the upper limbs is linked mainly to three genes: GARS, BSCL2 and REEP1, whereas dHMN with vocal cord palsy is associated with SLC5A7, DCTN1 and TRPV4 genes. Among the rare AR forms of dHMN like IGHMBP2 and DNAJB2, the SIGMAR1 gene mutations as well as VRK1 variants are associated with a motor neuropathy phenotype often associated with upper motoneuron involvement. The differential diagnosis of these latter arises with juvenile forms of amyotrophic lateral sclerosis, that could be caused also by variations of these genes, as well as hereditary spastic paraplegia. A differential diagnosis of dHMN related to Brown Vialetto Van Laere syndrome due to riboflavin transporter deficiency is important to consider because of the therapeutic possibility.

10.
Int J Mol Sci ; 25(9)2024 May 03.
Article de Anglais | MEDLINE | ID: mdl-38732227

RÉSUMÉ

The most common form of hereditary spastic paraplegia (HSP), SPG4 is caused by single nucleotide variants and microrearrangements in the SPAST gene. The high percentage of multi-exonic deletions or duplications observed in SPG4 patients is predisposed by the presence of a high frequency of Alu sequences in the gene sequence. In the present study, we analyzed DNA and RNA samples collected from patients with different microrearrangements in SPAST to map gene breakpoints and evaluate the mutation mechanism. The study group consisted of 69 individuals, including 50 SPG4 patients and 19 healthy relatives from 18 families. Affected family members from 17 families carried varying ranges of microrearrangements in the SPAST gene, while one individual had a single nucleotide variant in the 5'UTR of SPAST. To detect the breakpoints of the SPAST gene, long-range PCR followed by sequencing was performed. The breakpoint sequence was detected for five different intragenic SPAST deletions and one duplication, revealing Alu-mediated microhomology at breakpoint junctions resulting from non-allelic homologous recombination in these patients. Furthermore, SPAST gene expression analysis was performed using patient RNA samples extracted from whole blood. Quantitative real-time PCR tests performed in 14 patients suggest no expression of transcripts with microrearrangements in 5 of them. The obtained data indicate that nonsense-mediated decay degradation is not the only mechanism of hereditary spastic paraplegia in patients with SPAST microrearrangements.


Sujet(s)
Haploinsuffisance , Paraplégie spasmodique héréditaire , Spastine , Humains , Spastine/génétique , Paraplégie spasmodique héréditaire/génétique , Mâle , Femelle , Haploinsuffisance/génétique , Pedigree , Variations de nombre de copies de segment d'ADN , Adulte , Séquences Alu/génétique , Adulte d'âge moyen , Adolescent , Jeune adulte , Dégradation des ARNm non-sens
11.
Neurobiol Dis ; 198: 106537, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38772452

RÉSUMÉ

Hereditary spastic paraplegia (HSP) comprises a large group of neurogenetic disorders characterized by progressive lower extremity spasticity. Neurological evaluation and genetic testing were completed in a Malian family with early-onset HSP. Three children with unaffected consanguineous parents presented with symptoms consistent with childhood-onset complicated HSP. Neurological evaluation found lower limb weakness, spasticity, dysarthria, seizures, and intellectual disability. Brain MRI showed corpus callosum thinning with cortical and spinal cord atrophy, and an EEG detected slow background in the index patient. Whole exome sequencing identified a homozygous missense variant in the adaptor protein (AP) complex 2 alpha-2 subunit (AP2A2) gene. Western blot analysis showed reduced levels of AP2A2 in patient-iPSC derived neuronal cells. Endocytosis of transferrin receptor (TfR) was decreased in patient-derived neurons. In addition, we observed increased axon initial segment length in patient-derived neurons. Xenopus tropicalis tadpoles with ap2a2 knockout showed cerebral edema and progressive seizures. Immunoprecipitation of the mutant human AP-2-appendage alpha-C construct showed defective binding to accessory proteins. We report AP2A2 as a novel genetic entity associated with HSP and provide functional data in patient-derived neuron cells and a frog model. These findings expand our understanding of the mechanism of HSP and improve the genetic diagnosis of this condition.


Sujet(s)
Complexe protéique adaptateur 2 , Endocytose , Paraplégie spasmodique héréditaire , Animaux , Enfant , Enfant d'âge préscolaire , Femelle , Humains , Mâle , Complexe protéique adaptateur 2/génétique , Endocytose/génétique , Endocytose/physiologie , Mutation/génétique , Mutation faux-sens , Neurones/métabolisme , Neurones/anatomopathologie , Pedigree , Paraplégie spasmodique héréditaire/génétique , Paraplégie spasmodique héréditaire/anatomopathologie , Xenopus
12.
J Neuromuscul Dis ; 11(4): 735-747, 2024.
Article de Anglais | MEDLINE | ID: mdl-38788085

RÉSUMÉ

Motor neuron diseases and peripheral neuropathies are heterogeneous groups of neurodegenerative disorders that manifest with distinct symptoms due to progressive dysfunction or loss of specific neuronal subpopulations during different stages of development. A few monogenic, neurodegenerative diseases associated with primary metabolic disruptions of sphingolipid biosynthesis have been recently discovered. Sphingolipids are a subclass of lipids that form critical building blocks of all cellular and subcellular organelle membranes including the membrane components of the nervous system cells. They are especially abundant within the lipid portion of myelin. In this review, we will focus on our current understanding of disease phenotypes in three monogenic, neuromuscular diseases associated with pathogenic variants in components of serine palmitoyltransferase, the first step in sphingolipid biosynthesis. These include hereditary sensory and autonomic neuropathy type 1 (HSAN1), a sensory predominant peripheral neuropathy, and two neurodegenerative disorders: juvenile amyotrophic lateral sclerosis affecting the upper and lower motor neurons with sparing of sensory neurons, and a complicated form of hereditary spastic paraplegia with selective involvement of the upper motor neurons and more broad CNS neurodegeneration. We will also review our current understanding of disease pathomechanisms, therapeutic approaches, and the unanswered questions to explore in future studies.


Sujet(s)
Neuropathies héréditaires sensitives et autonomes , Maladies neurodégénératives , Troubles du développement neurologique , Serine C-palmitoyltransferase , Humains , Serine C-palmitoyltransferase/métabolisme , Serine C-palmitoyltransferase/génétique , Maladies neurodégénératives/métabolisme , Neuropathies héréditaires sensitives et autonomes/génétique , Neuropathies héréditaires sensitives et autonomes/métabolisme , Neuropathies héréditaires sensitives et autonomes/physiopathologie , Paraplégie spasmodique héréditaire/génétique , Paraplégie spasmodique héréditaire/métabolisme , Sclérose latérale amyotrophique/génétique , Sclérose latérale amyotrophique/métabolisme , Sphingolipides/métabolisme
13.
Eur J Ophthalmol ; : 11206721241247418, 2024 Apr 13.
Article de Anglais | MEDLINE | ID: mdl-38613257

RÉSUMÉ

INTRODUCTION: Spastic paraplegia (SPG) is a heterogenous group of neurodegenerative disorders, that may include ocular involvement. Here we report the clinical data of a patient with late-onset Kjellin syndrome, a peculiar form of hereditary SPG with macular dystrophy. MATERIALS AND METHODS: Clinical, functional and multimodal retinal imaging data were collected. Genetic testing was performed by Whole Exome Sequencing (WES). RESULTS: A 52-year-old female patient with SPG of unknown origin was referred for a progressive visual acuity loss. Multimodal fundus imaging revealed a peculiar macular dystrophy. Given the specific association of macular dystrophy and SPG, a Kjellin syndrome was suspected and genetic testing performed. WES revealed biallelic pathogenic variants in SPG11, co-segregating with disease in the family. CONCLUSION: Careful ophthalmological examination prompted the diagnosis and guided molecular testing. This case underlines the importance of a neuro-ophthalmologic assessment in patients with SPG.

14.
Neurol Sci ; 2024 Apr 12.
Article de Anglais | MEDLINE | ID: mdl-38607533

RÉSUMÉ

BACKGROUND: SPG18 is caused by mutations in the endoplasmic reticulum lipid raft associated 2 (ERLIN2) gene. Autosomal recessive (AR) mutations are usually associated with complicated hereditary spastic paraplegia (HSP), while autosomal dominant (AD) mutations use to cause pure SPG18. AIM: To define the variegate clinical spectrum of the SPG18 and to evaluate a dominant negative effect of erlin2 (encoded by ERLIN2) on oligomerization as causing differences between AR and AD phenotypes. METHODS: In a four-generation pedigree with an AD pattern, a spastic paraplegia multigene panel test was performed. Oligomerization of erlin2 was analyzed with velocity gradient assay in fibroblasts of the proband and healthy subjects. RESULTS: Despite the common p.V168M mutation identified in ERLIN2, a phenoconversion to amyotrophic lateral sclerosis (ALS) was observed in the second generation, pure HSP in the third generation, and a complicated form with psychomotor delay and epilepsy in the fourth generation. Erlin2 oligomerization was found to be normal. DISCUSSION: We report the first AD SPG18 family with a complicated phenotype, and we ruled out a dominant negative effect of V168M on erlin2 oligomerization. Therefore, our data do not support the hypothesis of a relationship between the mode of inheritance and the phenotype, but confirm the multifaceted nature of SPG18 on both genetic and clinical point of view. Clinicians should be aware of the importance of conducting an in-depth clinical evaluation to unmask all the possible manifestations associated to an only apparently pure SPG18 phenotype. We confirm the genotype-phenotype correlation between V168M and ALS emphasizing the value of close follow-up.

15.
Article de Anglais | MEDLINE | ID: mdl-38597354

RÉSUMÉ

Hereditary spastic paraplegia (HSP) is a group of familial diseases characterized by progressive corticospinal tract degeneration. Clinically, patients present with lower-limb spasticity and weakness. To date, more than 80 genetic HSP types have been identified. Despite advances in molecular genetics, novel HSP gene discoveries are ongoing, with a low genetic diagnostic yield. In this study, we aimed to determine pathogenic variants in a family with HSP, which was not diagnosed through conventional genetic testing. We clinically characterized a large family and conducted whole genome sequencing (WGS) analysis of four affected and three unaffected individuals in the family to identify the genetic cause of HSP. This family had autosomal dominant pure (uncomplicated) late childhood-onset HSP. The patients' symptoms accelerated between the ages of 20 and 30. Brain magnetic resonance images typically showed white matter changes, a thin corpus callosum, and cerebellar atrophy. We identified a heterozygous missense variant, KCNJ3 c.1297T>G (p.Leu433Val), through WGS and family genetic analysis, confirmed by Sanger sequencing. We suggest that the identification of KCNJ3 c.1297T>G (p.Leu433Val) constitutes the discovery of a potential novel gene responsible for HSP in this family. This is the first study to report the possible role of a KCNJ3 variant in HSP pathogenesis. Our findings further expand the phenotypic and genotypic spectrum of HSP.

16.
J Biol Chem ; 300(5): 107259, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38582453

RÉSUMÉ

Selenoprotein I (SELENOI) catalyzes the final reaction of the CDP-ethanolamine branch of the Kennedy pathway, generating the phospholipids phosphatidylethanolamine (PE) and plasmenyl-PE. Plasmenyl-PE is a key component of myelin and is characterized by a vinyl ether bond that preferentially reacts with oxidants, thus serves as a sacrificial antioxidant. In humans, multiple loss-of-function mutations in genes affecting plasmenyl-PE metabolism have been implicated in hereditary spastic paraplegia, including SELENOI. Herein, we developed a mouse model of nervous system-restricted SELENOI deficiency that circumvents embryonic lethality caused by constitutive deletion and recapitulates phenotypic features of hereditary spastic paraplegia. Resulting mice exhibited pronounced alterations in brain lipid composition, which coincided with motor deficits and neuropathology including hypomyelination, elevated reactive gliosis, and microcephaly. Further studies revealed increased lipid peroxidation in oligodendrocyte lineage cells and disrupted oligodendrocyte maturation both in vivo and in vitro. Altogether, these findings detail a critical role for SELENOI-derived plasmenyl-PE in myelination that is of paramount importance for neurodevelopment.


Sujet(s)
Homéostasie , Métabolisme lipidique , Gaine de myéline , Oligodendroglie , Sélénoprotéines , Animaux , Humains , Souris , Encéphale/métabolisme , Encéphale/anatomopathologie , Peroxydation lipidique , Souris knockout , Gaine de myéline/métabolisme , Oligodendroglie/métabolisme , Oligodendroglie/anatomopathologie , Phosphatidyléthanolamine/métabolisme , Éther-phospholipides/métabolisme , Acétalphosphatides/métabolisme , Sélénoprotéines/métabolisme , Sélénoprotéines/génétique , Paraplégie spasmodique héréditaire/métabolisme , Paraplégie spasmodique héréditaire/génétique , Paraplégie spasmodique héréditaire/anatomopathologie
17.
Muscle Nerve ; 70(1): 152-156, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38687249

RÉSUMÉ

INTRODUCTION/AIMS: The frequency and distribution of upper motor neuron (UMN) signs in primary lateral sclerosis (PLS) are unknown. We aimed to study the spectrum of UMN signs in PLS and compare it with hereditary spastic paraplegia (HSP). METHODS: We retrospectively analyzed the frequency of different UMN signs, including hyperreflexia (limbs and jaw), limb and tongue spasticity, Babinski, and Hoffman signs, in PLS patients at first observation and compared this respect to onset region and symptom duration. We also compared PLS versus HSP patients. RESULTS: We included 34 PLS and 20 HSP patients, with a median symptom duration at first visit of 3.0 (interquartile range, IQR = 4.0) and 19.0 (IQR = 22.0) years, respectively. In PLS patients, hyperreflexia of upper (UL) (88.2%) and lower (LL) (91.2%) limbs, and LL spasticity (79.4%) were the most common findings. Spasticity of LL was significantly (p = .012) more frequent in LL-spinal onset subgroup, tongue spasticity in bulbar-onset subgroup (p = .021), and Hoffman sign in UL-spinal onset subgroup (p = .024). The PLS subgroup with shorter disease duration had a higher frequency of abnormal jaw jerk reflex (p = .037). Compared with HSP, PLS patients had a higher frequency of UL hyperreflexia (88.2% vs. 42.1%, p < .001) and UL spasticity (44.1% vs. 0.0%, p < .001). Asymmetric distribution of UMN signs was present in PLS and not in HSP. DISCUSSION: In PLS, UL UMN signs are nearly always present and UMN sign distribution appears to be associated with onset region. At first observation, bulbar involvement, asymmetrical distribution of UMN signs and UL spasticity may indicate PLS versus HSP.


Sujet(s)
Paraplégie spasmodique héréditaire , Humains , Paraplégie spasmodique héréditaire/physiopathologie , Paraplégie spasmodique héréditaire/diagnostic , Mâle , Femelle , Adulte d'âge moyen , Adulte , Études rétrospectives , Motoneurones/physiologie , Sujet âgé , Spasticité musculaire/physiopathologie , Spasticité musculaire/diagnostic , Maladies du motoneurone/physiopathologie , Maladies du motoneurone/diagnostic
18.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article de Anglais | MEDLINE | ID: mdl-38473862

RÉSUMÉ

Hereditary spastic paraplegias (HSPs) comprise a family of degenerative diseases mostly hitting descending axons of corticospinal neurons. Depending on the gene and mutation involved, the disease could present as a pure form with limb spasticity, or a complex form associated with cerebellar and/or cortical signs such as ataxia, dysarthria, epilepsy, and intellectual disability. The progressive nature of HSPs invariably leads patients to require walking canes or wheelchairs over time. Despite several attempts to ameliorate the life quality of patients that have been tested, current therapeutical approaches are just symptomatic, as no cure is available. Progress in research in the last two decades has identified a vast number of genes involved in HSP etiology, using cellular and animal models generated on purpose. Although unanimously considered invaluable tools for basic research, those systems are rarely predictive for the establishment of a therapeutic approach. The advent of induced pluripotent stem (iPS) cells allowed instead the direct study of morphological and molecular properties of the patient's affected neurons generated upon in vitro differentiation. In this review, we revisited all the present literature recently published regarding the use of iPS cells to differentiate HSP patient-specific neurons. Most studies have defined patient-derived neurons as a reliable model to faithfully mimic HSP in vitro, discovering original findings through immunological and -omics approaches, and providing a platform to screen novel or repurposed drugs. Thereby, one of the biggest hopes of current HSP research regards the use of patient-derived iPS cells to expand basic knowledge on the disease, while simultaneously establishing new therapeutic treatments for both generalized and personalized approaches in daily medical practice.


Sujet(s)
Ataxie cérébelleuse , Cellules souches pluripotentes , Paraplégie spasmodique héréditaire , Animaux , Humains , Paraplégie spasmodique héréditaire/génétique , Neurones , Axones , Mutation
19.
Neurogenetics ; 2024 Mar 19.
Article de Anglais | MEDLINE | ID: mdl-38499745

RÉSUMÉ

Hereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases with a high genetic and clinical heterogeneity. Numerous HSP patients remain genetically undiagnosed despite screening for known genetic causes of HSP. Therefore, identification of novel variants and genes is needed. Our previous study analyzed 74 adult Serbian HSP patients from 65 families using panel of the 13 most common HSP genes in combination with a copy number variation analysis. Conclusive genetic findings were established in 23 patients from 19 families (29%). In the present study, nine patients from nine families previously negative on the HSP gene panel were selected for the whole exome sequencing (WES). Further, 44 newly diagnosed adult HSP patients from 44 families were sent to WES directly, since many studies showed WES may be used as the first step in HSP diagnosis. WES analysis of cohort 1 revealed a likely genetic cause in five (56%) of nine HSP families, including variants in the ETHE1, ZFYVE26, RNF170, CAPN1, and WASHC5 genes. In cohort 2, possible causative variants were found in seven (16%) of 44 patients (later updated to 27% when other diagnosis were excluded), comprising six different genes: SPAST, SPG11, WASCH5, KIF1A, KIF5A, and ABCD1. These results expand the genetic spectrum of HSP patients in Serbia and the region with implications for molecular genetic diagnosis and future causative therapies. Wide HSP panel can be the first step in diagnosis, alongside with the copy number variation (CNV) analysis, while WES should be performed after.

20.
Brain ; 147(7): 2334-2343, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38527963

RÉSUMÉ

Heterozygous RTN2 variants have been previously identified in a limited cohort of families affected by autosomal dominant spastic paraplegia (SPG12-OMIM:604805) with a variable age of onset. Nevertheless, the definitive validity of SPG12 remains to be confidently confirmed due to the scarcity of supporting evidence. In this study, we identified and validated seven novel or ultra-rare homozygous loss-of-function RTN2 variants in 14 individuals from seven consanguineous families with distal hereditary motor neuropathy (dHMN) using exome, genome and Sanger sequencing coupled with deep-phenotyping. All affected individuals (seven males and seven females, aged 9-50 years) exhibited weakness in the distal upper and lower limbs, lower limb spasticity and hyperreflexia, with onset in the first decade of life. Nerve conduction studies revealed axonal motor neuropathy with neurogenic changes in the electromyography. Despite a slowly progressive disease course, all patients remained ambulatory over a mean disease duration of 19.71 ± 13.70 years. Characterization of Caenorhabditis elegans RTN2 homologous loss-of-function variants demonstrated morphological and behavioural differences compared with the parental strain. Treatment of the mutant with an endoplasmic/sarcoplasmic reticulum Ca2+ reuptake inhibitor (2,5-di-tert-butylhydroquinone) rescued key phenotypic differences, suggesting a potential therapeutic benefit for RTN2-disorder. Despite RTN2 being an endoplasmic reticulum (ER)-resident membrane shaping protein, our analysis of patient fibroblast cells did not find significant alterations in ER structure or the response to ER stress. Our findings delineate a distinct form of autosomal recessive dHMN with pyramidal features associated with RTN2 deficiency. This phenotype shares similarities with SIGMAR1-related dHMN and Silver-like syndromes, providing valuable insights into the clinical spectrum and potential therapeutic strategies for RTN2-related dHMN.


Sujet(s)
Pedigree , Humains , Mâle , Femelle , Enfant , Adulte , Adolescent , Jeune adulte , Adulte d'âge moyen , Animaux , Membre inférieur/physiopathologie , Caenorhabditis elegans , Spasticité musculaire/génétique , Spasticité musculaire/physiopathologie , Paraplégie spasmodique héréditaire/génétique , Paraplégie spasmodique héréditaire/physiopathologie , Mutation
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...