Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.365
Filtrer
1.
Biochem Biophys Res Commun ; 734: 150619, 2024 Aug 29.
Article de Anglais | MEDLINE | ID: mdl-39232458

RÉSUMÉ

Since the emergence of a global outbreak of mpox in 2022, understanding the transmission pathways and mechanisms of Orthopoxviruses, including vaccinia virus (VACV), has become paramount. Nanoplastic pollution has become a significant global issue due to its widespread presence in the environment and potential adverse effects on human health. These emerging pollutants pose substantial risks to both living organisms and the environment, raising serious health concerns related to their proliferation. Despite this, the effects of nanoparticles on viral transmission dynamics remain unclear. This study explores how polystyrene nanoparticles (PS-NPs) influence the transmission of VACV through migrasomes. We demonstrate that PS-NPs accelerate the formation of migrasomes early in the infection process, facilitating VACV entry as soon as 15 h post-infection (hpi), compared to the usual onset at 36 hpi. Immunofluorescence and transmission electron microscopy (TEM) reveal significant co-localization of VACV with migrasomes induced by PS-NPs by 15 hpi. This interaction coincides with an increase in lipid droplet size, attributed to higher cholesterol levels influenced by PS-NPs. By 36 hpi, migrasomes exposed to both PS-NPs and VACV exhibit distinct features, such as retraction fibers and larger lipid droplets, emphasizing their critical role in cargo transport during viral infections. These results suggest that PS-NPs may act as modulators of viral transmission dynamics through migrasomes, with potential implications for antiviral strategies and environmental health.

2.
Cell Rep Med ; : 101706, 2024 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-39236712

RÉSUMÉ

Antipsychotic drugs have been shown to have antitumor effects but have had limited potency in the clinic. Here, we unveil that pimozide inhibits lysosome hydrolytic function to suppress fatty acid and cholesterol release in glioblastoma (GBM), the most lethal brain tumor. Unexpectedly, GBM develops resistance to pimozide by boosting glutamine consumption and lipogenesis. These elevations are driven by SREBP-1, which we find upregulates the expression of ASCT2, a key glutamine transporter. Glutamine, in turn, intensifies SREBP-1 activation through the release of ammonia, creating a feedforward loop that amplifies both glutamine metabolism and lipid synthesis, leading to drug resistance. Disrupting this loop via pharmacological targeting of ASCT2 or glutaminase, in combination with pimozide, induces remarkable mitochondrial damage and oxidative stress, leading to GBM cell death in vitro and in vivo. Our findings underscore the promising therapeutic potential of effectively targeting GBM by combining glutamine metabolism inhibition with lysosome suppression.

3.
Luminescence ; 39(9): e4885, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39238366

RÉSUMÉ

Near-infrared (NIR) fluorescent probes with aggregation-induced emission (AIE) properties are of great significance in cell imaging and cancer therapy. However, the complexity of its synthesis, poor photostabilities, and expensive raw materials still pose some obstacles to their practical application. This study reported an AIE luminescent material with red emission and its application in in vitro imaging and photodynamic therapy (PDT) study. This material has the characteristics of simple synthesis, large Stokes shift, good photostabilities, and excellent lipid droplets-specific testing ability. Interestingly, this red-emitting material can effectively produce reactive oxygen species (ROS) under white light irradiation, further achieving PDT-mediated killing of cancer cells. In conclusion, this study demonstrates a simple approach to synthesize NIR AIE probes with both imaging and therapeutic effects, providing an ideal architecture for constructing long-wavelength emission AIE materials.


Sujet(s)
Colorants fluorescents , Rayons infrarouges , Gouttelettes lipidiques , Photothérapie dynamique , Espèces réactives de l'oxygène , Humains , Colorants fluorescents/composition chimique , Colorants fluorescents/synthèse chimique , Colorants fluorescents/pharmacologie , Gouttelettes lipidiques/composition chimique , Espèces réactives de l'oxygène/métabolisme , Espèces réactives de l'oxygène/analyse , Espèces réactives de l'oxygène/composition chimique , Photosensibilisants/composition chimique , Photosensibilisants/pharmacologie , Photosensibilisants/synthèse chimique , Survie cellulaire/effets des médicaments et des substances chimiques , Imagerie optique , Structure moléculaire , Cellules HeLa
4.
Adv Sci (Weinh) ; : e2306863, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39252446

RÉSUMÉ

Microglia are critically involved in post-stroke inflammation affecting neurological outcomes. Lipid droplet (LD) accumulation in microglia results in a dysfunctional and pro-inflammatory state in the aged brain and worsens the outcome of neuroinflammatory and neurodegenerative diseases. However, the role of LD-rich microglia (LDRM) under stroke conditions is unknown. Using in vitro and in vivo stroke models, herein accumulation patterns of microglial LD and their corresponding microglial inflammatory signaling cascades are studied. Interactions between temporal and spatial dynamics of lipid profiles and microglial phenotypes in different post-stroke brain regions are found. Hence, microglia display enhanced levels of LD accumulation and elevated perilipin 2 (PLIN2) expression patterns when exposed to hypoxia or stroke. Such LDRM exhibit high levels of TNF-α, IL-6, and IL-1ß as well as a pro-inflammatory phenotype and differentially expressed lipid metabolism-related genes. These post-ischemic alterations result in distinct lipid profiles with spatial and temporal dynamics, especially with regard to cholesteryl ester and triacylglycerol levels, further exacerbating post-ischemic inflammation. The present study sheds new light on the dynamic changes of brain lipid profiles and aggregation patterns of LD in microglia exposed to ischemia, demonstrating a mutual mechanism between microglial phenotype and function, which contributes to progression of brain injury.

5.
Biosens Bioelectron ; 267: 116742, 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39243450

RÉSUMÉ

Ferrous ions (Fe2⁺) accumulation and abnormal alterations in lipid droplets (LDs) are closely associated with ferroptosis. In the liver, excessive iron accumulation promotes oxidative stress and exacerbates lipid droplet accumulation, while the disruption of iron homeostasis may also affect the formation and size of lipid droplets, their increased number and size can exacerbate the severity of disease under fatty liver conditions. The leads to hepatocyte damage, further triggering liver inflammation, fibrosis, and ultimately resulting in cirrhosis and hepatocellular carcinoma. Therefore, real-time monitoring of iron ion and lipid droplet changes is crucial for assessing the severity of liver disease, disease progression, and understanding the mechanisms of ferroptosis. We have developed a fluorescent probe, NRFep, for real-time monitoring of iron ion fluctuations and visualization of lipid droplet changes in ferroptosis and liver disease models. NRFep is specific and sensitive to iron ions and exhibits excellent stability in both cells and animal models. In addition, NRFep can be used to monitor changes in iron ions and lipid droplets in mouse liver injury and fatty liver models. Through fluorescence lifetime imaging technology, NRFep can also study the dynamic changes of intracellular iron ion content. NRFep provides a powerful tool for studying ferroptosis and related diseases, and its unique dual-monitoring function opens up new possibilities for developing new diagnostic and therapeutic strategies.

6.
FASEB J ; 38(17): e70034, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-39248019

RÉSUMÉ

The function of hydroxysteroid dehydrogenase 12 (HSD17B12) in lipid metabolism is poorly understood. To study this further, we created mice with hepatocyte-specific knockout of HSD17B12 (LiB12cKO). From 2 months on, these mice showed significant fat accumulation in their liver. As they aged, they also had a reduced whole-body fat percentage. Interestingly, the liver fat accumulation did not result in the typical formation of large lipid droplets (LD); instead, small droplets were more prevalent. Thus, LiB12KO liver did not show increased macrovesicular steatosis with the increasing fat content, while microvesicular steatosis was the predominant feature in the liver. This indicates a failure in the LD expansion. This was associated with liver damage, presumably due to lipotoxicity. Notably, the lipidomics data did not support an essential role of HSD17B12 in fatty acid (FA) elongation. However, we did observe a decrease in the quantity of specific lipid species that contain FAs with carbon chain lengths of 18 and 20 atoms, including oleic acid. Of these, phosphatidylcholine and phosphatidylethanolamine have been shown to play a key role in LD formation, and a limited amount of these lipids could be part of the mechanism leading to the dysfunction in LD expansion. The increase in the Cidec expression further supported the deficiency in LD expansion in the LiB12cKO liver. This protein is crucial for the fusion and growth of LDs, along with the downregulation of several members of the major urinary protein family of proteins, which have recently been shown to be altered during endoplasmic reticulum stress.


Sujet(s)
Stéatose hépatique , Hépatocytes , Gouttelettes lipidiques , Souris knockout , Animaux , Souris , Gouttelettes lipidiques/métabolisme , Hépatocytes/métabolisme , Stéatose hépatique/métabolisme , Stéatose hépatique/anatomopathologie , Stéatose hépatique/génétique , 17-Hydroxysteroid dehydrogenases/métabolisme , 17-Hydroxysteroid dehydrogenases/génétique , Métabolisme lipidique , Poids , Foie/métabolisme , Foie/anatomopathologie , Mâle , Souris de lignée C57BL , Acides gras/métabolisme
7.
J Lipid Res ; : 100641, 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39245323

RÉSUMÉ

A key organismal response to overnutrition involves the development of new adipocytes through the process of adipogenesis. Preadipocytes sense changes in the systemic nutrient status and metabolites can directly modulate adipogenesis. We previously identified a role of de novo nucleotide biosynthesis in adipogenesis induction, whereby inhibition of nucleotide biosynthesis suppresses the expression of the transcriptional regulators PPARγ and C/EBPα. Here, we set out to identify the global transcriptomic changes associated with the inhibition of nucleotide biosynthesis. Through RNA sequencing (RNAseq), we discovered that mitochondrial signatures were the most altered in response to inhibition of nucleotide biosynthesis. Blocking nucleotide biosynthesis induced rounded mitochondrial morphology, and altered mitochondrial function, and metabolism, reducing levels of tricarboxylic acid cycle intermediates, and increasing fatty acid oxidation (FAO). The loss of mitochondrial function induced by suppression of nucleotide biosynthesis was rescued by exogenous expression of PPARγ. Moreover, inhibition of FAO restored PPARγ expression, mitochondrial protein expression, and adipogenesis in the presence of nucleotide biosynthesis inhibition, suggesting a regulatory role of nutrient oxidation in differentiation. Collectively, our studies shed light on the link between substrate oxidation and transcription in cell fate determination.

8.
J Extracell Biol ; 3(9): e162, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39257626

RÉSUMÉ

Despite increasing knowledge about small extracellular vesicle (sEV) composition and functions in cell-cell communication, the mechanism behind their biogenesis remains unclear. Here, we reveal for the first time that sEV biogenesis and release into the microenvironment are tightly connected with another important organelle, Lipid Droplets (LDs). The correlation was observed in several human cancer cell lines as well as patient-derived colorectal cancer stem cells (CR-CSCs). Our results demonstrated that external stimuli such as radiation, pH, hypoxia or lipid-interfering drugs, known to affect the number of LDs/cell, similarly influenced sEV secretion. Importantly, through multiple omics data, at both mRNA and protein levels, we revealed RAB5C as a potential important molecular player behind this organelle connection. Altogether, the potential to fine-tune sEV biogenesis by targeting LDs could significantly impact the amount, cargos and properties of these sEVs, opening new clinical perspectives.

9.
ACS Infect Dis ; 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39259670

RÉSUMÉ

Klebsiella pneumoniae is consistently ranked among the most problematic multidrug-resistant bacterial pathogens in healthcare systems. Developing novel treatments requires a better understanding of its interaction with the host environment. Although bacteria can synthesize fatty acids, emerging findings suggest a potential preference for their acquisition from the host. Fatty acid profiling of mice revealed a dramatic increase in the level of hepatic lipids during K. pneumoniae infection. The K. pneumoniae fatty acid composition and uptake capabilities were found to be largely clonally conserved. Correlations between fatty acid uptake, outer membrane vesicle production, and cell permeability were observed, but this did not translate to alterations in cell morphology, capsule production, or antimicrobial susceptibility. Importantly, hyper-capsulation did not prevent the uptake of hydrophobic fatty acids. The uptake of a saturated fatty acid by hypervirulent K. pneumoniae isolate may provide insights into the clinical association of K. pneumoniae infections with hyperlipidemic and/or obese individuals.

10.
Biochimie ; 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39111564

RÉSUMÉ

The four main types of biomolecules are nucleic acids, proteins, carbohydrates and lipids. The knowledge about their respective interactions is as important as the individual understanding of each of them. However, while, for example, the interaction of proteins with the other three groups is extensively studied, that of nucleic acids and lipids is, in comparison, very poorly explored. An iconic paradigm of physical (and likely functional) proximity between DNA and lipids is the case of the genomic DNA in eukaryotes: enclosed within the nucleus by two concentric lipid bilayers, the wealth of implications of this interaction, for example in genome stability, remains underassessed. Nuclear lipid-related phenotypes have been observed for 50 years, yet in most cases kept as mere anecdotical descriptions. In this review, we will bring together the evidence connecting lipids with both the nuclear envelope and the nucleoplasm, and will make critical analyses of these descriptions. Our exploration establishes a scenario in which lipids irrefutably play a role in nuclear homeostasis.

11.
J Lipid Res ; : 100618, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39127170

RÉSUMÉ

Unsaturated fatty acids (UFA) play a crucial role in central cellular processes in animals, including membrane function, development, and disease. Disruptions in UFA homeostasis can contribute to the onset of metabolic, cardiovascular, and neurodegenerative disorders. Consequently, there is a high demand for analytical techniques to study lipid compositions in live cells and multicellular organisms. Conventional analysis of UFA compositions in cells, tissues and organisms involves solvent extraction procedures coupled with analytical techniques such as gas chromatography,mass spectrometry (MS) and/or nuclear magnetic resonance (NMR) spectroscopy. As a non-destructive and non-targeted technique, NMR spectroscopy is uniquely capable of characterizing the chemical profiling of living cells and multicellular organisms. Here we use NMR spectroscopy to analyze C. elegans, enabling the determination of their lipid compositions and fatty acid unsaturation levels both in cell-free lipid extracts and in vivo. The NMR spectra of lipid extracts from wild-type and fat-3 mutant C. elegans strains revealed notable differences due to the absence of Δ-6 fatty acid desaturase activity, including the lack of arachidonic and eicosapentaenoic acyl chains. Uniform 13C-isotope labeling and high-resolution 2D solution-state NMR of live worms confirmed these findings, indicating that the signals originated from fast-tumbling lipid molecules within lipid droplets. Overall, this strategy permits the analysis of lipid storage in intact worms and has enough resolution and sensitivity to identify differences between wild type and mutant animals with impaired fatty acid desaturation. Our results establish methodological benchmarks for future investigations of fatty acid regulation in live C. elegans using NMR.

12.
Cell Biochem Biophys ; 2024 Aug 04.
Article de Anglais | MEDLINE | ID: mdl-39097558

RÉSUMÉ

Lipid droplets are important for the storage of neutral lipids in cells; moreover, they participate in a variety of activities in cells and are multifunctional organelles. In the past few decades, lipid droplets have been extensively studied and found to play important roles in cellular energy balance, signal regulation and metabolic regulation. In particular, the formation and function of lipid droplets in adipocytes and mast cells have received much attention. This article reviews the formation, structure and function of lipid droplets in mast cells and elaborates on the relationship between lipid droplets and both adipocyte metabolism and mast cell-mediated allergic inflammation, to provide ideas for the treatment of allergic inflammation by targeting lipid droplets. This study provides important evidence for the role of lipid metabolism disorders in rhinitis and asthma.

13.
Foods ; 13(15)2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39123620

RÉSUMÉ

Milk fat globules (MFGs) are produced by mammary epithelial cells (MECs) and originate from intracellular lipid droplets with a wide size distribution. In the mammary gland and milk, bacteria can thrive on MFGs. Herein, we aimed to investigate whether the response of MECs to the bacterial secretome is dependent on the MFG size used as a substrate for the bacteria, and whether the response differs between pathogenic and commensal bacteria. We used secretomes from both Bacillus subtilis and E. coli. Proinflammatory gene expression in MECs was elevated by the bacteria secretomes from both bacteria sources, while higher expression was found in cells exposed to the secretome of bacteria grown on large MFGs. The secretome of B. subtilis reduced lipid droplet size in MECs. When the secretome originated from E. coli, lipid droplet size in MEC cytoplasm was elevated with a stronger response to the secretome from bacteria grown on large compared with small MFGs. These results indicate that MEC response to bacterial output is modulated by bacteria type and the size of MFGs used by the bacteria, which can modulate the stress response of the milk-producing cells, their lipid output, and consequently milk quality.

14.
Cell Mol Life Sci ; 81(1): 348, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39136766

RÉSUMÉ

The biological clock in eukaryotes controls daily rhythms in physiology and behavior. It displays a complex organization that involves the molecular transcriptional clock and the redox oscillator which may coordinately work to control cellular rhythms. The redox oscillator has emerged very early in evolution in adaptation to the environmental changes in O2 levels and has been shown to regulate daily rhythms in glycerolipid (GL) metabolism in different eukaryotic cells. GLs are key components of lipid droplets (LDs), intracellular storage organelles, present in all living organisms, and essential for energy and lipid homeostasis regulation and survival; however, the cell bioenergetics status is not constant across time and depends on energy demands. Thus, the formation and degradation of LDs may reflect a time-dependent process following energy requirements. This work investigated the presence of metabolic rhythms in LD content along evolution by studying prokaryotic and eukaryotic cells and organisms. We found sustained temporal oscillations in LD content in Pseudomonas aeruginosa bacteria and Caenorhabditis elegans synchronized by temperature cycles, in serum-shock synchronized human embryonic kidney cells (HEK 293 cells) and brain tumor cells (T98G and GL26) after a dexamethasone pulse. Moreover, in synchronized T98G cells, LD oscillations were altered by glycogen synthase kinase-3 (GSK-3) inhibition that affects the cytosolic activity of the metabolic oscillator or by knocking down LIPIN-1, a key GL synthesizing enzyme. Overall, our findings reveal the existence of metabolic oscillations in terms of LD content highly conserved across evolutionary scales notwithstanding variations in complexity, regulation, and cell organization.


Sujet(s)
Caenorhabditis elegans , Gouttelettes lipidiques , Pseudomonas aeruginosa , Humains , Gouttelettes lipidiques/métabolisme , Animaux , Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/génétique , Cellules HEK293 , Pseudomonas aeruginosa/métabolisme , Pseudomonas aeruginosa/génétique , Horloges biologiques/génétique , Évolution biologique , Métabolisme lipidique/génétique , Rythme circadien/génétique , Rythme circadien/physiologie
15.
ACS Nano ; 18(33): 21998-22009, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39115238

RÉSUMÉ

Lipid droplets (LDs), the essential cytosolic fat storage organelles, have emerged as pivotal regulators of cellular metabolism and are implicated in various diseases. The noninvasive monitoring of LDs necessitates fluorescent probes with precise organelle selectivity and biocompatibility. Addressing this need, we have engineered a probe by strategically modifying the structure of a conventional two-photon-absorbing dipolar dye, acedan. This innovative approach induces nanoaggregate formation in aqueous environments, leading to aggregation-induced fluorescence quenching. Upon cellular uptake via clathrin-mediated endocytosis, the probe selectively illuminates within LDs through a disassembly process, effectively distinguishing LDs from the cytosol with exceptional specificity. This breakthrough enables the high-fidelity imaging of LDs in both cellular and tissue environments. In a pioneering investigation, we probed LDs in a diabetes model induced by streptozotocin, unveiling significantly heightened LD accumulation in cardiac tissues compared to other organs, as evidenced by TP imaging. Furthermore, our exploration of a lipopolysaccharide-mediated cardiomyopathy model revealed an LD accumulation during heart injury. Thus, our developed probe holds immense potential for elucidating LD-associated diseases and advancing related research endeavors.


Sujet(s)
Clathrine , Colorants fluorescents , Gouttelettes lipidiques , Animaux , Gouttelettes lipidiques/métabolisme , Gouttelettes lipidiques/composition chimique , Clathrine/métabolisme , Colorants fluorescents/composition chimique , Souris , Endocytose , Diabète expérimental/induit chimiquement , Diabète expérimental/métabolisme , Diabète expérimental/anatomopathologie , Diabète expérimental/imagerie diagnostique , Photons , Humains , Imagerie optique , Mâle , Souris de lignée C57BL
16.
J Photochem Photobiol B ; 258: 113000, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39121718

RÉSUMÉ

Lipid droplets (LDs) are spherical organelles that localize in the cytosol of eukaryotic cells. Different proteins are embedded on the surface of LDs, so LDs play a vital role in the physiological activities of cells. The dysregulation of LDs is associated with various human diseases, such as diabetes and obesity. Therefore, it is essential to develop a fluorescent dye that labels LDs to detect and monitor illnesses. In this study, we developed the compound BDAA12C for staining LDs in cells. BDAA12C exhibits excellent LD specificity and low toxicity, enabling us to successfully stain and observe the fusion of LDs in A549 cancer cells. Furthermore, we also successfully distinguished A549 cancer cells and MRC-5 normal cells in a co-culture experiment and in normal and tumour tissues. Interestingly, we found different localizations of BDAA12C in well-fed and starved A549 cancer cells and consequently illustrated the transfer of fatty acids (FAs) from LDs to mitochondria to supply energy for ß-oxidation upon starvation. Therefore, BDAA12C is a promising LD-targeted probe for cancer diagnosis and tracking lipid trafficking within cells.


Sujet(s)
Colorants fluorescents , Gouttelettes lipidiques , Humains , Gouttelettes lipidiques/métabolisme , Gouttelettes lipidiques/composition chimique , Colorants fluorescents/composition chimique , Cellules A549 , Tumeurs/imagerie diagnostique , Tumeurs/métabolisme , Acides gras/composition chimique , Techniques de coculture , Mitochondries/métabolisme , Acridines/composition chimique , Microscopie de fluorescence
17.
J Cell Physiol ; 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39138923

RÉSUMÉ

The physical characteristics of brown adipose tissue (BAT) are defined by the presence of multilocular lipid droplets (LDs) within the brown adipocytes and a high abundance of iron-containing mitochondria, which give it its characteristic color. Normal mitochondrial function is, in part, regulated by organelle-to-organelle contacts. For example, the contact sites that mediate mitochondria-LD interactions are thought to have various physiological roles, such as the synthesis and metabolism of lipids. Aging is associated with mitochondrial dysfunction, and previous studies show that there are changes in mitochondrial structure and the proteins that modulate organelle contact sites. However, how mitochondria-LD interactions change with aging has yet to be fully clarified. Therefore, we sought to define age-related changes in LD morphology and mitochondria-lipid interactions in BAT. We examined the three-dimensional morphology of mitochondria and LDs in young (3-month) and aged (2-year) murine BAT using serial block face-scanning electron microscopy and the Amira program for segmentation, analysis, and quantification. Our analyses showed reductions in LD volume, area, and perimeter in aged samples in comparison to young samples. Additionally, we observed changes in LD appearance and type in aged samples compared to young samples. Notably, we found differences in mitochondrial interactions with LDs, which could implicate that these contacts may be important for energetics in aging. Upon further investigation, we also found changes in mitochondrial and cristae structure for the mitochondria interacting with LDs. Overall, these data define the nature of LD morphology and organelle-organelle contacts during aging and provide insight into LD contact site changes that interconnect biogerontology with mitochondrial function, metabolism, and bioactivity in aged BAT.

18.
Braz J Psychiatry ; 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39102528

RÉSUMÉ

Bipolar disorder (BD) is a neuropsychiatric illness characterized by recurrent episodes of mania and depression, leading to profound cognitive and functional impairments, psychiatric and metabolic comorbidities, and substantial healthcare costs. Due to its complex nature and absence of specific biomarkers, BD presents significant daily challenges for clinicians. Therefore, advancing our understanding of BD pathophysiology is essential to identify novel diagnostic biomarkers and potential therapeutic targets. Although its neurobiology remains unclear, disruption of circadian rhythms and lipid alterations have emerged as key hallmarks of BD. As essential components of the brain, lipids play a pivotal role in regulating synaptic activity and neuronal development. Thus, alterations in brain lipids may contribute to the neuroanatomical changes and reduced neuroplasticity observed in BD. The levels of toxic lipids inside the cell are buffered by lipid droplets that regulate the storage of neutral lipids. These dynamic organelles adapt to cellular needs, and their dysregulated accumulation has been linked to various pathological conditions. Notably, lipid droplets and various lipid classes display rhythmic oscillations throughout the 24-hour cycle, suggesting a link between lipid metabolism, circadian rhythms and lipid droplets. In this review, we explore the impairment of circadian rhythms and lipid metabolism in BD, along with evidence demonstrating that circadian clocks regulate the accumulation of lipid droplets. Importantly, we propose the "lipid droplets hypothesis for BD" that considers that the compromised lipid metabolism in BD is intimately associated with alterations in the lipid droplets homeostasis, which can be driven by disturbances in the circadian clocks.

19.
Chemistry ; : e202401763, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39105366

RÉSUMÉ

Lipid droplets (LDs) are subcellular organelles that are dynamic and play a central role in energy homeostasis and lipid metabolism. They also contribute to the transport and maturation of cellular proteins and are closely associated with several diseases. The important role of the cellular microenvironment in maintaining cellular homeostasis. Changes in cell polarity, particularly in organelles, have been found to be strongly linked to inflammation, Alzheimer's disease, cancer, and other illnesses. It is essential to check the polarity of the LDs. A series of arylated naphthalimide derivatives were synthesized using the Suzuki reaction. Modification of synthesized aryl naphthalimides using oligomeric PEG based on intramolecular charge transfer (ICT) mechanism. A series of fluorescent probes were designed to target LDs and detect their polarity. Nap-TPA-PEG3 probe exhibited high sensitivity to polarity. The addition of oligomeric polyethylene glycol (PEG) to the probe not only significantly improved its solubility in water, but also effectively reduced its cytotoxicity. In addition, the probe exhibited excellent aggregation-induced luminescence (AIE) properties and solvent discolouration effects. Nap-TPA-PEG3 probe exhibited high Pearson correlation coefficient (0.957163) in lipid droplet co-localization in cells. Nap-TPA-PEG3 could be used as an effective hand tool to monitor cell polarity.

20.
Exp Eye Res ; 246: 110016, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39098587

RÉSUMÉ

Progressive Rod-Cone Degeneration (PRCD) is an integral membrane protein found in photoreceptor outer segment (OS) disc membranes and its function remains unknown. Mutations in Prcd are implicated in Retinitis pigmentosa (RP) in humans and multiple dog breeds. PRCD-deficient models exhibit decreased levels of cholesterol in the plasma. However, potential changes in the retinal cholesterol remain unexplored. In addition, impaired phagocytosis observed in these animal models points to potential deficits in the retinal pigment epithelium (RPE). Here, using a Prcd-/- murine model we investigated the alterations in the retinal cholesterol levels and impairments in the structural and functional integrity of the RPE. Lipidomic and immunohistochemical analyses show a 5-fold increase in the levels of cholesteryl esters (C.Es) and lipid deposits in the PRCD-deficient retina, respectively, indicating alterations in total retinal cholesterol. Furthermore, the RPE of Prcd-/- mice exhibit a 1.7-fold increase in the expression of lipid transporter gene ATP-binding cassette transporter A1 (Abca1). Longitudinal fundus and spectral domain optical coherence tomography (SD-OCT) examinations showed focal lesions and RPE hyperreflectivity. Strikingly, the RPE of Prcd-/- mice exhibited age-related pathological features such as lipofuscin accumulation, Bruch's membrane (BrM) deposits and drusenoid focal deposits, mirroring an Age-related Macular Degeneration (AMD)-like phenotype. We propose that the extensive lipofuscin accumulation likely impairs lysosomal function, leading to the defective phagocytosis observed in Prcd-/- mice. Our findings support the dysregulation of retinal cholesterol homeostasis in the absence of PRCD. Further, we demonstrate that progressive photoreceptor degeneration in Prcd-/- mice is accompanied by progressive structural and functional deficits in the RPE, which likely exacerbates vision loss over time.


Sujet(s)
Modèles animaux de maladie humaine , Épithélium pigmentaire de la rétine , Tomographie par cohérence optique , Animaux , Épithélium pigmentaire de la rétine/métabolisme , Épithélium pigmentaire de la rétine/anatomopathologie , Souris , Métabolisme lipidique , Souris knockout , Souris de lignée C57BL , Membre-1 de la sous-famille A des transporteurs à cassette liant l'ATP/génétique , Membre-1 de la sous-famille A des transporteurs à cassette liant l'ATP/métabolisme , Cholestérol/métabolisme , Cholestérol ester/métabolisme , Dystrophies des cônes et des batonnets/métabolisme , Dystrophies des cônes et des batonnets/génétique , Électrorétinographie , Membrane de Brüch/métabolisme , Membrane de Brüch/anatomopathologie , Immunohistochimie , Dégénérescence maculaire/congénital
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE