Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 147
Filtrer
1.
Integr Comp Biol ; 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38897796

RÉSUMÉ

Insects must fly in highly variable natural environments filled with gusts, vortices, and other transient aerodynamic phenomena that challenge flight stability. Furthermore, the aerodynamic forces that support insect flight are produced from rapidly oscillating wings of time-varying orientation and configuration. The instantaneous flight forces produced by these wings are large relative to the average forces supporting body weight. The magnitude of these forces and their time-varying direction add another challenge to flight stability, because even proportionally small asymmetries in timing or magnitude between the left and right wings may be sufficient to produce large changes in body orientation. However, these same large magnitude oscillating forces also offer an opportunity for unexpected flight stability through non-linear interactions between body orientation, body oscillation in response to time varying inertial and aerodynamic forces, and the oscillating wings themselves. Understanding the emergent stability properties of flying insects is a crucial step toward understanding the requirements for evolution of flapping flight and decoding the role of sensory feedback in flight control. Here we provide a brief review of insect flight stability, with some emphasis stability effects brought about by oscillating wings, and present some preliminary experimental data probing some aspects of flight stability in free-flying insects.

2.
J Insect Physiol ; 154: 104617, 2024 05.
Article de Anglais | MEDLINE | ID: mdl-38331091

RÉSUMÉ

In nectivorous pollinators, timing and pattern of allocation of consumed nectar affects fitness traits and foraging behavior. Differences in male and female behaviors can influence these allocation strategies. These physiological patterns are not well studied in Lepidoptera, despite them being important pollinators. In this study we investigate crop-emptying rate and nectar allocation in Manduca sexta (Sphingidae), and how sex and flight influence these physiological patterns. After a single feeding event, moths were dissected at fixed time intervals to measure crop volume and analyze sugar allocation to flight muscle and fat body. Then we compared sedentary and flown moths to test how activity may alter these patterns. Sedentary males and females emptied their crops six hours after a feeding event. Both males and females preferentially allocated these consumed sugars to fat body over flight muscle. Moths began to allocate to the fat body during crop-emptying and retained these nutrients long-term (four and a half days after a feeding event). Males allocated consumed sugar to flight muscles sooner and retained these allocated nutrients in the flight muscle longer than did females. Flight initiated increased crop-emptying in females, but had no effect on males. Flight did not significantly affect allocation to flight muscle or fat body in either sex. This study showed that there are inherent differences in male and female nectar sugar allocation strategies, but that male and female differences in crop-emptying rate are context dependent on flight activity. These differences in physiology may be linked to distinct ways males and females maximize their own fitness.


Sujet(s)
Manduca , Papillons de nuit , Mâle , Femelle , Animaux , Nectar des plantes , Papillons de nuit/physiologie , Manduca/physiologie , Comportement alimentaire/physiologie , Sucres , Fleurs
3.
Appl Microbiol Biotechnol ; 108(1): 181, 2024 Jan 29.
Article de Anglais | MEDLINE | ID: mdl-38285209

RÉSUMÉ

Bacillus thuringiensis (Bt) produces crystals composed mainly of Cry pesticidal proteins with insecticidal activity against pests but are highly susceptible to degradation by abiotic factors. In this sense, encapsulation techniques are designed to improve their performance and lifetime. However, the effects of polymeric matrix encapsulation such as gum arabic and maltodextrin by spray-dryer in the mechanisms of action of Bt kurstaki and Bt aizawai are unknown. We analyzed crystal solubilization, protoxin activation, and receptor binding after microencapsulation and compared them with commercial non-encapsulated products. Microencapsulation did not alter protein crystal solubilization, providing 130 kDa (Cry1 protoxin) and 70 kDa (Cry2 protoxin). Activation with trypsin, chymotrypsin, and larval midgut juice was analyzed, showing that this step is highly efficient, and the protoxins were cleaved producing similar ~ 55 to 65 kDa activated proteins for both formulations. Binding assays with brush border membrane vesicles of Manduca sexta and Spodoptera frugiperda larvae provided a similar binding for both formulations. LC50 bioassays showed no significant differences between treatments but the microencapsulated treatment provided higher mortality against S. frugiperda when subjected to UV radiation. Microencapsulation did not affect the mechanism of action of Cry pesticidal proteins while enhancing protection against UV radiation. These data will contribute to the development of more efficient Bt biopesticide formulations. KEY POINTS: • Microencapsulation did not affect the mechanisms of action of Cry pesticidal proteins produced by Bt. • Microencapsulation provided protection against UV radiation for Bt-based biopesticides. • The study's findings can contribute to the development of more efficient Bt biopesticide formulations.


Sujet(s)
Bacillus thuringiensis , Pesticides , Polyosides , Animaux , Pesticides/pharmacologie , Gomme arabique , Agents de lutte biologique , Larve , Lutte contre les nuisibles
4.
Insect Biochem Mol Biol ; 165: 104038, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37952902

RÉSUMÉ

Functional annotation is a critical step in the analysis of genomic data, as it provides insight into the function of individual genes and the pathways in which they participate. Currently, there is no consensus on the best computational approach for assigning functional annotation. This study compares three functional annotation methods (BLAST, eggNOG-Mapper, and InterProScan) in their ability to assign Gene Ontology terms in two species of Insecta with differing levels of annotation, Bombyx mori and Manduca sexta. The methods were compared for their annotation coverage, number of term assignments, term agreement and non-overlapping terms. Here we show that there are large discrepancies in gene ontology term assignment among the three computational methods, which could lead to confounding interpretations of data and non-comparable results. This study provide insight into the strengths and weaknesses of each computational method and highlight the need for more standardized methods of functional annotation.


Sujet(s)
Bombyx , Lepidoptera , Manduca , Animaux , Lepidoptera/génétique , Transcriptome , Manduca/génétique , Bombyx/génétique , Génome , Annotation de séquence moléculaire
5.
J Biomol Struct Dyn ; : 1-17, 2023 Oct 09.
Article de Anglais | MEDLINE | ID: mdl-37811559

RÉSUMÉ

Plant yields are compromised due to abiotic and biotic stresses. A crucial biotic stress instigated by insect attack, is a major concern that limits crop production. To overcome the deleterious effect of herbivory, pesticides are used but long-term usage of pesticides can be harmful to the environment and human health. Understanding the plants' inherent defense mechanism by interpreting the interaction pattern of defense-related proteins and signalling components and manipulating them to strengthen defense status, is one of the alternative approaches of green biotechnology. During insect attack, host plants initiate innumerable signalling pathways to activate defense response; Mitogen Activated Protein Kinase (MAPK) Pathway is a crucial component of signalling pathway that regulate the expression of downstream defense-related genes. MAPK pathway has three components: MAPKKK, MAPKK and MAPK. Earlier studies have shown participation of SIPK and WIPK (MAPKs) as well as MEK2 (MAPKK) during insect infestation and its association with plant defense. However, information on the third component and elucidation of the complete MAPK pathway are still elusive. Therefore, this study aims to identify the unknown component and decipher MAPK pathway in Nicotiana attenuata involved in plant defense against herbivory by identifying herbivory-inducible MAPKKKs and and their interaction with known partners of the MAPK pathway by docking and MD simulation. The possible pathway was predicted to be MAPKKK Na12134/Na04522-MEK2-SIPK/WIPK. Further, validation of the above interaction by in vitro and in vivo methods is highly recommended.Communicated by Ramaswamy H. Sarma.

6.
J Exp Biol ; 226(9)2023 05 01.
Article de Anglais | MEDLINE | ID: mdl-36995279

RÉSUMÉ

Many animals use body parts such as tails to stabilize posture while moving at high speed. In flying insects, leg or abdominal inertia can influence flight posture. In the hawkmoth Manduca sexta, the abdomen contributes ∼50% of the total body weight and it can therefore serve to inertially redirect flight forces. How do torques generated by the wings and abdomen interact for flight control? We studied the yaw optomotor response of M. sexta by using a torque sensor attached to their thorax. In response to yaw visual motion, the abdomen moved antiphase with the stimulus, head and total torque. By studying moths with ablated wings and a fixed abdomen, we resolved abdomen and wing torques and revealed their individual contribution to total yaw torque production. Frequency-domain analysis revealed that the abdomen torque is overall smaller than wing torque, although the abdomen torque is ∼80% of the wing torque at higher visual stimulus temporal frequency. Experimental data and modeling revealed that the wing and abdomen torque are transmitted linearly to the thorax. By modeling the thorax and abdomen as a two-link system, we show that abdomen flexion can inertially redirect the thorax to add constructively to wing steering efforts. Our work argues for considering the role of the abdomen in tethered insect flight experiments that use force/torque sensors. Taken together, the hawkmoth abdomen can regulate wing torques in free flight, which could modulate flight trajectories and increase maneuverability.


Sujet(s)
Vol animal , Manduca , Animaux , Moment de torsion , Phénomènes biomécaniques , Vol animal/physiologie , Abdomen , Manduca/physiologie , Ailes d'animaux/physiologie , Insectes
7.
Arthropod Struct Dev ; 72: 101231, 2023 Jan.
Article de Anglais | MEDLINE | ID: mdl-36571898

RÉSUMÉ

The effect of chronic oxygen exposure on growth and development of insects is an active field of research. It seeks to unravel the triggers and limitations to molting and growth across many insect groups, although even now there are gaps in our knowledge and inconsistencies that need to be addressed. The oxygen dependent induction of molting (ODIM) hypothesis states that the impetus for molting is triggered by the development of hypoxic tissue due to the rapid increase in mass coupled with the fixed nature of tracheal systems between molts. In this study, we raised Manduca sexta in three chronic oxygen treatments (10, 21, & 30% O2). We measured the mass of these insects throughout their larval development and as adults. We found that both hyperoxia and hypoxia had marked effects on size and developmental times. Hyperoxia exposure resulted in increased mass throughout development and into adulthood while increasing developmental times. Hypoxia also increased developmental time and decreased mass of adult moths. We show that pupation is a critical window for exposure to altered oxygen levels. This suggests that oxygen may play a role in affecting the timing of eclosion at the end of pupation.


Sujet(s)
Hyperoxie , Manduca , Animaux , Larve , Oxygène , Hypoxie
8.
Folia Microbiol (Praha) ; 68(2): 181-196, 2023 Apr.
Article de Anglais | MEDLINE | ID: mdl-36417090

RÉSUMÉ

The in vivo analysis of a pathogen is a critical step in gaining greater knowledge of pathogen biology and host-pathogen interactions. In the last two decades, there has been a notable rise in the number of studies on developing insects as a model for studying pathogens, which provides various benefits, such as ethical acceptability, relatively short life cycle, and cost-effective care and maintenance relative to routinely used rodent infection models. Furthermore, lepidopteran insects provide many advantages, such as easy handling and tissue extraction due to their large size relative to other invertebrate models, like Caenorhabditis elegans. Additionally, insects have an innate immune system that is highly analogous to vertebrates. In the present review, we discuss the components of the insect's larval immune system, which strengthens its usage as an alternative host, and present an updated overview of the research findings involving lepidopteran insects (Galleria mellonella, Manduca sexta, Bombyx mori, and Helicoverpa armigera) as infection models to study the virulence by enteropathogens due to the homology between insect and vertebrate gut.


Sujet(s)
Manduca , Papillons de nuit , Animaux , Larve
9.
J Insect Physiol ; 143: 104450, 2022.
Article de Anglais | MEDLINE | ID: mdl-36265566

RÉSUMÉ

To meet energetic and osmotic demands, animals make dynamic foraging decisions about food quality and quantity. In the wild, foraging animals may be forced to consume a less preferred or sub-optimal food source for long periods of time. Few choice feeding assays in laboratory settings approximate such contingencies. In this study the foraging behaviors of the hawkmoth Manduca sexta were measured when adult moths were placed within different relative humidity (RH) environments (20%, 40%, 60% and 80% RH) and provided with only one of the following experimental nectars: 0% (water), 12% or 24 % w/V sucrose solutions. Overall, ambient humidity influenced survivorship and foraging behaviors. Moth survivorship increased at higher ambient humidity regardless of experimental nectar. Moths that had access to experimental nectar imbibed large volumes of fluid regardless of what nectar was offered when placed at the lowest humidity (20% RH). However, when placed at the highest humidity (80% RH), moths imbibed higher volumes of fluid when given access to experimental nectar with sucrose in comparison with water. RH also influenced daily foraging behaviors: peak nectar consumption occurred earlier at lower RH levels. Consistent with previous studies in which moths could choose among nectar solutions, total energy intake was not affected by ambient RH under no-choice conditions. However, the proportion of time spent foraging and total energy consumption were significantly reduced across all RH levels in no-choice assays, when compared with previous studies of choice assays under the same conditions. Our results show that even when M. sexta moths are presented with limited options, they can alter their foraging behavior in response to environmental changes, enabling them to meet osmotic and/or energetic demands.


Sujet(s)
Manduca , Papillons de nuit , Animaux , Nectar des plantes , Humidité , Comportement alimentaire/physiologie , Manduca/physiologie , Papillons de nuit/physiologie , Saccharose , Eau
10.
Elife ; 112022 05 27.
Article de Anglais | MEDLINE | ID: mdl-35622402

RÉSUMÉ

The sense of smell is pivotal for nocturnal moths to locate feeding and oviposition sites. However, these crucial resources are often rare and their bouquets are intermingled with volatiles emanating from surrounding 'background' plants. Here, we asked if the olfactory system of female hawkmoths, Manduca sexta, could differentiate between crucial and background cues. To answer this question, we collected nocturnal headspaces of numerous plants in a natural habitat of M. sexta. We analyzed the chemical composition of these headspaces and used them as stimuli in physiological experiments at the antenna and in the brain. The intense odors of floral nectar sources evoked strong responses in virgin and mated female moths, most likely enabling the localization of profitable flowers at a distance. Bouquets of larval host plants and most background plants, in contrast, were subtle, thus potentially complicating host identification. However, despite being subtle, antennal responses and brain activation patterns evoked by the smell of larval host plants were clearly different from those evoked by other plants. Interestingly, this difference was even more pronounced in the antennal lobe of mated females, revealing a status-dependent tuning of their olfactory system towards oviposition sites. Our study suggests that female moths possess unique neural coding strategies to find not only conspicuous floral cues but also inconspicuous bouquets of larval host plants within a complex olfactory landscape.


Sujet(s)
Lepidoptera , Manduca , Animaux , Femelle , Larve , Odorisants , Odorat
11.
Biol Lett ; 18(5): 20220063, 2022 05.
Article de Anglais | MEDLINE | ID: mdl-35611583

RÉSUMÉ

Flying insects have elastic materials within their exoskeletons that could reduce the energetic cost of flight if their wingbeat frequency is matched to a mechanical resonance frequency. Flapping at resonance may be essential across flying insects because of the power demands of small-scale flapping flight. However, building up large-amplitude resonant wingbeats over many wingstrokes may be detrimental for control if the total mechanical energy in the spring-wing system exceeds the per-cycle work capacity of the flight musculature. While the mechanics of the insect flight apparatus can behave as a resonant system, the question of whether insects flap their wings at their resonant frequency remains unanswered. Using previous measurements of body stiffness in the hawkmoth, Manduca sexta, we develop a mechanical model of spring-wing resonance with aerodynamic damping and characterize the hawkmoth's resonant frequency. We find that the hawkmoth's wingbeat frequency is approximately 80% above resonance and remains so when accounting for uncertainty in model parameters. In this regime, hawkmoths may still benefit from elastic energy exchange while enabling control of aerodynamic forces via frequency modulation. We conclude that, while insects use resonant mechanics, tuning wingbeats to a simple resonance peak is not a necessary feature for all centimetre-scale flapping flyers.


Sujet(s)
Manduca , Animaux , Phénomènes biomécaniques , Vol animal , Insectes , Modèles biologiques , Ailes d'animaux
12.
Curr Biol ; 32(4): 861-869.e8, 2022 02 28.
Article de Anglais | MEDLINE | ID: mdl-35016007

RÉSUMÉ

In nature, plant-insect interactions occur in complex settings involving multiple trophic levels, often with multiple species at each level.1 Herbivore attack of a host plant typically dramatically alters the plant's odor emission in terms of concentration and composition.2,3 Therefore, a well-adapted herbivore should be able to predict whether a plant is still suitable as a host by judging these changes in the emitted bouquet. Although studies have demonstrated that oviposition preferences of successive insects were affected by previous infestations,4,5 the underlying molecular and olfactory mechanisms remain unknown. Here, we report that tobacco hawkmoths (Manduca sexta) preferentially oviposit on Jimson weed (Datura wrightii) that is already infested by a specialist, the three-lined potato beetle (Lema daturaphila). Interestingly, the moths' offspring do not benefit directly, as larvae develop more slowly when feeding together with Lema beetles. However, one of M. sexta's main enemies, the parasitoid wasp Cotesia congregata, prefers the headspace of M. sexta-infested plants to that of plants infested by both herbivores. Hence, we conclude that female M. sexta ignore the interspecific competition with beetles and oviposit deliberately on beetle-infested plants to provide their offspring with an enemy-reduced space, thus providing a trade-off that generates a net benefit to the survival and fitness of the subsequent generation. We identify that α-copaene, emitted by beetle-infested Datura, plays a role in this preference. By performing heterologous expression and single-sensillum recordings, we show that odorant receptor (Or35) is involved in α-copaene detection.


Sujet(s)
Coléoptères , Datura , Manduca , Papillons de nuit , Animaux , Datura/métabolisme , Femelle , Herbivorie , Insectes , Oviposition
13.
Metabolites ; 11(11)2021 Oct 25.
Article de Anglais | MEDLINE | ID: mdl-34822389

RÉSUMÉ

Root mutualistic microbes can modulate the production of plant secondary metabolites affecting plant-herbivore interactions. Still, the main mechanisms underlying the impact of root mutualists on herbivore performance remain ambiguous. In particular, little is known about how changes in the plant metabolome induced by root mutualists affect the insect metabolome and post-larval development. By using bioassays with tomato plants (Solanum lycopersicum), we analyzed the impact of the arbuscular mycorrhizal fungus Rhizophagus irregularis and the growth-promoting fungus Trichoderma harzianum on the plant interaction with the specialist insect herbivore Manduca sexta. We found that root colonization by the mutualistic microbes impaired insect development, including metamorphosis. By using untargeted metabolomics, we found that root colonization by the mutualistic microbes altered the secondary metabolism of tomato shoots, leading to enhanced levels of steroidal glycoalkaloids. Untargeted metabolomics further revealed that root colonization by the mutualists affected the metabolome of the herbivore, leading to an enhanced accumulation of steroidal glycoalkaloids and altered patterns of fatty acid amides and carnitine-derived metabolites. Our results indicate that the changes in the shoot metabolome triggered by root mutualistic microbes can cascade up altering the metabolome of the insects feeding on the colonized plants, thus affecting the insect development.

14.
Plant Direct ; 5(10): e350, 2021 Oct.
Article de Anglais | MEDLINE | ID: mdl-34622121

RÉSUMÉ

miR390 is a highly conserved miRNA in plant lineages known to function in growth and development processes, such as lateral root development, and in responses to salt and metal stress. In the ecological model species, Nicotiana attenuata, miR390's biological function remains unknown, which we explore here with a gain-of-function analysis with plants over-expressing (OE-) N. attenuata miR390 (Na-miR390) in glasshouse and natural environments. OEmiR390 plants showed normal developmental processes, including lateral root formation or reproductive output, in plants grown under standard conditions in the glasshouse. OEmiR390 plants did not have dramatically altered interactions with arbuscular mycorrhizal fungi (AMF), Fusarium pathogens, or herbivores. However, Na-miR390 regulated the plant's tolerance of herbivory. Caterpillar feeding elicits the accumulation of a suite of phytohormones, including auxin and jasmonates, which further regulate host-tolerance. The increase in Na-miR390 abundance reduces the accumulation of auxin but does not influence levels of other phytohormones including jasmonates (JA, JA-Ile), salicylic acid (SA), and abscisic acid (ABA). Na-miR390 overexpression reduces reproductive output, quantified as capsule production, when plants are attacked by herbivores. Exogenous auxin treatments of herbivore-attacked plants restored capsule production to wild-type levels. During herbivory, Na-miR390 transcript abundances are increased; its overexpression reduces the abundances of auxin biosynthesizing YUCCA and ARF (mainly ARF4) transcripts during herbivory. Furthermore, the accumulation of auxin-regulated phenolamide secondary metabolites (caffeoylputrescine, dicaffeoylspermidine) is also reduced. In N. attenuata, miR390 functions in modulating tolerance responses of herbivore-attacked plants.

15.
J Exp Biol ; 224(17)2021 09 01.
Article de Anglais | MEDLINE | ID: mdl-34427309

RÉSUMÉ

Insect pollinators, such as the tobacco hawkmoth Manduca sexta, are known for locating flowers and learning floral odors by using their antennae. A recent study revealed, however, that the tobacco hawkmoth additionally possesses olfactory sensilla at the tip of its proboscis. Here, we asked whether this second 'nose' of the hawkmoth is involved in odor learning, similar to the antennae. We first show that M. sexta foraging efficiency at Nicotiana attenuata flowers increases with experience. This raises the question whether olfactory learning with the proboscis plays a role during flower handling. By rewarding the moths at an artificial flower, we show that, although moths learn an odor easily when they perceive it with their antennae, experiencing the odor just with the proboscis is not sufficient for odor learning. Furthermore, experiencing the odor with the antennae during training does not affect the behavior of the moths when they later detect the learned odor with the proboscis only. Therefore, there seems to be no cross-talk between the antennae and proboscis, and information learnt by the antennae cannot be retrieved by the proboscis.


Sujet(s)
Manduca , Papillons de nuit , Animaux , Fleurs , Apprentissage , Odorisants
16.
FEMS Microbiol Ecol ; 97(7)2021 06 18.
Article de Anglais | MEDLINE | ID: mdl-34117749

RÉSUMÉ

Recent discovery of endophytic strains of Bacillus thuringiensis significantly improves the knowledge on its ecology. It also may be a new source for the isolation of insecticidal strains. This report shows the characterization of two endophytic, highly insecticidal strains of B. thuringiensis. Strains LBIT-1250L and LBIT-1251P were isolated from lavender and Poinsettia sap, respectively. Their parasporal crystals were very similar in morphology to those shown by serotypes israelensis and kurstaki, respectively. Bioassays on Aedes aegypti fourth instar larvae and on Manduca sexta first instar larvae, respectively, showed significantly higher levels of toxicity than those of their standard counterparts, IPS-82 (israelensis) and HD-1 (kurstaki) strains, respectively. Characterization of both strains included the sequencing of flagellin (hag) gene, plasmid and Bc Rep-PCR patterns and crystal protein content. All four characterization features indicated that LBIT1250L is highly related to the IPS-82 standard (serotype H-14: israelensis); while the LBIT-1251P was highly related to the HD-1 standard (serotype H-3a3b3c kurstaki). These results indicate that endophytic strains of B. thuringiensis may be a new source of potential insecticidal strains and opens more in-depth studies about the role of this bacterium in such a specialized habitat.


Sujet(s)
Aedes , Bacillus thuringiensis , Insecticides , Animaux , Bacillus thuringiensis/génétique , Protéines bactériennes/génétique , Endotoxines , Larve
17.
G3 (Bethesda) ; 11(1)2021 01 18.
Article de Anglais | MEDLINE | ID: mdl-33561252

RÉSUMÉ

The tobacco hornworm, Manduca sexta, is a lepidopteran insect that is used extensively as a model system for studying insect biology, development, neuroscience, and immunity. However, current studies rely on the highly fragmented reference genome Msex_1.0, which was created using now-outdated technologies and is hindered by a variety of deficiencies and inaccuracies. We present a new reference genome for M. sexta, JHU_Msex_v1.0, applying a combination of modern technologies in a de novo assembly to increase continuity, accuracy, and completeness. The assembly is 470 Mb and is ∼20× more continuous than the original assembly, with scaffold N50 > 14 Mb. We annotated the assembly by lifting over existing annotations and supplementing with additional supporting RNA-based data for a total of 25,256 genes. The new reference assembly is accessible in annotated form for public use. We demonstrate that improved continuity of the M. sexta genome improves resequencing studies and benefits future research on M. sexta as a model organism.


Sujet(s)
Manduca , Papillons de nuit , Animaux , Génome , Manduca/génétique
18.
Front Genet ; 12: 775369, 2021.
Article de Anglais | MEDLINE | ID: mdl-35003216

RÉSUMÉ

PIWI-interacting RNAs (piRNAs) are small single-stranded RNAs that can repress transposon expression via epigenetic silencing and transcript degradation. They have been identified predominantly in the ovary and testis, where they serve essential roles in transposon silencing in order to protect the integrity of the genome in the germline. The potential expression of piRNAs in somatic cells has been controversial. In the present study we demonstrate the expression of piRNAs derived from both genic and transposon RNAs in the intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca sexta. These piRNAs are abundantly expressed, ∼27 nt long, map antisense to transposons, are oxidation resistant, exhibit a 5' uridine bias, and amplify via the canonical ping-pong pathway. An RNA-seq analysis demonstrated that 19 piRNA pathway genes are expressed in the ISMs and are developmentally regulated. The abundance of piRNAs does not change when the muscles initiate developmentally-regulated atrophy, but are repressed coincident with the commitment of the muscles undergo programmed cell death at the end of metamorphosis. This change in piRNA expression is correlated with the repression of several retrotransposons and the induction of specific DNA transposons. The developmentally-regulated changes in the expression of piRNAs, piRNA pathway genes, and transposons are all regulated by 20-hydroxyecdysone, the steroid hormone that controls the timing of ISM death. Taken together, these data provide compelling evidence for the existence of piRNA in somatic tissues and suggest that they may play roles in developmental processes such as programmed cell death.

19.
Front Plant Sci ; 12: 791680, 2021.
Article de Anglais | MEDLINE | ID: mdl-34975977

RÉSUMÉ

Flowering plants use volatiles to attract pollinators while deterring herbivores. Vegetative and floral traits may interact to affect insect behavior. Pollinator behavior is most likely influenced by leaf traits when larval stages interact with plants in different ways than adult stages, such as when larvae are leaf herbivores but adult moths visit flowers as pollinators. Here, we determine how leaf induction and corresponding volatile differences in induced plants influence behavior in adult moths and whether these preferences align with larval performance. We manipulated vegetative induction in four Nicotiana species. Using paired induced and control plants of the same species with standardized artificial flowers, we measured foraging and oviposition choices by their ecologically and economically important herbivore/pollinator, Manduca sexta. In parallel, we measured growth rates of M. sexta larvae fed leaves from control or induced plants to determine if this was consistent with female oviposition preference. Lastly, we used plant headspace collections and gas chromatography to quantify volatile compounds from both induced and control leaves to link changes in plant chemistry with moth behavior. In the absence of floral chemical cues, vegetative defensive status influenced adult moth foraging preference from artificial flowers in one species (N. excelsior), where females nectared from induced plants more often than control plants. Plant vegetative resistance consistently influenced oviposition choice such that moths deposited more eggs on control plants than on induced plants of all four species. This oviposition preference for control plants aligned with higher larval growth rates on control leaves compared with induced leaves. Control and induced plants of each species had similar leaf volatile profiles, but induced plants had higher emission levels. Leaves of N. excelsior produced the most volatile compounds, including some inducible compounds typically associated with floral scent. We demonstrate that vegetative plant defensive volatiles play a role in host plant selection and that insects assess information from leaves differently when choosing between nectaring and oviposition locations. These results underscore the complex interactions between plants, their pollinators, and herbivores.

20.
Dev Comp Immunol ; 115: 103858, 2021 02.
Article de Anglais | MEDLINE | ID: mdl-32898576

RÉSUMÉ

Haematopoietic organs (HOs) in Lepidoptera are widely recognised as the source for at least two haemocyte types. With new specific markers for oenocytoids and spherule cells and a method to identify prohaemocytes, the haemocytes formed in and released by the HOs of Manduca sexta are characterised. Differentiation of HO-cells to haemocytes other than plasmatocytes and prohaemocytes neither occurs in the organ itself nor in cells released in vitro by the HOs. Differential labelling patterns evidence the existence of plasmatocyte subpopulations and prohaemocytes, which might represent a gradual differentiation of haemocytes within the organs. Prohaemocytes can be identified by PNA-labelling of the cell membrane. These prohaemocytes are found in circulation and in the HOs and are released by the organs. Circulating prohaemocytes possess characteristics for granular cells, plasmatocytes or oenocytoids while HO derived prohaemocytes share characteristics only with plasmatocytes. Ablation of the HOs diminishes the plasmatocyte and prohaemocyte number, indicating a true larval haematopoietic function.


Sujet(s)
Hématopoïèse/physiologie , Hémocytes/physiologie , Manduca/physiologie , Animaux , Larve/croissance et développement
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE