Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 135
Filtrer
1.
Behav Brain Res ; 472: 115156, 2024 08 24.
Article de Anglais | MEDLINE | ID: mdl-39032867

RÉSUMÉ

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions and repetitive behaviors. Despite its prevalence, effective treatments remain elusive. Recent studies have highlighted the importance of the balance between GABAergic and glutamatergic neuronal synaptic functions in ASD development. Repetitive transcranial magnetic stimulation (RTMS) is a painless and effective treatment allowed for use in depression and obsessive-compulsive disorder. However, its efficacy in treating autism is still under investigation. Low-frequency RTMS (LF-RTMS), which shows promise in reducing autism-like behaviors, is considered to regulate synaptic function. OBJECTIVE: We observed and recorded the behaviors of mice to assess the impact of RTMS on their social interactions and repetitive activities. Subsequently, we examined GABAergic and glutamatergic neuronal markers along with synaptic marker proteins to understand the underlying changes associated with these behaviors. METHODS: To evaluate behaviors associated with autism spectrum disorder (ASD), several behavioral tests were conducted, focusing on sociability, repetitive behaviors, locomotion, anxiety, and depression. Additionally, Western blot and immunofluorescence staining were employed to investigate the activity of GABAergic and glutamatergic neurons in the hippocampus, aiming to understand the synaptic mechanisms underlying these behaviors. RESULTS: LF-RTMS treatment effectively relieved the social disability and normalized synaptic function in the hippocampus of ASD mice model induced by valproate (VPA). Importantly, this treatment did not lead to any adverse effects on repetitive behavior, locomotion, anxiety, or depression. CONCLUSION: LF-RTMS attenuated social disability without affecting repetitive behavior, locomotion, anxiety, or depression. Changes in the expression of GABAergic and glutamatergic neuronal synaptic proteins in the hippocampus were also observed.


Sujet(s)
Trouble du spectre autistique , Modèles animaux de maladie humaine , Hippocampe , Stimulation magnétique transcrânienne , Acide valproïque , Animaux , Trouble du spectre autistique/thérapie , Trouble du spectre autistique/métabolisme , Souris , Mâle , Hippocampe/métabolisme , Acide valproïque/pharmacologie , Comportement social , Comportement animal/physiologie , Comportement animal/effets des médicaments et des substances chimiques , Souris de lignée C57BL , Anxiété/thérapie , Anxiété/induit chimiquement , Neurones GABAergiques/métabolisme , Neurones GABAergiques/physiologie , Interaction sociale/effets des médicaments et des substances chimiques
2.
Glia ; 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-39001577

RÉSUMÉ

Noradrenaline (norepinephrine) is known to modulate many physiological functions and behaviors. In this study, we tested to what extent astrocytes, a type of glial cell, participate in noradrenergic signaling in mouse primary visual cortex (V1). Astrocytes are essential partners of neurons in the central nervous system. They are central to brain homeostasis, but also dynamically regulate neuronal activity, notably by relaying and regulating neuromodulator signaling. Indeed, astrocytes express receptors for multiple neuromodulators, including noradrenaline, but the extent to which astrocytes are involved in noradrenergic signaling remains unclear. To test whether astrocytes are involved in noradrenergic neuromodulation in mice, we employed both short hairpin RNA mediated knockdown as well as pharmacological manipulation of the major noradrenaline receptor in astrocytes, the α1A-adrenoreceptor. Using acute brain slices, we found that the astrocytic α1A-adrenoreceptor subtype contributes to the generation of large intracellular Ca2+ signals in visual cortex astrocytes, which are generally thought to underlie astrocyte function. To test if reduced α1A-adrenoreceptor signaling in astrocytes affected the function of neuronal circuits in V1, we used both patch-clamp and field potential recordings. These revealed that noradrenergic signaling through the astrocyte α1A-adrenoreceptor is important to not only modulate synaptic activity but also to regulate plasticity in V1, through the potentiation of synaptic responses in circuits involved in visual information processing.

3.
Int J Biochem Cell Biol ; 173: 106614, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38944234

RÉSUMÉ

The human body is commonly exposed to bisphenol A (BPA), which is widely used in consumer and industrial products. BPA is an endocrine-disrupting chemical that has adverse effects on human health. In particular, many studies have shown that BPA can cause various neurological disorders by affecting brain development and neural function during prenatal, infancy, childhood, and adulthood exposure. In this review, we discussed the correlation between BPA and neurological disorders based on molecular cell biology, neurophysiology, and behavioral studies of the effects of BPA on brain development and function. Recent studies, both animal and epidemiological, strongly indicate that BPA significantly impacts brain development and function. It hinders neural processes, such as proliferation, migration, and differentiation during development, affecting synaptic formation and activity. As a result, BPA is implicated in neurodevelopmental and neuropsychiatric disorders like autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), and schizophrenia.


Sujet(s)
Composés benzhydryliques , Maladies du système nerveux , Phénols , Humains , Composés benzhydryliques/effets indésirables , Composés benzhydryliques/toxicité , Phénols/toxicité , Phénols/effets indésirables , Animaux , Maladies du système nerveux/induit chimiquement , Maladies du système nerveux/anatomopathologie , Perturbateurs endocriniens/effets indésirables , Perturbateurs endocriniens/toxicité , Encéphale/effets des médicaments et des substances chimiques , Encéphale/croissance et développement , Encéphale/anatomopathologie
4.
J Cereb Blood Flow Metab ; : 271678X241261942, 2024 Jun 16.
Article de Anglais | MEDLINE | ID: mdl-38879800

RÉSUMÉ

Apolipoprotein ε4 (APOE4) carriers develop brain metabolic dysfunctions decades before the onset of Alzheimer's disease (AD). A goal of the study is to identify if rapamycin, an inhibitor for the mammalian target of rapamycin (mTOR) inhibitor, would enhance synaptic and mitochondrial function in asymptomatic mice with human APOE4 gene (E4FAD) before they showed metabolic deficits. A second goal is to determine whether there may be genetic-dependent responses to rapamycin when compared to mice with human APOE3 alleles (E3FAD), a neutral AD genetic risk factor. We fed asymptomatic E4FAD and E3FAD mice with control or rapamycin diets for 16 weeks from starting from 3 months of age. Neuronal mitochondrial oxidative metabolism and excitatory neurotransmission rates were measured using in vivo 1H-[13C] proton-observed carbon-edited magnetic resonance spectroscopy, and isolated mitochondrial bioenergetic measurements using Seahorse. We found that rapamycin enhanced neuronal mitochondrial function, glutamate-glutamine cycling, and TCA cycle rates in the asymptomatic E4FAD mice. In contrast, rapamycin enhances glycolysis, non-neuronal activities, and inhibitory neurotransmission of the E3FAD mice. These findings indicate that rapamycin might be able to mitigate the risk for AD by enhancing brain metabolic functions for cognitively intact APOE4 carriers, and the responses to rapamycin are varied by APOE genotypes. Consideration of precision medicine may be needed for future rapamycin therapeutics.

5.
Dev Cell ; 59(16): 2143-2157.e9, 2024 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-38843836

RÉSUMÉ

Neuronal activity is an energy-intensive process that is largely sustained by instantaneous fuel utilization and ATP synthesis. However, how neurons couple ATP synthesis rate to fuel availability is largely unknown. Here, we demonstrate that the metabolic sensor enzyme O-linked N-acetyl glucosamine (O-GlcNAc) transferase regulates neuronal activity-driven mitochondrial bioenergetics in hippocampal and cortical neurons. We show that neuronal activity upregulates O-GlcNAcylation in mitochondria. Mitochondrial O-GlcNAcylation is promoted by activity-driven glucose consumption, which allows neurons to compensate for high energy expenditure based on fuel availability. To determine the proteins that are responsible for these adjustments, we mapped the mitochondrial O-GlcNAcome of neurons. Finally, we determine that neurons fail to meet activity-driven metabolic demand when O-GlcNAcylation dynamics are prevented. Our findings suggest that O-GlcNAcylation provides a fuel-dependent feedforward control mechanism in neurons to optimize mitochondrial performance based on neuronal activity. This mechanism thereby couples neuronal metabolism to mitochondrial bioenergetics and plays a key role in sustaining energy homeostasis.


Sujet(s)
Acétyl-glucosamine , Métabolisme énergétique , Mitochondries , N-acetylglucosaminyltransferase , Neurones , Neurones/métabolisme , Animaux , Mitochondries/métabolisme , N-acetylglucosaminyltransferase/métabolisme , N-acetylglucosaminyltransferase/génétique , Acétyl-glucosamine/métabolisme , Souris , Hippocampe/métabolisme , Hippocampe/cytologie , Glucose/métabolisme , Souris de lignée C57BL , Plasticité neuronale/physiologie
6.
Aging Clin Exp Res ; 36(1): 42, 2024 Feb 17.
Article de Anglais | MEDLINE | ID: mdl-38367123

RÉSUMÉ

BACKGROUND: Postoperative delirium (POD) is a common complication with poor prognosis in the elderly, but its mechanism has not been fully elucidated. There is evidence that the changes in synaptic activity in the brain are closely related to the occurrence of POD. And neuronal pentraxin 2 (NPTX2) can regulate synaptic activity in vivo. AIMS: This study aims to explore whether decreased NPTX2 levels affects POD and whether the cerebrospinal fluid (CSF) biomarkers of POD mediate this association. METHODS: In this prospective cohort study, we interviewed patients with knee/hip replacement 1 day before surgery to collect patient information and assess their cognitive function. CSF was extracted for measuring the CSF levels of NPTX2 and other POD biomarkers on the day of surgery. And postoperative follow-up visits were performed 1-7 days after surgery. RESULTS: Finally, 560 patients were included in the study. The patients were divided into POD group and NPOD (non-POD) group. The POD group had a median age of 80 years, a female proportion of 45%, a median BMI of 24.1 kg/m2, and a median years of education of 9 years. The Mann-Whitney U test showed that CSF NPTX2 levels were significantly lower in POD group, compared with the NPOD group (P < 0.05). Univariate binary logistic regression analysis showed that reduced CSF levels of NPTX2 protected against POD (crude OR = 0.994, 95% CI 0.993-0.995, P < 0.001). The receiver-operating characteristic (ROC) curve indicated that CSF NPTX2 level had high predictive value for POD. Mediation analyses showed that CSF T-tau (mediating proportion = 21%) and P-tau (mediating proportion = 29%) had significant mediating effects on the association between CSF NPTX2 and POD. CONCLUSION: CSF NPTX2 levels were associated with the occurrence of POD. Low CSF NPTX2 levels may be an independent protective factor for POD. CSF T-tau and P-tau could mediate the association between CSF NPTX2 and POD occurrence. CLINICAL TRIAL REGISTRATION: The trial registration number (TRN): ChiCTR2200064740, Date of Registration: 2022-10-15.


Sujet(s)
Arthroplastie prothétique de genou , Délire avec confusion , Délire d'émergence , Sujet âgé de 80 ans ou plus , Femelle , Humains , Arthroplastie prothétique de genou/effets indésirables , Marqueurs biologiques/liquide cérébrospinal , Délire avec confusion/étiologie , Complications postopératoires , Études prospectives , Mâle
7.
Cell Rep ; 43(2): 113680, 2024 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-38241148

RÉSUMÉ

Extracellular vesicles (EVs) facilitate intercellular communication by transferring cargo between cells in a variety of tissues. However, how EVs achieve cell-type-specific intercellular communication is still largely unknown. We found that Notch1 and Notch2 proteins are expressed on the surface of neuronal EVs that have been generated in response to neuronal excitatory synaptic activity. Notch ligands bind these EVs on the neuronal plasma membrane, trigger their internalization, activate the Notch signaling pathway, and drive the expression of Notch target genes. The generation of these neuronal EVs requires the endosomal sorting complex required for transport-associated protein Alix. Adult Alix conditional knockout mice have reduced hippocampal Notch signaling activation and glutamatergic synaptic protein expression. Thus, EVs facilitate neuron-to-neuron communication via the Notch receptor-ligand system in the brain.


Sujet(s)
Vésicules extracellulaires , Neurones , Animaux , Souris , Ligands , Transport des protéines , Transduction du signal , Souris knockout
8.
bioRxiv ; 2024 Jan 06.
Article de Anglais | MEDLINE | ID: mdl-37609221

RÉSUMÉ

Brain somatic mutations in various components of the mTOR complex 1 (mTORC1) pathway have emerged as major causes of focal malformations of cortical development and intractable epilepsy. While these distinct gene mutations converge on excessive mTORC1 signaling and lead to common clinical manifestations, it remains unclear whether they cause similar cellular and synaptic disruptions underlying cortical network hyperexcitability. Here, we show that in utero activation of the mTORC1 activators, Rheb or mTOR, or biallelic inactivation of the mTORC1 repressors, Depdc5, Tsc1, or Pten in mouse medial prefrontal cortex leads to shared alterations in pyramidal neuron morphology, positioning, and membrane excitability but different changes in excitatory synaptic transmission. Our findings suggest that, despite converging on mTORC1 signaling, mutations in different mTORC1 pathway genes differentially impact cortical excitatory synaptic activity, which may confer gene-specific mechanisms of hyperexcitability and responses to therapeutic intervention.

9.
BMC Neurosci ; 24(1): 65, 2023 12 12.
Article de Anglais | MEDLINE | ID: mdl-38087196

RÉSUMÉ

In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.


Sujet(s)
Dysfonctionnement cognitif , Troubles mentaux , Humains , Épigenèse génétique , Dysfonctionnement cognitif/étiologie , Facteurs de risque , Hormones sexuelles stéroïdiennes
10.
Cells ; 12(24)2023 12 13.
Article de Anglais | MEDLINE | ID: mdl-38132147

RÉSUMÉ

Synapses are the fundamental structures of neural circuits that control brain functions and behavioral and cognitive processes. Synapses undergo formation, maturation, and elimination mainly during postnatal development via a complex interplay with neighboring astrocytes and microglia that, by shaping neural connectivity, may have a crucial role in the strengthening and weakening of synaptic functions, that is, the functional plasticity of synapses. Indeed, an increasing number of studies have unveiled the roles of microglia and astrocytes in synapse formation, maturation, and elimination as well as in regulating synaptic function. Over the past 15 years, the mechanisms underlying the microglia- and astrocytes-dependent regulation of synaptic plasticity have been thoroughly studied, and researchers have reported that the disruption of these glial cells in early postnatal development may underlie the cause of synaptic dysfunction that leads to neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia.


Sujet(s)
Trouble du spectre autistique , Schizophrénie , Humains , Microglie/physiologie , Synapses/physiologie , Névroglie
11.
Front Synaptic Neurosci ; 15: 1239098, 2023.
Article de Anglais | MEDLINE | ID: mdl-37840571

RÉSUMÉ

The synaptic cleft is the extracellular part of the synapse, bridging the pre- and postsynaptic membranes. The geometry and molecular organization of the cleft is gaining increased attention as an important determinant of synaptic efficacy. The present study by electron microscopy focuses on short-term morphological changes at the synaptic cleft under excitatory conditions. Depolarization of cultured hippocampal neurons with high K+ results in an increased frequency of synaptic profiles with clefts widened at the periphery (open clefts), typically exhibiting patches of membranes lined by postsynaptic density, but lacking associated presynaptic membranes (18.0% open clefts in high K+ compared to 1.8% in controls). Similarly, higher frequencies of open clefts were observed in adult brain upon a delay of perfusion fixation to promote excitatory/ischemic conditions. Inhibition of basal activity in cultured neurons through the application of TTX results in the disappearance of open clefts whereas application of NMDA increases their frequency (19.0% in NMDA vs. 5.3% in control and 2.6% in APV). Depletion of extracellular Ca2+ with EGTA also promotes an increase in the frequency of open clefts (16.6% in EGTA vs. 4.0% in controls), comparable to that by depolarization or NMDA, implicating dissociation of Ca2+-dependent trans-synaptic bridges. Dissociation of transsynaptic bridges under excitatory conditions may allow perisynaptic mobile elements, such as AMPA receptors to enter the cleft. In addition, peripheral opening of the cleft would facilitate neurotransmitter clearance and thus may have a homeostatic and/or protective function.

12.
J Cell Sci ; 136(22)2023 11 15.
Article de Anglais | MEDLINE | ID: mdl-37902091

RÉSUMÉ

Changes in cholesterol content of neuronal membranes occur during development and brain aging. Little is known about whether synaptic activity regulates cholesterol levels in neuronal membranes and whether these changes affect neuronal development and function. We generated transgenic flies that express the cholesterol-binding D4H domain of perfringolysin O toxin and found increased levels of cholesterol in presynaptic terminals of Drosophila larval neuromuscular junctions following increased synaptic activity. Reduced cholesterol impaired synaptic growth and largely prevented activity-dependent synaptic growth. Presynaptic knockdown of adenylyl cyclase phenocopied the impaired synaptic growth caused by reducing cholesterol. Furthermore, the effects of knocking down adenylyl cyclase and reducing cholesterol were not additive, suggesting that they function in the same pathway. Increasing cAMP levels using a dunce mutant with reduced phosphodiesterase activity failed to rescue this impaired synaptic growth, suggesting that cholesterol functions downstream of cAMP. We used a protein kinase A (PKA) sensor to show that reducing cholesterol levels reduced presynaptic PKA activity. Collectively, our results demonstrate that enhanced synaptic activity increased cholesterol levels in presynaptic terminals and that these changes likely activate the cAMP-PKA pathway during activity-dependent growth.


Sujet(s)
Adenylate Cyclase , Drosophila , Animaux , Adenylate Cyclase/génétique , Adenylate Cyclase/métabolisme , Drosophila/métabolisme , Jonction neuromusculaire/métabolisme , Terminaisons présynaptiques/métabolisme , Animal génétiquement modifié , Transmission synaptique/physiologie
13.
Front Netw Physiol ; 3: 1216366, 2023.
Article de Anglais | MEDLINE | ID: mdl-37670849

RÉSUMÉ

General anesthesia represents a common clinical intervention and yet can result in long-term adverse CNS effects particularly in the elderly or dementia patients. Suppression of cortical activity is a key feature of the anesthetic-induced unconscious state, with activity being a well-described regulator of pathways important for brain health. However, the extent to which the effects of anesthesia go beyond simple suppression of neuronal activity is incompletely understood. We found that general anesthesia lowered cortical expression of genes induced by physiological activity in vivo, and recapitulated additional patterns of gene regulation induced by total blockade of firing activity in vitro, including repression of neuroprotective genes and induction of pro-apoptotic genes. However, the influence of anesthesia extended beyond that which could be accounted for by activity modulation, including the induction of non activity-regulated genes associated with inflammation and cell death. We next focused on astrocytes, important integrators of both neuronal activity and inflammatory signaling. General anesthesia triggered gene expression changes consistent with astrocytes being in a low-activity environment, but additionally caused induction of a reactive profile, with transcriptional changes enriched in those triggered by stroke, neuroinflammation, and Aß/tau pathology. Thus, while the effects of general anesthesia on cortical gene expression are consistent with the strong repression of brain activity, further deleterious effects are apparent including a reactive astrocyte profile.

14.
Elife ; 122023 08 01.
Article de Anglais | MEDLINE | ID: mdl-37526175

RÉSUMÉ

The inferior olive provides the climbing fibers to Purkinje cells in the cerebellar cortex, where they elicit all-or-none complex spikes and control major forms of plasticity. Given their important role in both short-term and long-term coordination of cerebellum-dependent behaviors, it is paramount to understand the factors that determine the output of olivary neurons. Here, we use mouse models to investigate how the inhibitory and excitatory inputs to the olivary neurons interact with each other, generating spiking patterns of olivary neurons that align with their intrinsic oscillations. Using dual color optogenetic stimulation and whole-cell recordings, we demonstrate how intervals between the inhibitory input from the cerebellar nuclei and excitatory input from the mesodiencephalic junction affect phase and gain of the olivary output at both the sub- and suprathreshold level. When the excitatory input is activated shortly (~50 ms) after the inhibitory input, the phase of the intrinsic oscillations becomes remarkably unstable and the excitatory input can hardly generate any olivary spike. Instead, when the excitatory input is activated one cycle (~150 ms) after the inhibitory input, the excitatory input can optimally drive olivary spiking, riding on top of the first cycle of the subthreshold oscillations that have been powerfully reset by the preceding inhibitory input. Simulations of a large-scale network model of the inferior olive highlight to what extent the synaptic interactions penetrate in the neuropil, generating quasi-oscillatory spiking patterns in large parts of the olivary subnuclei, the size of which also depends on the relative timing of the inhibitory and excitatory inputs.


Sujet(s)
Noyaux du cervelet , Noyau olivaire , Souris , Animaux , Noyau olivaire/physiologie , Neurones/physiologie , Cellules de Purkinje/physiologie , Cervelet/physiologie , Potentiels d'action/physiologie
15.
Front Cell Neurosci ; 17: 1212097, 2023.
Article de Anglais | MEDLINE | ID: mdl-37416506

RÉSUMÉ

Introduction: Glass coverslips are used as a substrate since Harrison's initial nerve cell culture experiments in 1910. In 1974, the first study of brain cells seeded onto polylysine (PL) coated substrate was published. Usually, neurons adhere quickly to PL coating. However, maintaining cortical neurons in culture on PL coating for a prolonged time is challenging. Methods: A collaborative study between chemical engineers and neurobiologists was conducted to find a simple method to enhance neuronal maturation on poly-D-lysine (PDL). In this work, a simple protocol to coat PDL efficiently on coverslips is presented, characterized, and compared to a conventional adsorption method. We studied the adhesion and maturation of primary cortical neurons with various morphological and functional approaches, including phase contrast microscopy, immunocytochemistry, scanning electron microscopy, patch clamp recordings, and calcium imaging. Results: We observed that several parameters of neuronal maturation are influenced by the substrate: neurons develop more dense and extended networks and synaptic activity is enhanced, when seeded on covalently bound PDL compared to adsorbed PDL. Discussion: Hence, we established reproducible and optimal conditions enhancing maturation of primary cortical neurons in vitro. Our method allows higher reliability and yield of results and could also be profitable for laboratories using PL with other cell types.

16.
Hear Res ; 435: 108822, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37285615

RÉSUMÉ

Rhythmic action potentials (AP) are generated via intrinsic ionic mechanisms in pacemaking neurons, producing synaptic responses of regular inter-event intervals (IEIs) in their targets. In auditory processing, evoked temporally patterned activities are induced when neural responses timely lock to a certain phase of the sound stimuli. Spontaneous spike activity, however, is a stochastic process, rendering the prediction of the exact timing of the next event completely based on probability. Furthermore, neuromodulation mediated by metabotropic glutamate receptors (mGluRs) is not commonly associated with patterned neural activities. Here, we report an intriguing phenomenon. In a subpopulation of medial nucleus of the trapezoid body (MNTB) neurons recorded under whole-cell voltage-clamp mode in acute mouse brain slices, temporally patterned AP-dependent glycinergic sIPSCs and glutamatergic sEPSCs were elicited by activation of group I mGluRs with 3,5-DHPG (200 µM). Auto-correlation analyses revealed rhythmogenesis in these synaptic responses. Knockout of mGluR5 largely eliminated the effects of 3,5-DHPG. Cell-attached recordings showed temporally patterned spikes evoked by 3,5-DHPG in potential presynaptic VNTB cells for synaptic inhibition onto MNTB. The amplitudes of sEPSCs enhanced by 3,5-DHPG were larger than quantal size but smaller than spike-driven calyceal inputs, suggesting that non-calyceal inputs to MNTB might be responsible for the temporally patterned sEPSCs. Finally, immunocytochemical studies identified expression and localization of mGluR5 and mGluR1 in the VNTB-MNTB inhibitory pathway. Our results imply a potential central mechanism underlying the generation of patterned spontaneous spike activity in the brainstem sound localization circuit.


Sujet(s)
Récepteurs métabotropes au glutamate , Corps trapézoïde , Souris , Animaux , Potentiels d'action , Corps trapézoïde/physiologie , Souris knockout , Transmission synaptique/physiologie , Neurones/physiologie
17.
J Chem Neuroanat ; 131: 102286, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37169039

RÉSUMÉ

The extracellular matrix (ECM) plays a vital role in growth, guidance and survival of neurons in the central nervous system (CNS). The chondroitin sulphate proteoglycans (CSPGs) are a type of ECM proteins that are crucial for CNS homeostasis. The major goal of this study was to uncover the effects of astroglial activation and associated intensified expression of CSPGs on dendritogenesis, spinogenesis as well as on synaptic activity in cerebellum following protein malnutrition (PMN) and lipopolysaccharide (LPS) induced bacterial infection. Female Wistar albino rats (3 months old) were switched to control (20% protein) or low protein (LP, 8% protein) diet for 15 days followed by breeding. A set of pups born to control/LP mothers and maintained on respective diets throughout the experimental period constituted the control and LP groups, while a separate set of both control and LP group pups exposed to bacterial infection by a single intraperitoneal injection of LPS (0.3 mg/ kg body weight) on postnatal day-9 (P-9) constituted control+LPS and LP+LPS groups respectively. The consequences of astrogliosis induced CSPG upregulation on cerebellar cytoarchitecture and synaptic activity were studied using standard immunohistochemical and histological tools on P-21 and 6 months of age. The results revealed reactive astrogliosis and associated CSPG upregulation in a double-hit model of PMN and LPS induced bacterial infection resulted in disrupted dendritogenesis, reduced postsynaptic density protein (PSD-95) levels and a deleterious impact on normal spine growth. Such alterations frequently have the potential to cause synaptic dysregulation and inhibition of plasticity both during development as well as adulthood. At the light of our results, we can envision that upregulation of CSPGs in PMN and LPS co-challenged individuals might emerge as an important modulator of brain circuitry and a major causative factor for many neurological disorders.


Sujet(s)
Infections bactériennes , Malnutrition , Rats , Animaux , Femelle , Gliose/métabolisme , Lipopolysaccharides/pharmacologie , Rat Wistar , Régulation positive , Protéoglycanes à chondroïtine sulfate/métabolisme , Cervelet/métabolisme
18.
Biomolecules ; 13(5)2023 05 02.
Article de Anglais | MEDLINE | ID: mdl-37238659

RÉSUMÉ

Brain-derived nerve factor (BDNF), through TrkB receptor activation, is an important modulator for many different physiological and pathological functions in the nervous system. Among them, BDNF plays a crucial role in the development and correct maintenance of brain circuits and synaptic plasticity as well as in neurodegenerative diseases. The proper functioning of the central nervous system depends on the available BDNF concentrations, which are tightly regulated at transcriptional and translational levels but also by its regulated secretion. In this review we summarize the new advances regarding the molecular players involved in BDNF release. In addition, we will address how changes of their levels or function in these proteins have a great impact in those functions modulated by BDNF under physiological and pathological conditions.


Sujet(s)
Facteur neurotrophique dérivé du cerveau , Encéphale , Facteur neurotrophique dérivé du cerveau/génétique , Facteur neurotrophique dérivé du cerveau/métabolisme , Encéphale/métabolisme , Plasticité neuronale/physiologie , Système nerveux central/métabolisme , Récepteur trkB/génétique , Récepteur trkB/métabolisme
19.
J Neurosci ; 43(23): 4217-4233, 2023 06 07.
Article de Anglais | MEDLINE | ID: mdl-37160369

RÉSUMÉ

Learning and behavior activate cue-specific patterns of sparsely distributed cells and synapses called ensembles that undergo memory-encoding engram alterations. While Fos is often used to label selectively activated cell bodies and identify neuronal ensembles, there is no comparable endogenous marker to label activated synapses and identify synaptic ensembles. For the purpose of identifying candidate synaptic activity markers, we optimized a flow cytometry of synaptoneurosome (FCS) procedure for assessing protein alterations in activated synapses from male and female rats. After injecting yellow fluorescent protein (YFP)-expressing adeno-associated virus into medial prefrontal cortex (mPFC) to label terminals in nucleus accumbens (NAc) of rats, we injected 20 mg/kg cocaine in a novel context (cocaine+novelty) to activate synapses, and prepared NAc synaptoneurosomes 0-60 min following injections. For FCS, we used commercially available antibodies to label presynaptic and postsynaptic markers synaptophysin and PSD-95 as well as candidate markers of synaptic activity [activity-regulated cytoskeleton protein (Arc), CaMKII and phospho-CaMKII, ribosomal protein S6 (S6) and phospho-S6, and calcineurin and phospho-calcineurin] in YFP-labeled synaptoneurosomes. Cocaine+novelty increased the percentage of S6-positive synaptoneurosomes at 5-60 min and calcineurin-positive synaptoneurosomes at 5-10 min. Electron microscopy verified that S6 and calcineurin levels in synaptoneurosomes were increased 10 min after cocaine+novelty. Pretreatment with the anesthetic chloral hydrate blocked cocaine+novelty-induced S6 and calcineurin increases in synaptoneurosomes, and novel context exposure alone (without cocaine) increased S6, both of which indicate that these increases were due to neural activity per se. Overall, FCS can be used to study protein alterations in activated synapses coming from specifically labeled mPFC projections to NAc.SIGNIFICANCE STATEMENT Memories are formed during learning and are stored in the brain by long-lasting molecular and cellular alterations called engrams formed within specific patterns of cue-activated neurons called neuronal ensembles. While Fos has been used to identify activated ensemble neurons and the engrams within them, we have not had a similar marker for activated synapses that can be used to identify synaptic engrams. Here we developed a procedure for high-throughput in-line analysis of flow cytometry of synaptoneurosome (FCS) and found that ribosomal S6 protein and calcineurin were increased in activated mPFC-NAc synapses. FCS can be used to study protein alterations in activated synapses within specifically labeled circuits.


Sujet(s)
Calcineurine , Cocaïne , Femelle , Rats , Mâle , Animaux , Rat Sprague-Dawley , Noyau accumbens/physiologie , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Cytométrie en flux , Synapses , Cortex préfrontal/physiologie , Cocaïne/pharmacologie
20.
eNeuro ; 10(5)2023 05.
Article de Anglais | MEDLINE | ID: mdl-37130780

RÉSUMÉ

Spinal cord stimulation (SCS) evokes fast epidural evoked compound action potential (ECAP) that represent activity of dorsal column axons, but not necessarily a spinal circuit response. Using a multimodal approach, we identified and characterized a delayed and slower potential evoked by SCS that reflects synaptic activity within the spinal cord. Anesthetized female Sprague Dawley rats were implanted with an epidural SCS lead, epidural motor cortex stimulation electrodes, an epidural spinal cord recording lead, an intraspinal penetrating recording electrode array, and intramuscular electromyography (EMG) electrodes in the hindlimb and trunk. We stimulated the motor cortex or the epidural spinal cord and recorded epidural, intraspinal, and EMG responses. SCS pulses produced characteristic propagating ECAPs (composed of P1, N1, and P2 waves with latencies <2 ms) and an additional wave ("S1") starting after the N2. We verified the S1-wave was not a stimulation artifact and was not a reflection of hindlimb/trunk EMG. The S1-wave has a distinct stimulation-intensity dose response and spatial profile compared with ECAPs. 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX; a selective competitive antagonist of AMPA receptors (AMPARs)] significantly diminished the S1-wave, but not ECAPs. Furthermore, cortical stimulation, which did not evoke ECAPs, produced epidurally detectable and CNQX-sensitive responses at the same spinal sites, confirming epidural recording of an evoked synaptic response. Finally, applying 50-Hz SCS resulted in dampening of S1-wave but not ECAPs. Therefore, we hypothesize that the S1-wave is synaptic in origin, and we term the S1-wave type responses: evoked synaptic activity potentials (ESAPs). The identification and characterization of epidurally recorded ESAPs from the dorsal horn may elucidate SCS mechanisms.


Sujet(s)
Stimulation de la moelle épinière , Rats , Animaux , Femelle , Stimulation de la moelle épinière/méthodes , Rat Sprague-Dawley , 6-Cyano-7-nitroquinoxaline-2,3-dion e , Moelle spinale/physiologie , Corne dorsale de la moelle spinale , Potentiels évoqués/physiologie , Potentiels d'action/physiologie , Stimulation électrique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE