Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 432
Filtrer
1.
STAR Protoc ; 5(2): 103100, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38824640

RÉSUMÉ

Adult humans cannot regenerate the enamel-forming cell type, ameloblasts. Hence, human induced pluripotent stem cell (hiPSC)-derived ameloblasts are valuable for investigating tooth development and regeneration. Here, we present a protocol for generating three-dimensional induced early ameloblasts (ieAMs) utilizing serum-free media and growth factors. We describe steps for directing hiPSCs toward oral epithelium and then toward ameloblast fate. These cells can form suspended early ameloblast organoids. This approach is critical for understanding, treating, and promoting regeneration in diseases like amelogenesis imperfecta. For complete details on the use and execution of this protocol, please refer to Alghadeer et al.1.


Sujet(s)
Améloblastes , Techniques de culture cellulaire , Cellules souches pluripotentes induites , Améloblastes/cytologie , Améloblastes/métabolisme , Humains , Milieux de culture sans sérum , Cellules souches pluripotentes induites/cytologie , Techniques de culture cellulaire/méthodes , Protéines et peptides de signalisation intercellulaire/métabolisme , Différenciation cellulaire/physiologie , Cellules cultivées
2.
Stem Cell Rev Rep ; 20(5): 1184-1199, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38498295

RÉSUMÉ

Ameloblasts are the specialized dental epithelial cell type responsible for enamel formation. Following completion of enamel development in humans, ameloblasts are lost and biological repair or regeneration of enamel is not possible. In the past, in vitro models to study dental epithelium and ameloblast biology were limited to freshly isolated primary cells or immortalized cell lines, both with limited translational potential. In recent years, large strides have been made with the development of induced pluripotent stem cell and organoid models of this essential dental lineage - both enabling modeling of human dental epithelium. Upon induction with several different signaling factors (such as transforming growth factor and bone morphogenetic proteins) these models display elevated expression of ameloblast markers and enamel matrix proteins. The advent of 3D bioprinting, and its potential combination with these advanced cellular tools, is poised to revolutionize the field - and its potential for tissue engineering, regenerative and personalized medicine. As the advancements in these technologies are rapidly evolving, we evaluate the current state-of-the-art regarding in vitro cell culture models of dental epithelium and ameloblast lineage with a particular focus toward their applicability for translational tissue engineering and regenerative/personalized medicine.


Sujet(s)
Améloblastes , Bio-impression , Organoïdes , Régénération , Humains , Organoïdes/cytologie , Organoïdes/métabolisme , Améloblastes/métabolisme , Améloblastes/cytologie , Dent/cytologie , Dent/croissance et développement , Animaux , Cellules souches pluripotentes/cytologie , Cellules souches pluripotentes/métabolisme , Ingénierie tissulaire/méthodes , Épithélium/métabolisme , Épithélium/croissance et développement , Impression tridimensionnelle , Modèles biologiques
3.
Cell Mol Life Sci ; 79(3): 153, 2022 Feb 26.
Article de Anglais | MEDLINE | ID: mdl-35217915

RÉSUMÉ

Insight into human tooth epithelial stem cells and their biology is sparse. Tissue-derived organoid models typically replicate the tissue's epithelial stem cell compartment. Here, we developed a first-in-time epithelial organoid model starting from human tooth. Dental follicle (DF) tissue, isolated from unerupted wisdom teeth, efficiently generated epithelial organoids that were long-term expandable. The organoids displayed a tooth epithelial stemness phenotype similar to the DF's epithelial cell rests of Malassez (ERM), a compartment containing dental epithelial stem cells. Single-cell transcriptomics reinforced this organoid-ERM congruence, and uncovered novel, mouse-mirroring stem cell features. Exposure of the organoids to epidermal growth factor induced transient proliferation and eventual epithelial-mesenchymal transition, highly mimicking events taking place in the ERM in vivo. Moreover, the ERM stemness organoids were able to unfold an ameloblast differentiation process, further enhanced by transforming growth factor-ß (TGFß) and abrogated by TGFß receptor inhibition, thereby reproducing TGFß's known key position in amelogenesis. Interestingly, by creating a mesenchymal-epithelial composite organoid (assembloid) model, we demonstrated that the presence of dental mesenchymal cells (i.e. pulp stem cells) triggered ameloblast differentiation in the epithelial stem cells, thus replicating the known importance of mesenchyme-epithelium interaction in tooth development and amelogenesis. Also here, differentiation was abrogated by TGFß receptor inhibition. Together, we developed novel organoid models empowering the exploration of human tooth epithelial stem cell biology and function as well as their interplay with dental mesenchyme, all at present only poorly defined in humans. Moreover, the new models may pave the way to future tooth-regenerative perspectives.


Sujet(s)
Sac dentaire/métabolisme , Organoïdes/métabolisme , Améloblastes/cytologie , Améloblastes/métabolisme , Différenciation cellulaire , Cellules cultivées , Sac dentaire/cytologie , Facteur de croissance épidermique/pharmacologie , Cellules épithéliales/cytologie , Cellules épithéliales/métabolisme , Transition épithélio-mésenchymateuse/effets des médicaments et des substances chimiques , Facteurs de transcription Forkhead/génétique , Facteurs de transcription Forkhead/métabolisme , Humains , Organoïdes/cytologie , Organoïdes/anatomopathologie , Phénotype , Récepteur de type I du facteur de croissance transformant bêta/antagonistes et inhibiteurs , Récepteur de type I du facteur de croissance transformant bêta/métabolisme , Facteur de transcription STAT-2/génétique , Facteur de transcription STAT-2/métabolisme , Analyse sur cellule unique , Cellules souches/cytologie , Cellules souches/métabolisme , Transcriptome , Facteur de croissance transformant bêta/métabolisme
4.
J Cell Physiol ; 237(3): 1964-1979, 2022 03.
Article de Anglais | MEDLINE | ID: mdl-34957547

RÉSUMÉ

Cell- and tissue-specific extracellular matrix (ECM) composition plays an important role in organ development, including teeth, by regulating cell behaviors, such as cell proliferation and differentiation. Here, we demonstrate for the first time that von Willebrand factor D and epidermal growth factor (EGF) domains (Vwde), a previously uncharacterized ECM protein, is specifically expressed in teeth and regulates cell proliferation and differentiation in inner enamel epithelial cells (IEEs) and enamel formation. We identified the Vwde as a novel ECM protein through bioinformatics using the NCBI expressed sequence tag database for mice. Vwde complementary DNA encodes 1773 amino acids containing a signal peptide, a von Willebrand factor type D domain, and tandem calcium-binding EGF-like domains. Real-time polymerase chain reaction demonstrated that Vwde is highly expressed in tooth tissue but not in other tissues including the brain, lung, heart, liver, kidney, and bone. In situ hybridization revealed that the IEEs expressed Vwde messenger RNA in developing teeth. Immunostaining showed that VWDE was localized at the proximal and the distal ends of the pericellular regions of the IEEs. Vwde was induced during the differentiation of mouse dental epithelium-derived M3H1 cells. Vwde-transfected M3H1 cells secreted VWDE protein into the culture medium and inhibited cell proliferation, whereas ameloblastic differentiation was promoted. Furthermore, Vwde increased the phosphorylation of extracellular signal-regulated kinase 1/2 and protein kinase B and strongly induced the expression of the intercellular junction protein, N-cadherin (Ncad). Interestingly, the suppression of endogenous Vwde inhibited the expression of Ncad. Finally, we created Vwde-knockout mice using the CRISPR-Cas9 system. Vwde-null mice showed low mineral density, rough surface, and cracks in the enamel, indicating the enamel hypoplasia phenotype. Our findings suggest that Vwde assembling the matrix underneath the IEEs is essential for Ncad expression and enamel formation.


Sujet(s)
Améloblastes , Différenciation cellulaire , Émail dentaire , Protéines de la matrice extracellulaire , Améloblastes/cytologie , Animaux , Cadhérines/génétique , Cadhérines/métabolisme , Émail dentaire/croissance et développement , Protéines de la matrice extracellulaire/métabolisme , Souris , Souris knockout
5.
J Struct Biol ; 213(4): 107809, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34748943

RÉSUMÉ

During enamel formation, the organic enamel protein matrix interacts with calcium phosphate minerals to form elongated, parallel, and bundled enamel apatite crystals of extraordinary hardness and biomechanical resilience. The enamel protein matrix consists of unique enamel proteins such as amelogenin, ameloblastin, and enamelin, which are secreted by highly specialized cells called ameloblasts. The ameloblasts also facilitate calcium and phosphate ion transport toward the enamel layer. Within ameloblasts, enamel proteins are transported as a polygonal matrix with 5 nm subunits in secretory vesicles. Upon expulsion from the ameloblasts, the enamel protein matrix is re-organized into 20 nm subunit compartments. Enamel matrix subunit compartment assembly and expansion coincide with C-terminal cleavage by the MMP20 enamel protease and N-terminal amelogenin self-assembly. Upon enamel crystal precipitation, the enamel protein phase is reconfigured to surround the elongating enamel crystals and facilitate their elongation in C-axis direction. At this stage of development, and upon further amelogenin cleavage, central and polyproline-rich fragments of the amelogenin molecule associate with the growing mineral crystals through a process termed "shedding", while hexagonal apatite crystals fuse in longitudinal direction. Enamel protein sheath-coated enamel "dahlite" crystals continue to elongate until a dense bundle of parallel apatite crystals is formed, while the enamel matrix is continuously degraded by proteolytic enzymes. Together, these insights portrait enamel mineral nucleation and growth as a complex and dynamic set of interactions between enamel proteins and mineral ions that facilitate regularly seeded apatite growth and parallel enamel crystal elongation.


Sujet(s)
Améloblastes/métabolisme , Amélogenèse/physiologie , Protéines de l'émail dentaire/métabolisme , Émail dentaire/métabolisme , Minéraux/métabolisme , Améloblastes/cytologie , Améloblastes/ultrastructure , Amélogénine/métabolisme , Animaux , Apatites/composition chimique , Apatites/métabolisme , Calcium/métabolisme , Phosphates de calcium/métabolisme , Cristallisation , Émail dentaire/cytologie , Émail dentaire/ultrastructure , Humains , Microscopie électronique
6.
Biochem Biophys Res Commun ; 581: 89-95, 2021 12 03.
Article de Anglais | MEDLINE | ID: mdl-34662808

RÉSUMÉ

Tooth development involves the coordinated transcriptional regulation of extracellular matrix proteins produced by ameloblasts and odontoblasts. In this study, whole-genome ChIP-seq analysis was applied to identify the transcriptional regulatory gene targets of Sp6 in mesenchymal cells of the developing tooth. Bioinformatic analysis of a pool of Sp6 target peaks identified the consensus nine nucleotide binding DNA motif CTg/aTAATTA. Consistent with these findings, a number of enamel and dentin matrix genes including amelogenin (Amelx), ameloblastin (Ambn), enamelin (Enam) and dental sialophosphoprotein (Dspp), were identified to contain Sp6 target sequences. Sp6 peaks were also found in other important tooth genes including transcription factors (Dlx2, Dlx3, Dlx4, Dlx5, Sp6, Sp7, Pitx2, and Msx2) and extracellular matrix-related proteins (Col1a2, Col11a2, Halpn1). Unsupervised UMAP clustering of tooth single cell RNA-seq data confirmed the presence of Sp6 transcripts co-expressed with many of the identified target genes within ameloblasts and odontoblasts. Lastly, transcriptional reporter assays using promoter fragments from the Hapln1 and Sp6 gene itself revealed that Sp6 co-expression enhanced gene transcriptional activity. Taken together these results highlight that Sp6 is a major regulator of multiple extracellular matrix genes in the developing tooth.


Sujet(s)
Améloblastes/métabolisme , Régulation de l'expression des gènes au cours du développement , Réseaux de régulation génique , Facteurs de transcription Krüppel-like/génétique , Molaire/métabolisme , Odontoblastes/métabolisme , Odontogenèse/génétique , Améloblastes/cytologie , Amélogénine/génétique , Amélogénine/métabolisme , Animaux , Animaux nouveau-nés , Collagène de type I/génétique , Collagène de type I/métabolisme , Protéines de l'émail dentaire/génétique , Protéines de l'émail dentaire/métabolisme , Protéines de la matrice extracellulaire/génétique , Protéines de la matrice extracellulaire/métabolisme , Facteurs de transcription Krüppel-like/métabolisme , Souris , Souris de lignée C57BL , Molaire/cytologie , Molaire/croissance et développement , Odontoblastes/cytologie , Régions promotrices (génétique) , Protéoglycanes/génétique , Protéoglycanes/métabolisme , ARN messager/génétique , ARN messager/métabolisme , Analyse de séquence d'ARN , Transduction du signal , Analyse sur cellule unique , Facteur de transcription Sp7/génétique , Facteur de transcription Sp7/métabolisme
7.
J Struct Biol ; 213(4): 107805, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34715329

RÉSUMÉ

The revolution in genetics has rapidly increased our knowledge of human and mouse genes that are critical for the formation of dental enamel and helps us understand how enamel evolved. In this graphical review we focus on the roles of 41 genes that are essential for the secretory stage of amelogenesis when characteristic enamel mineral ribbons initiate on dentin and elongate to expand the enamel layer to the future surface of the tooth. Based upon ultrastructural analyses of genetically modified mice, we propose a molecular model explaining how a cell attachment apparatus including collagen 17, α6ß4 and αvß6 integrins, laminin 332, and secreted enamel proteins could attach to individual enamel mineral ribbons and mold their cross-sectional dimensions as they simultaneously elongate and orient them in the direction of the retrograde movement of the ameloblast membrane.


Sujet(s)
Améloblastes/métabolisme , Amélogenèse/génétique , Protéines de l'émail dentaire/génétique , Émail dentaire/métabolisme , Modèles génétiques , Améloblastes/cytologie , Améloblastes/ultrastructure , Animaux , Collagène/génétique , Collagène/métabolisme , Émail dentaire/cytologie , Protéines de l'émail dentaire/métabolisme , Humains , Intégrines/génétique , Intégrines/métabolisme , Laminine/génétique , Laminine/métabolisme , Souris , Microscopie électronique à balayage/méthodes
8.
J Mol Histol ; 52(5): 1035-1042, 2021 Oct.
Article de Anglais | MEDLINE | ID: mdl-34279757

RÉSUMÉ

Mouse incisors are covered by enamel only on the labial side and the lingual side is covered by dentin without enamel. This asymmetric distribution of enamel makes it possible to be abrased on the lingual side, generating the sharp cutting edge of incisor on the labial side. The abrasion of mouse incisors is compensated by the continuous growth throughout life. Epithelium stem cells responsible for its continuous growth are reported to localize within the labial cervical loop. The transcription factor Sox2 plays important roles in the maintenance of stem cell pluripotency and organ formation. We previously found that Sox2 mainly expressed in the dental epithelium. Besides, Sox2 has been reported to be a dental epithelium stem cell marker in the incisor. However, the exact mechanism of Sox2 controlling amelogenesis is still not quite clearly elucidated. Here we report that conditional deletion of Sox2 in the dental epithelium using Shhcre caused impaired ameloblast differentiation in the labial side and induced ectopic ameloblast-like cell differentiation on the lingual side. Abnormal FGF gene expression was detected by RNAscope in situ hybridization in the mutant incisor. Collectively, we speculate that asymmetric ameloblast lineage commitment of mouse incisor might be regulated by Sox2 through FGF signaling.


Sujet(s)
Améloblastes/cytologie , Lignage cellulaire , Facteurs de croissance fibroblastique/métabolisme , Incisive/métabolisme , Facteurs de transcription SOX-B1/métabolisme , Transduction du signal , Améloblastes/métabolisme , Animaux , Facteurs de croissance fibroblastique/génétique , Délétion de gène , Régulation de l'expression des gènes , Incisive/croissance et développement , Mâle , Souris knockout , Muqueuse de la bouche/métabolisme
9.
Int J Mol Sci ; 22(13)2021 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-34281250

RÉSUMÉ

Amelogenin comprises ~90% of enamel proteins; however, the involvement of Amelx transcriptional activation in regulating ameloblast differentiation from induced pluripotent stem cells (iPSCs) remains unknown. In this study, we generated doxycycline-inducible Amelx-expressing mouse iPSCs (Amelx-iPSCs). We then established a three-stage ameloblast induction strategy from Amelx-iPSCs, including induction of surface ectoderm (stage 1), dental epithelial cells (DECs; stage 2), and ameloblast lineage (stage 3) in sequence, by manipulating several signaling molecules. We found that adjunctive use of lithium chloride (LiCl) in addition to bone morphogenetic protein 4 and retinoic acid promoted concentration-dependent differentiation of DECs. The resulting cells had a cobblestone appearance and keratin14 positivity. Attenuation of LiCl at stage 3 together with transforming growth factor ß1 and epidermal growth factor resulted in an ameloblast lineage with elongated cell morphology, positivity for ameloblast markers, and calcium deposition. Although stage-specific activation of Amelx did not produce noticeable phenotypic changes in ameloblast differentiation, Amelx activation at stage 3 significantly enhanced cell adhesion as well as decreased proliferation and migration. These results suggest that the combination of inducible Amelx transcription and stage-specific ameloblast induction for iPSCs represents a powerful tool to highlight underlying mechanisms in ameloblast differentiation and function in association with Amelx expression.


Sujet(s)
Améloblastes/cytologie , Améloblastes/métabolisme , Amélogénine/métabolisme , Améloblastes/physiologie , Amélogénine/génétique , Animaux , Adhérence cellulaire/physiologie , Différenciation cellulaire/physiologie , Doxycycline/pharmacologie , Cellules épithéliales/métabolisme , Cellules souches pluripotentes induites/métabolisme , Souris , Transduction du signal , Activation de la transcription/physiologie
10.
Int J Mol Sci ; 22(8)2021 Apr 13.
Article de Anglais | MEDLINE | ID: mdl-33924361

RÉSUMÉ

TRPM7 plays an important role in cellular Ca2+, Zn2+ and Mg2+ homeostasis. TRPM7 channels are abundantly expressed in ameloblasts and, in the absence of TRPM7, dental enamel is hypomineralized. The potential role of TRPM7 channels in Ca2+ transport during amelogenesis was investigated in the HAT-7 rat ameloblast cell line. The cells showed strong TRPM7 mRNA and protein expression. Characteristic TRPM7 transmembrane currents were observed, which increased in the absence of intracellular Mg2+ ([Mg2+]i), were reduced by elevated [Mg2+]i, and were inhibited by the TRPM7 inhibitors NS8593 and FTY720. Mibefradil evoked similar currents, which were suppressed by elevated [Mg2+]i, reducing extracellular pH stimulated transmembrane currents, which were inhibited by FTY720. Naltriben and mibefradil both evoked Ca2+ influx, which was further enhanced by the acidic intracellular conditions. The SOCE inhibitor BTP2 blocked Ca2+ entry induced by naltriben but not by mibefradil. Thus, in HAT-7 cells, TRPM7 may serves both as a potential modulator of Orai-dependent Ca2+ uptake and as an independent Ca2+ entry pathway sensitive to pH. Therefore, TRPM7 may contribute directly to transepithelial Ca2+ transport in amelogenesis.


Sujet(s)
Améloblastes/métabolisme , Calcium/métabolisme , Canaux cationiques TRPM/métabolisme , Améloblastes/cytologie , Améloblastes/effets des médicaments et des substances chimiques , Anilides/pharmacologie , Animaux , Lignée cellulaire , Humains , Concentration en ions d'hydrogène , Incisive/cytologie , Ouverture et fermeture des portes des canaux ioniques/effets des médicaments et des substances chimiques , Transport des ions/effets des médicaments et des substances chimiques , Mibéfradil/pharmacologie , Souris , Modèles biologiques , Naltrexone/analogues et dérivés , Naltrexone/pharmacologie , Rats , Thiadiazoles/pharmacologie
11.
Int J Mol Sci ; 21(23)2020 Nov 25.
Article de Anglais | MEDLINE | ID: mdl-33255698

RÉSUMÉ

Dental enamel is hardest tissue in the body and is produced by dental epithelial cells residing in the tooth. Their cell fates are tightly controlled by transcriptional programs that are facilitated by fate determining transcription factors and chromatin regulators. Understanding the transcriptional program controlling dental cell fate is critical for our efforts to build and repair teeth. In this review, we describe the current understanding of these regulators essential for regeneration of dental epithelial stem cells and progeny, which are identified through transgenic mouse models. We first describe the development and morphogenesis of mouse dental epithelium in which different subpopulations of epithelia such as ameloblasts contribute to enamel formation. Then, we describe the function of critical factors in stem cells or progeny to drive enamel lineages. We also show that gene mutations of these factors are associated with dental anomalies in craniofacial diseases in humans. We also describe the function of the master regulators to govern dental lineages, in which the genetic removal of each factor switches dental cell fate to that generating hair. The distinct and related mechanisms responsible for the lineage plasticity are discussed. This knowledge will lead us to develop a potential tool for bioengineering new teeth.


Sujet(s)
Différenciation cellulaire/génétique , Cellules épithéliales/métabolisme , Odontogenèse/génétique , Transcription génétique , Améloblastes/cytologie , Améloblastes/métabolisme , Animaux , Cellules épithéliales/cytologie , Épithélium/croissance et développement , Épithélium/métabolisme , Régulation de l'expression des gènes/génétique , Humains , Souris , Souris transgéniques , Dent/croissance et développement
12.
Arch Oral Biol ; 120: 104933, 2020 Dec.
Article de Anglais | MEDLINE | ID: mdl-33137652

RÉSUMÉ

OBJECTIVE: We aimed to explore the role of Heterogeneous Nuclear Ribonucleoprotein L(hnRNP L) in enamel organ development through hnRNP L conditional knockout mice and knockdown of hnRNP L expression in mouse ameloblast-lineage cells (mALCs) METHODS: We created K14cre-mediated hnRNP L conditional knockout mice (hnRNP LK14/fl) and silenced the expression of hnRNP L in mALCs to investigate the role of hnRNP L in enamel organ development. RESULTS: We found that hnRNP LK14/fl mice presented enamel organ development defects with reduced number of inner enamel epithelium (IEE) cells. The proliferation and differentiation of the IEE cells/ameloblasts were suppressed. The cell proliferation and mineralization ability were also decreased after hnRNP L knockdown. Further studies showed that Bone Morphogenetic Protein (BMP) signaling pathway was attenuated after the knockdown of hnRNP L expression both in vivo and in vitro. CONCLUSIONS: These findings suggest that hnRNP L plays a critical role in enamel organ development by promoting the IEE cell/ameloblast proliferation and differentiation. BMP signaling pathway may be involved in the process.


Sujet(s)
Améloblastes/cytologie , Différenciation cellulaire , Organe de l'émail/métabolisme , Ribonucléoprotéine nucléaire hétérogène L/métabolisme , Animaux , Protéines morphogénétiques osseuses/métabolisme , Émail dentaire , Souris , Souris knockout , Transduction du signal
13.
Biochem Biophys Res Commun ; 532(2): 321-328, 2020 11 05.
Article de Anglais | MEDLINE | ID: mdl-32873389

RÉSUMÉ

MicroRNAs (miRNAs) exhibit strong potential clinical application owing to their extensive regulation and flexible delivery properties. MicroRNA-31 (miR-31) is an evolutionarily conserved miRNA expressed during tooth development, and it is highly expressed in mouse incisor epithelium. The specific role of miR-31 in odontogenesis has not been elucidated comprehensively, and the aim of the present study was to investigate its activity. Our results showed that miR-31 suppressed LS8 cell proliferation by inhibiting the cell cycle at the G1/S transition. Mutation of Special AT-rich sequence-binding protein 2 (SATB2) gene is responsible for human SATB2-associated syndrome (SAS), which is often accompanied by dental abnormities. Here, it was identified as a direct target of miR-31 in LS8 cells and a promoter of cell proliferation. The expression and distribution of SATB2 in mouse molars and incisors were explored using immunofluorescence, which showed strong signals in the nuclei of incisor epithelial cells and weak signals in the cytoplasm of molar epithelial cells. Moreover, rescue experiments demonstrated that Satb2 could mitigate the inhibitory effect of miR-31 on cell proliferation by promoting the expression of CDK4. Collectively, our results suggested that miR-31 regulates dental epithelial cell proliferation by targeting Satb2, highlighting the biological importance of miR-31 in odontogenesis.


Sujet(s)
Améloblastes/cytologie , Incisive/croissance et développement , Protéines de liaison aux séquences d'ADN MAR/génétique , microARN/génétique , Molaire/croissance et développement , Facteurs de transcription/génétique , Améloblastes/physiologie , Animaux , Lignée cellulaire , Prolifération cellulaire , Femelle , Régulation de l'expression des gènes au cours du développement , Incisive/embryologie , Incisive/physiologie , Protéines de liaison aux séquences d'ADN MAR/métabolisme , Souris , Molaire/embryologie , Molaire/physiologie , Grossesse , Facteurs de transcription/métabolisme
14.
Sci Rep ; 10(1): 4963, 2020 03 18.
Article de Anglais | MEDLINE | ID: mdl-32188889

RÉSUMÉ

Enamel is secreted by ameloblasts derived from tooth epithelial stem cells (SCs). Humans cannot repair or regenerate enamel, due to early loss of tooth epithelial SCs. Contrarily in the mouse incisors, epithelial SCs are maintained throughout life and endlessly generate ameloblasts, and thus enamel. Here we isolated Sox2-GFP+ tooth epithelial SCs which generated highly cellular spheres following a novel in vitro strategy. This system enabled analysis of SC regulation by various signaling molecules, and supported the stimulatory and inhibitory roles of Shh and Bmp, respectively; providing better insight into the heterogeneity of the SCs. Further, we generated a novel mouse reporter, Enamelin-tdTomato for identification of ameloblasts in live tissues and cells, and used it to demonstrate presence of ameloblasts in the new 3D co-culture system of dental SCs. Collectively, our results provide means of generating 3D tooth epithelium from adult SCs which can be utilized toward future generation of enamel.


Sujet(s)
Améloblastes/cytologie , Différenciation cellulaire , Cellules épithéliales/cytologie , Cellules souches/cytologie , Dent/cytologie , Améloblastes/métabolisme , Animaux , Cellules cultivées , Techniques de coculture , Cellules épithéliales/métabolisme , Souris , Souris de lignée C57BL , Transduction du signal , Cellules souches/métabolisme , Dent/métabolisme
15.
Braz Oral Res ; 34: e006, 2020.
Article de Anglais | MEDLINE | ID: mdl-32022225

RÉSUMÉ

Induced pluripotent stem (iPS) cells could be induced into ameloblast-like cells by ameloblasts serum-free conditioned medium (ASF-CM), and bone morphogenetic proteins (BMPs) might be essential during the regulation of this process. The present study investigates the signal transduction that regulates the ameloblastic differentiation of iPS cells induced by ASF-CM. Mouse iPS cells were characterized and then cultured for 14 days in epithelial cell medium (control) or ASF-CM. Bone morphogenetic protein receptor II (BMPR-II) siRNA, inhibitor of Smad1/5 phosphorylation activated by activin receptor-like kinase (ALK) receptors, and inhibitors of mitogen-activated protein kinases (MAPKs) phosphorylation were used to treat the iPS cells in combination with ASF-CM. Real-time PCR, western blotting, and immunofluorescent staining were used to evaluate the expressions of ameloblast markers ameloblastin, enamelin, and cytokeratin-14. BMPR-II gene and protein levels increased markedly in ASF-CM-treated iPS cells compared with the controls, while the mRNA levels of Bmpr-Ia and Bmpr-Ib were similar between the ASF-CM and control groups. ASF-CM stimulation significantly increased the gene and protein expression of ameloblastin, enamelin and cytokeratin-14, and phosphorylated SMAD1/5, p38 MAPK, and ERK1/2 MAPK compared with the controls. Knockdown of BMPR-II and inhibition of Smad1/5 phosphorylation both could significantly reverse the increased expression of ameloblastin, enamelin, and cytokeratin-14 induced by ASF-CM, while neither inhibition of p38 nor ERK1/2 phosphorylation had significant reversing effects. We conclude that smad1/5 signaling transduction, activated by ALK receptors, regulates the ameloblastic differentiation of iPS cells induced by ameloblast-conditioned medium.


Sujet(s)
Améloblastes/cytologie , Cellules souches pluripotentes induites/cytologie , Transduction du signal/physiologie , Protéine Smad-1/physiologie , Récepteur activine/analyse , Récepteur activine/physiologie , Technique de Western , Récepteurs de la protéine morphogénique osseuse de type II/analyse , Récepteurs de la protéine morphogénique osseuse de type II/physiologie , Différenciation cellulaire/génétique , Différenciation cellulaire/physiologie , Cellules cultivées , Milieux de culture sans sérum , Technique d'immunofluorescence , Expression des gènes , Système de signalisation des MAP kinases/physiologie , Phosphorylation , Interférence par ARN , RT-PCR , Protéine Smad-1/analyse , Facteurs temps , p38 Mitogen-Activated Protein Kinases/analyse , p38 Mitogen-Activated Protein Kinases/physiologie
16.
Braz. oral res. (Online) ; 34: e006, 2020. tab, graf
Article de Anglais | LILACS | ID: biblio-1055522

RÉSUMÉ

Abstract Induced pluripotent stem (iPS) cells could be induced into ameloblast-like cells by ameloblasts serum-free conditioned medium (ASF-CM), and bone morphogenetic proteins (BMPs) might be essential during the regulation of this process. The present study investigates the signal transduction that regulates the ameloblastic differentiation of iPS cells induced by ASF-CM. Mouse iPS cells were characterized and then cultured for 14 days in epithelial cell medium (control) or ASF-CM. Bone morphogenetic protein receptor II (BMPR-II) siRNA, inhibitor of Smad1/5 phosphorylation activated by activin receptor-like kinase (ALK) receptors, and inhibitors of mitogen-activated protein kinases (MAPKs) phosphorylation were used to treat the iPS cells in combination with ASF-CM. Real-time PCR, western blotting, and immunofluorescent staining were used to evaluate the expressions of ameloblast markers ameloblastin, enamelin, and cytokeratin-14. BMPR-II gene and protein levels increased markedly in ASF-CM-treated iPS cells compared with the controls, while the mRNA levels of Bmpr-Ia and Bmpr-Ib were similar between the ASF-CM and control groups. ASF-CM stimulation significantly increased the gene and protein expression of ameloblastin, enamelin and cytokeratin-14, and phosphorylated SMAD1/5, p38 MAPK, and ERK1/2 MAPK compared with the controls. Knockdown of BMPR-II and inhibition of Smad1/5 phosphorylation both could significantly reverse the increased expression of ameloblastin, enamelin, and cytokeratin-14 induced by ASF-CM, while neither inhibition of p38 nor ERK1/2 phosphorylation had significant reversing effects. We conclude that smad1/5 signaling transduction, activated by ALK receptors, regulates the ameloblastic differentiation of iPS cells induced by ameloblast-conditioned medium.


Sujet(s)
Transduction du signal/physiologie , Protéine Smad-1/physiologie , Cellules souches pluripotentes induites/cytologie , Améloblastes/cytologie , Phosphorylation , Facteurs temps , Expression des gènes , Différenciation cellulaire/physiologie , Différenciation cellulaire/génétique , Cellules cultivées , Technique de Western , Technique d'immunofluorescence , Milieux de culture sans sérum , RT-PCR , Système de signalisation des MAP kinases/physiologie , Récepteur activine/analyse , Récepteur activine/physiologie , Interférence par ARN , p38 Mitogen-Activated Protein Kinases/analyse , p38 Mitogen-Activated Protein Kinases/physiologie , Récepteurs de la protéine morphogénique osseuse de type II/analyse , Récepteurs de la protéine morphogénique osseuse de type II/physiologie , Protéine Smad-1/analyse
17.
Braz. oral res. (Online) ; 34: e006, 2020. tab, graf
Article de Anglais | LILACS | ID: biblio-1089380

RÉSUMÉ

Abstract Induced pluripotent stem (iPS) cells could be induced into ameloblast-like cells by ameloblasts serum-free conditioned medium (ASF-CM), and bone morphogenetic proteins (BMPs) might be essential during the regulation of this process. The present study investigates the signal transduction that regulates the ameloblastic differentiation of iPS cells induced by ASF-CM. Mouse iPS cells were characterized and then cultured for 14 days in epithelial cell medium (control) or ASF-CM. Bone morphogenetic protein receptor II (BMPR-II) siRNA, inhibitor of Smad1/5 phosphorylation activated by activin receptor-like kinase (ALK) receptors, and inhibitors of mitogen-activated protein kinases (MAPKs) phosphorylation were used to treat the iPS cells in combination with ASF-CM. Real-time PCR, western blotting, and immunofluorescent staining were used to evaluate the expressions of ameloblast markers ameloblastin, enamelin, and cytokeratin-14. BMPR-II gene and protein levels increased markedly in ASF-CM-treated iPS cells compared with the controls, while the mRNA levels of Bmpr-Ia and Bmpr-Ib were similar between the ASF-CM and control groups. ASF-CM stimulation significantly increased the gene and protein expression of ameloblastin, enamelin and cytokeratin-14, and phosphorylated SMAD1/5, p38 MAPK, and ERK1/2 MAPK compared with the controls. Knockdown of BMPR-II and inhibition of Smad1/5 phosphorylation both could significantly reverse the increased expression of ameloblastin, enamelin, and cytokeratin-14 induced by ASF-CM, while neither inhibition of p38 nor ERK1/2 phosphorylation had significant reversing effects. We conclude that smad1/5 signaling transduction, activated by ALK receptors, regulates the ameloblastic differentiation of iPS cells induced by ameloblast-conditioned medium.


Sujet(s)
Transduction du signal/physiologie , Protéine Smad-1/physiologie , Cellules souches pluripotentes induites/cytologie , Améloblastes/cytologie , Phosphorylation , Facteurs temps , Expression des gènes , Différenciation cellulaire/physiologie , Différenciation cellulaire/génétique , Cellules cultivées , Technique de Western , Technique d'immunofluorescence , Milieux de culture sans sérum , RT-PCR , Système de signalisation des MAP kinases/physiologie , Récepteur activine/analyse , Récepteur activine/physiologie , Interférence par ARN , p38 Mitogen-Activated Protein Kinases/analyse , p38 Mitogen-Activated Protein Kinases/physiologie , Récepteurs de la protéine morphogénique osseuse de type II/analyse , Récepteurs de la protéine morphogénique osseuse de type II/physiologie , Protéine Smad-1/analyse
18.
Nat Cell Biol ; 21(9): 1102-1112, 2019 09.
Article de Anglais | MEDLINE | ID: mdl-31481792

RÉSUMÉ

The classical model of tissue renewal posits that small numbers of quiescent stem cells (SCs) give rise to proliferating transit-amplifying cells before terminal differentiation. However, many organs house pools of SCs with proliferative and differentiation potentials that diverge from this template. Resolving SC identity and organization is therefore central to understanding tissue renewal. Here, using a combination of single-cell RNA sequencing (scRNA-seq), mouse genetics and tissue injury approaches, we uncover cellular hierarchies and mechanisms that underlie the maintenance and repair of the continuously growing mouse incisor. Our results reveal that, during homeostasis, a group of actively cycling epithelial progenitors generates enamel-producing ameloblasts and adjacent layers of non-ameloblast cells. After injury, tissue repair was achieved through transient increases in progenitor-cell proliferation and through direct conversion of Notch1-expressing cells to ameloblasts. We elucidate epithelial SC identity, position and function, providing a mechanistic basis for the homeostasis and repair of a fast-turnover ectodermal appendage.


Sujet(s)
Améloblastes/cytologie , Différenciation cellulaire/physiologie , Prolifération cellulaire/physiologie , Ectoderme/cytologie , Incisive/cytologie , Animaux , Division cellulaire/physiologie , Cellules épithéliales/cytologie , Souris transgéniques , Transduction du signal/physiologie , Cellules souches/cytologie
19.
J Mol Histol ; 50(5): 417-425, 2019 Oct.
Article de Anglais | MEDLINE | ID: mdl-31278616

RÉSUMÉ

Previous studies have demonstrated that several types of human stem cells of non-dental origin can be induced to differentiate into enamel-secreting ameloblasts after recombined with mouse embryonic dental mesenchyme. However, the successful rate of ameloblastic differentiation is about rather low, which presents a major obstacle for future stem cell-based whole tooth bioengineering. Previous studies have shown that cultures at reduced temperature could improve the differentiation capability of stem cells in tissue engineering. In this study, we systematically investigated the effects of low temperature on the viability, proliferation and stemness of human keratinocytes stem cells (hKSCs) in cell culture and further examined ameloblastic differentiation of the hKSCs in human-mouse recombinant chimeric tooth germs. Our results demonstrated that low temperature indeed reduces growth rate and maintains healthy undifferentiated morphology of hKSCs without any effects on cell viability. Moreover, examination of stemness makers revealed improved stemness of hKSCs cultured at low temperature with increased expression of stemness markers K15, CD29 and p63 and decreased expression differentiation marker K10, as compared to those cultured at 37 °C. These low temperature treated hKSCs, when recombined with mouse embryonic dental mesenchyme, exhibited significantly increased rate (40%) of ameloblastic differentiation, as compared to that (17%) in tissue recombinants with those hKSCs treated at standard temperature. Our studies demonstrate that low temperature cell culture improves the stemness and plasticity of hKSCs, which in turn enhances ameloblastic differentiation capability of the stem cells in bioengineered teeth.


Sujet(s)
Améloblastes/cytologie , Techniques de culture cellulaire/méthodes , Différenciation cellulaire , Basse température , Kératinocytes/cytologie , Cellules souches/cytologie , Marqueurs biologiques/analyse , Humains , Ingénierie tissulaire , Germe dentaire
20.
In Vivo ; 33(4): 1143-1150, 2019.
Article de Anglais | MEDLINE | ID: mdl-31280203

RÉSUMÉ

BACKGROUND: This study evaluated the effectiveness of a regenerative endodontic approach to regenerate the pulp tissue in mature teeth of ferret. The presence of odontoblast-like cells in the newly-formed tissue of teeth treated with or without preameloblast-conditioned medium was evaluated based on morphological criteria. MATERIALS AND METHODS: Twenty-four canines from six ferrets were treated. The pulp was removed, and the apical foramen was enlarged. After inducing the formation of a blood clot, a collagen sponge with or without preameloblast-conditioned medium was placed underneath the cementoenamel junction. The samples were analyzed at the eighth week of follow-up. RESULTS: Vascularized connective tissue was observed in 50% of teeth, without differences between groups. The tissue occupied the apical third of the root canals. Odontoblast-like cells were not observed in any group. CONCLUSION: Revitalization of mature teeth is possible, at least in the apical third of the root canal. Further experimental research is needed to produce more reliable outcomes.


Sujet(s)
Améloblastes/métabolisme , Milieux de culture conditionnés/pharmacologie , Organe de l'émail/cytologie , Odontogenèse , Endodontie régénératrice , Améloblastes/cytologie , Animaux , Furets , Odontogenèse/effets des médicaments et des substances chimiques , Rats , Régénération , Endodontie régénératrice/méthodes , Rodentia , Dent/cytologie , Dent/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...