RÉSUMÉ
Biosurfactants are amphiphilic biomolecules with promising tensoative and emulsifying properties that find application in the most varied industrial sectors: environment, food, agriculture, petroleum, cosmetics, and hygiene. In the current work, a 23 full-factorial design was performed to evaluate the effect and interactions of pineapple peel and corncob as substrates for biosurfactant production by Bacillus subtilis LMA-ICF-PC 001. In a previous stage, an alkaline pretreatment was applied to corncob samples to extract the xylose-rich hydrolysate. The results indicated that pineapple peel extract and xylose-rich hydrolysate acted as partial glucose substitutes, minimizing production costs with exogenous substrates. Biosurfactant I (obtained at 8.11% pineapple peel extract, 8.11% xylose-rich hydrolysate from corncob, and 2.8109 g/L glucose) exhibited a significant surface tension reduction (52.37%) and a promising bioremediation potential (87.36%). On the other hand, biosurfactant III (obtained at 8.11% pineapple peel extract, 31.89% xylose-rich hydrolysate from corncob, and 2.8109 g/L glucose) exhibited the maximum emulsification index in engine oil (69.60%), the lowest critical micellar concentration (68 mg/L), and the highest biosurfactant production (5.59 g/L). These findings demonstrated that using pineapple peel extract and xylose-rich hydrolysate from corncob effectively supports biosurfactant synthesis by B. subtilis, reinforcing how agro-industrial wastes can substitute traditional carbon sources, contributing to cost reduction and environmental sustainability.
Sujet(s)
Ananas , Tensioactifs , Zea mays , Tensioactifs/composition chimique , Ananas/composition chimique , Zea mays/composition chimique , Bacillus subtilis/métabolisme , Dépollution biologique de l'environnementRÉSUMÉ
We evaluated the effects of supplementing direct-fed microbials (DFM), containing Bacillus licheniformis and Bacillus subtilis, on performance, rumen morphometrics, intestinal gene expression, and blood and fecal parameters in finishing bulls. Nelloreâ ×â Angus bulls (nâ =â 144; initial BWâ =â 401â ±â 45.5 kg) were distributed at random in 36 pens (4 bulls/pen and 18 pens/treatment), following a completely randomized design. A ground corn-based finishing diet was offered for ad libitum intake twice a day for 84 d, containing the following treatments: 1) control (without DFM); 2) DFM (B. licheniformis and B. subtilis) at 6.4â ×â 109 CFU (2 g) per animal. The data were analyzed using the MIXED procedure of SAS, with a pen representing an experimental unit, the fixed effect of the treatment, and the random effect of pen nested within the treatment. For fecal parameters (two collections made), the collection effect and its interaction with the treatment were included in the model. Bulls that received the DFM had a decreased dry matter intake (Pâ ≤â 0.01), did not differ in average daily gain (2.05 kg; Pâ =â 0.39), and had a 6% improvement in gain:feed (Pâ =â 0.05). The other performance variables, final BW, hot carcass weight, and hot carcass yield, did not differ (Pâ >â 0.10). Plasma urea-N concentration decreased by 6.2% (Pâ =â 0.02) in the bulls that received DFM. Glucose, haptoglobin, and lipopolysaccharides were not different between treatments (Pâ >â 0.10). Ruminal morphometrics were not affected by the treatment (Pâ >â 0.10). The use of DFM tended to reduce fecal starch (Pâ =â 0.10). At slaughter, bulls fed DFM had an increased duodenal gene expression of tryptophan hydroxylase-1 (Pâ =â 0.02) and of superoxide dismutase-1 (Pâ =â 0.03). Overall, supplementation with DFM based on B. licheniformis and B. subtilis to Nelloreâ ×â Angus bulls in the finishing phase decreased dry matter intake, did not influence ADG, improved gain:feed, and increased the expression of genes important for duodenal function.
One of the main alternatives of additives to modulate the microbial population in the gastrointestinal tract (GIT), especially in the intestine, is the use of direct-fed microbials (DFM). This class of additives comprises all the feed products that contain a live or naturally occurring source of microorganism. The inclusion of DFM in diets of ruminants in the finishing phase may improve gain:feed by modifying the composition of the microbial community in the GIT to bring about a better symbiotic relationship with the host. These effects may be achieved with the use of Bacillus spp. bacteria, such as Bacillus licheniformis and Bacillus subtilis. Mixtures of these bacteria are able to foster positive effects in the finishing phase of beef cattle fed high-energy diets, which reinforces the need for studies that examine the effects and mechanisms of these species. In this study, feedlot Nelloreâ ×â Angus bulls that received a DFM composed of B. licheniformis and B. subtilis had decreased dry matter intake, no influence on average daily gain, improved gain:feed, and an increase in expression of genes important for duodenal function.
Sujet(s)
Aliment pour animaux , Régime alimentaire , Fèces , Probiotiques , Rumen , Animaux , Bovins , Mâle , Rumen/microbiologie , Aliment pour animaux/analyse , Probiotiques/pharmacologie , Probiotiques/administration et posologie , Régime alimentaire/médecine vétérinaire , Fèces/microbiologie , Fèces/composition chimique , Bacillus licheniformis , Bacillus subtilis , Intestins/anatomie et histologie , Intestins/effets des médicaments et des substances chimiques , Expression des gènes , Répartition aléatoire , Phénomènes physiologiques nutritionnels chez l'animalRÉSUMÉ
Titanium implants are subject to bacterial adhesion and peri-implantitis induction, and biosurfactants bring a new alternative to the fight against infections. This work aimed to produce and characterize the biosurfactant from Bacillus subtilis ATCC 19,659, its anti-adhesion and antimicrobial activity, and cell viability. Anti-adhesion studies were carried out against Streptococcus sanguinis, Staphylococcus aureus, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Proteus mirabilis as the minimum inhibitory concentration and the minimum bactericidal concentration. Cell viability was measured against osteoblast and fibroblast cells. The biosurfactant was classified as lipopeptide, with critical micelle concentration at 40 µg mL- 1, and made the titanium surface less hydrophobic. The anti-adhesion effect was observed for Staphylococcus aureus and Streptococcus sanguinis with 54% growth inhibition and presented a minimum inhibitory concentration of 15.7 µg mL- 1 for Streptococcus sanguinis and Aggregatibacter actinomycetemcomitans. The lipopeptide had no cytotoxic effect and demonstrated high potential application against bacterial biofilms.
Sujet(s)
Adhérence bactérienne , Biofilms , Implants dentaires , Lipopeptides , Tests de sensibilité microbienne , Titane , Titane/pharmacologie , Titane/composition chimique , Biofilms/effets des médicaments et des substances chimiques , Biofilms/croissance et développement , Adhérence bactérienne/effets des médicaments et des substances chimiques , Implants dentaires/microbiologie , Lipopeptides/pharmacologie , Humains , Antibactériens/pharmacologie , Staphylococcus aureus/effets des médicaments et des substances chimiques , Staphylococcus aureus/physiologie , Bacillus subtilis/effets des médicaments et des substances chimiques , Porphyromonas gingivalis/effets des médicaments et des substances chimiques , Porphyromonas gingivalis/physiologie , Porphyromonas gingivalis/croissance et développement , Aggregatibacter actinomycetemcomitans/effets des médicaments et des substances chimiques , Propriétés de surface , Fibroblastes/effets des médicaments et des substances chimiques , Fusobacterium nucleatum/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Ostéoblastes/effets des médicaments et des substances chimiques , Tensioactifs/pharmacologieRÉSUMÉ
Fusarium verticillioides causes significant decrease in corn yield and quality, and produces fumonisins, which represent a serious risk to human and animal health. Bacillus species can be an effective and environmentally friendly alternative for F. verticillioides biological control. In this study, some properties of cell-free supernatants (CFSs) of two Bacillus spp. identified as Bacillus subtilis (NT1, NT2) as well as the antifungal effect against F. verticillioides 97L were evaluated. B. subtilis NT1 and NT2 were isolated from commercially available fermented whole soybeans (Natto). Antifungal activity was observed in both CFSs of B. subtilis isolates (50-59 mm) obtained by co-culture suggesting that antifungal compound production depends on interaction between bacteria and fungi. Cell-free supernatants from the two B. subtilis isolates inhibited mycelial growth (77%-94%) and conidial germination (22%-74%) of F. verticillioides 97L. In addition, CFSs caused significant morphological changes such as distorted and collapsed hyphae with wrinkled surfaces and the presence of a large amount of extracellular material compared to the control without CFSs. Both B. subtilis isolates (NT1 and NT2) produced extracellular proteases, biosurfactants and polar low molecular weight compounds that probably act synergistically and may contribute to the antifungal activity. Antifungal compounds showed heat and pH stability and resistance to proteolytic enzymes. Furthermore, antifungal compounds showed high polarity, high affinity to water and a molecular weight less than 10 kDa. These results indicated that the two B. subtilis (NT1 and NT2) have potential as biocontrol agents for F. verticillioides.
Sujet(s)
Antifongiques , Bacillus subtilis , Fusarium , Bacillus subtilis/métabolisme , Fusarium/effets des médicaments et des substances chimiques , Fusarium/croissance et développement , Fusarium/métabolisme , Antifongiques/pharmacologie , Antifongiques/métabolisme , Maladies des plantes/microbiologie , Maladies des plantes/prévention et contrôle , Glycine max/microbiologie , Zea mays/microbiologie , Spores fongiques/croissance et développement , Spores fongiques/effets des médicaments et des substances chimiques , AntibioseRÉSUMÉ
The production of fermentable sugars from lignocellulosic biomass is achieved by the synergistic action of a group of enzymes called cellulases. Cellulose is a long chain of chemically linked glucoses by ß-1,4 bonds. The enzyme ß-1,4-endoglucanase is the first cellulase involved in the degradation, breaking the bond of the amorphous regions. A ß-1,4-endoglucanase enzyme with high activity was obtained from a Bacillus subtilis strain isolated from wastewater of a pulp and paper mill. Sequencing and bioinformatic analysis showed that the gene amplified by PCR consisting of 1407 nucleotides and coding for a ß-1,4-endoglucanase enzyme of approximately 55 kDa. The open reading frame (ORF) encoding the mature endoglucanase (eglS) was successfully inserted in a modified cloning plasmid (pITD03) and into the pYD1 plasmid used for its expression in yeast. Carboxymethylcellulose (CMC) plate assay, SDS-PAGE, and zymogram confirmed the production and secretion by the transformed E. coli BL21-SI strain of a 39 kDa ß-1,4-endoglucanase consistent with the catalytic domain without the cellulose-binding module (CBM). The results showed that the truncated ß-1,4-endoglucanase had higher activity and stability.
Sujet(s)
Bacillus subtilis , Cellulase , Papier , Protéines recombinantes , Eaux usées , Bacillus subtilis/génétique , Bacillus subtilis/enzymologie , Bacillus subtilis/isolement et purification , Eaux usées/microbiologie , Eaux usées/composition chimique , Cellulase/génétique , Cellulase/composition chimique , Cellulase/biosynthèse , Cellulase/isolement et purification , Cellulase/métabolisme , Protéines recombinantes/génétique , Protéines recombinantes/composition chimique , Protéines recombinantes/isolement et purification , Protéines recombinantes/métabolisme , Protéines recombinantes/biosynthèse , Protéines bactériennes/génétique , Protéines bactériennes/composition chimique , Protéines bactériennes/isolement et purification , Protéines bactériennes/biosynthèse , Protéines bactériennes/métabolisme , Escherichia coli/génétique , Escherichia coli/métabolisme , Clonage moléculaire , Expression des gènesRÉSUMÉ
SUMMARYThe metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10-9) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.
Sujet(s)
Bacillus subtilis , Réparation de l'ADN , Mutagenèse , Réparation de l'ADN/génétique , Bacillus subtilis/génétique , Bacillus subtilis/physiologie , Stress physiologique/génétique , Altération de l'ADN , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Réplication de l'ADN , ADN bactérien/génétique , Spores bactériens/génétique , Spores bactériens/croissance et développementRÉSUMÉ
Pineapple (Ananas comosus) is commonly infected by Fusarium oxysporum, causal agent of the fusarium wilt disease. Conventionally, growers use synthetic fungicides to control the disease, which lead to environmental pollution, hazardous effects on non-target organisms and risks on human health. The aim of this work was to assess the effectiveness of Bacillus subtilis ANT01 and Rhizobium sp. 11B to control fusarium wilt on pineapple plants. Four treatments derived from a complete factorial design were tested under field conditions. Treatments composed of B. subtilis ANT01 and the combination B. subtilis ANT01-Rhizobium sp. 11B decreased disease severity by 94.4% and 86.1%, respectively. On the other hand, the treatment prepared with Rhizobium sp. 11B alone showed a reduction of 75.0%. Size of leaves and nutritional condition (SPAD units) of the biocontrol agents-treated plants showed no statistical differences. Moreover, B. subtilis ANT01 decreased by 46% the initial soil population of F. oxysporum, while Rhizobium sp. 11B, B. subtilis ANT01 plus Rhizobium sp. 11B and control, showed a population reduction of 12.5%, 24.2% and 23.0%, respectively. These results make evident the potential of B. subtilis ANT01 as biocontrol agent of the pathogen under field conditions.
Sujet(s)
Ananas , Fusarium , Rhizobium , Humains , Bacillus subtilis , PlantesRÉSUMÉ
Corn head smut is a disease caused by the fungus Sporisorium reilianum. This phytosanitary problem has existed for several decades in the Mezquital Valley, an important corn-producing area in central Mexico. To combat the problem, a strain identified as Bacillus subtilis 160 was applied in the field, where it decreased disease incidence and increased crop productivity. In this study, the sequencing and analysis of the whole genome sequence of this strain were carried out to identify its genetic determinants for the production of antimicrobials. The B. subtilis 160 strain was found to be Bacillus velezensis. Its genome has a size of 4,297,348 bp, a GC content of 45.8%, and 4,174 coding sequences. Comparative analysis with the genomes of four other B. velezensis strains showed that they share 2,804 genes and clusters for the production of difficidin, bacillibactin, bacilysin, macrolantin, bacillaene, fengycin, butirosin A, locillomycin, and surfactin. For the latter metabolite, unlike the other strains that have only one cluster, B. velezensis 160 has three. A cluster for synthesizing laterocidine, an antimicrobial reported only in Brevibacillus laterosporus, was also identified. IMPORTANCE: In this study, we performed sequencing and analysis of the complete genome of the strain initially identified as Bacillus subtilis 160 as part of its characterization. This bacterium has shown its ability to control corn head smut in the field, a disease caused by the basidiomycete fungus Sporisorium reilianum. Analyzing the complete genome sequence not only provides a more precise taxonomic identification but also sheds light on the genetic potential of this bacterium, especially regarding mechanisms that allow it to exert biological control. Employing molecular and bioinformatics tools in studying the genomes of agriculturally significant microorganisms offers insights into the development of biofungicides and bioinoculants. These innovations aim to enhance plant growth and pave the way for strategies that boost crop productivity.
Sujet(s)
Anti-infectieux , Bacillus , Basidiomycota , Agents de lutte biologique/métabolisme , Zea mays/métabolisme , Génome bactérien , Bacillus subtilis/génétique , Bacillus subtilis/métabolisme , Basidiomycota/métabolisme , Champignons/génétiqueRÉSUMÉ
In previous studies, two strains isolated from the maize phyllosphere were identified as Bacillus subtilis (EM-A7) and Bacillus velezensis (EM-A8) and selected as potential biocontrol agents against Exserohilum turcicum. This study aimed to assess the ability of EM-A7 and EM-A8 to form biofilm and have antagonistic activity under varying light conditions. LED sources were custom-designed so that each corresponded to a given spectrum at a specific photosynthetically active photon flux density. Significant differences were observed in growth parameters (generation time and constant growth rate) under different LED sources. Blue light inhibited the growth of both strains. Red increased k rate in EM-A8, while the g values increased in EM-A7. Red and white light generally increased biofilm formation, and blue light inhibited it. EM-A7 and EM-A8 significantly reduced their ability to swim under blue LED, but it was not affected by red, green, or white light. The ability to swarm was negatively affected. Fungal growth decreased significantly compared to the control when the bacterium growing on the same plate had been previously incubated under red and white light or in the dark. These results indicate that different light wavelengths clearly influenced the aspects assessed in B. subtilis and B. velezensis, with the effects of blue light being overall negative and those of red and white overall positive. Given that, all these factors can be important for the establishment and survival of Bacillus strains on leaves, as well as for their effectiveness against pathogens, light could be a significant factor to consider in the design of biocontrol strategies.
Sujet(s)
Bacillus subtilis , Bacillus , Zea mays/microbiologieRÉSUMÉ
Various strategies are used to augment agricultural output in response to the escalating food requirements stemming from population expansion. Out of various strategies, the use of plant growth-promoting bacteria (PGPB) has shown promise as a viable technique in implementing new agricultural practices. The study of PGPB derived from rhizospheric soil is extensive, but there is a need for more exploration of marine microorganisms. The present research aims to investigate the potential of marine microorganisms as promoters of plant growth. The marine microbe Bacillus subtilis used in current study has been discovered as a possible plant growth-promoting bacterium (PGPB) as it showed ability to produce ammonia, solubilize potassium and phosphate, and was able to colonize chickpea roots. Bacillus subtilis exhibited a 40% augmentation in germination. A talc-based bio-formulation was prepared using Bacillus subtilis, and pot experiment was done under two conditions: control (T1) and Bacillus treated (T2). In the pot experiment, the plant weight with Bacillus treatment increased by 14.17%, while the plant height increased by 13.71% as compared to control. It also enhanced the chlorophyll content of chickpea and had a beneficial influence on stress indicators. Furthermore, it was noted that it enhanced the levels of nitrogen, potassium, and phosphate in the soil improving soil quality. The findings showed that B. subtilis functioned as a plant growth-promoting bacteria (PGPB) to enhance the overall development of chickpea.
Sujet(s)
Bacillus , Cicer , Bacillus subtilis , Sol , Racines de plante/microbiologie , Phosphates , PotassiumRÉSUMÉ
Bacteriophages have been extensively investigated due to their prominent role in the virulence and resistance of pathogenic bacteria. However, little attention has been given to the non-pathogenic Bacillus phages, and their role in the ecological bacteria genome is overlooked. In the present study, we characterized two Bacillus phages with a linear DNA genome of 33.6 kb with 44.83% GC contents and 129.3 kb with 34.70% GC contents. A total of 46 and 175 putative coding DNA sequences (CDS) were identified in prophage 1 (P1) and prophage 2 (P2), respectively, with no tRNA genes. Comparative genome sequence analysis revealed that P1 shares eight CDS with phage Jimmer 2 (NC-041976), and phage Osiris (NC-028969), and six with phage phi CT9441A (NC-029022). On the other hand, P2 showed high similarity with Bacill_SPbeta_NC_001884 and Bacillus phage phi 105. Further, genome analysis indicates several horizontal gene transfer events in both phages during the evolution process. In addition, we detected two CRISPR-Cas systems for the first time in B. subtilis. The identified CRISPR system consists of 24 and 25 direct repeats and integrase coding genes, while the cas gene which encodes Cas protein involved in the cleavage of a target sequence is missing. These findings will expand the current knowledge of soil phages as well as help to develop a new perspective for investigating more ecological phages to understand their role in bacterial communities and diversity.
Sujet(s)
Bacillus , Bactériophages , Prophages/génétique , Bacillus subtilis/génétique , Systèmes CRISPR-Cas , Bactériophages/génétiqueRÉSUMÉ
Bacillus sp. has proven to be a goldmine of diverse bioactive lipopeptides, finding wide-range of industrial applications. This review highlights the importance of three major families of lipopeptides (iturin, fengycin, and surfactin) produced by Bacillus sp. and their diverse activities against plant pathogens. This review also emphasizes the role of non-ribosomal peptide synthetases (NRPS) as significant enzymes responsible for synthesizing these lipopeptides, contributing to their peptide diversity. Literature showed that these lipopeptides exhibit potent antifungal activity against various plant pathogens and highlight their specific mechanisms, such as siderophore activity, pore-forming properties, biofilm inhibition, and dislodging activity. The novelty of this review comes from its comprehensive coverage of Bacillus sp. lipopeptides, their production, classification, mechanisms of action, and potential applications in plant protection. It also emphasizes the importance of ongoing research for developing new and enhanced antimicrobial agents. Furthermore, this review article highlights the need for future research to improve the production efficiency of these lipopeptides for commercial applications. It recognizes the potential for these lipopeptides to expand the field of biological pest management for both existing and emerging plant diseases.
Sujet(s)
Anti-infectieux , Bacillus , Bacillus/génétique , Anti-infectieux/pharmacologie , Antifongiques/pharmacologie , Lipopeptides/pharmacologie , Lipopeptides/composition chimique , Maladies des plantes/prévention et contrôle , Maladies des plantes/microbiologie , Plantes/microbiologie , Bacillus subtilisRÉSUMÉ
Xylanases are of significant interest for biomass conversion technologies. Here, we investigated the allosteric regulation of xylan hydrolysis by the Bacillus subtilis GH11 endoxylanase. Molecular dynamics simulations (MDS) in the presence of xylobiose identified binding to the active site and two potential secondary binding sites (SBS) around surface residues Asn54 and Asn151. Arabinoxylan titration experiments with single cysteine mutants N54C and N151C labeled with the thiol-reactive fluorophore acrylodan or the ESR spin-label MTSSL validated the MDS results. Ligand binding at the SBS around Asn54 confirms previous reports, and analysis of the second SBS around N151C discovered in the present study includes residues Val98/Ala192/Ser155/His156. Understanding the regulation of xylanases contributes to efforts for industrial decarbonization and to establishing a sustainable energy matrix.
Sujet(s)
Bacillus subtilis , Simulation de dynamique moléculaire , Bacillus subtilis/génétique , Sites de fixation , Domaine catalytique , Xylanes/métabolisme , Endo-1,4-beta xylanases/génétique , Endo-1,4-beta xylanases/composition chimique , Endo-1,4-beta xylanases/métabolisme , Spécificité du substratRÉSUMÉ
It has been proposed that transient and reversible phenotypic changes could modify the response of bacteria to germicidal radiation, eventually leading to tailing in the survival curves. If this were the case, changes in susceptibility to radiation would reflect variations in gene expression and should only occur in cells in which gene expression is active. To obtain experimental evidence supporting the involvement of phenotypic changes in the origin of tailing, we studied changes in the susceptibility to radiation of cells able to survive high fluences, using split irradiations. Stationary phase cells of Enterobacter cloacae and Deinococcus radiodurans, in which gene expression is active, and spores of Bacillus subtilis, which are dormant cells without active gene expression, were used as microbial models. While cells of E. cloacae and D. radiodurans became susceptible after surviving exposures to high fluences, tolerant spores exhibited unchanged response to radiation. The results can be interpreted assuming that noise in gene expression modifies bacterial susceptibility to radiation, and tailing is the result of intrinsic phenomena of bacterial physiology rather than a technical artifact. For either theoretical or practical purposes, deviations from simple exponential decay kinetics should be considered in estimations of the effects of germicidal radiation at high fluences.
Sujet(s)
Bacillus subtilis , Rayons ultraviolets , Bacillus subtilis/effets des radiations , CinétiqueRÉSUMÉ
Bacterial inoculants have been used in agriculture to improve plant performance. However, laboratory and field requirements must be completed before a candidate can be employed as an inoculant. Therefore, this study aimed to evaluate the parameters for inoculant formulation and the potential of Bacillus subtilis (B70) and B. pumilus (B32) to improve phosphorus availability in maize (Zea mays L.) crops. In vitro experiments assessed the bacterial ability to solubilize and mineralize phosphate, their adherence to roots, and shelf life in cassava starch (CS), carboxymethyl cellulose (CMC), peat, and activated charcoal (AC) stored at 4 °C and room temperature for 6 months. A field experiment evaluated the effectiveness of strains to increase the P availability to plants growing with rock phosphate (RP) and a mixture of RP and triple superphosphate (TS) and their contribution to improving maize yield and P accumulation in grains. The B70 was outstanding in solubilizing RP and phytate mineralization and more stable in carriers and storage conditions than B32. However, root adherence was more noticeable in B32. Among carriers, AC was the most effective for preserving viable cell counts, closely similar to those of the initial inoculum of both strains. Maize productivity using the mixture RPTS was similar for B70 and B32. The best combination was B70 with RP, which improved the maize yield (6532 kg ha-1) and P accumulation in grains (15.95 kg ha-1). Our results indicated that the inoculant formulation with AC carrier and B70 is a feasible strategy for improving phosphorus mobilization in the soil and maize productivity.
Sujet(s)
Bacillus , Phosphates , Phosphates/métabolisme , Bacillus/métabolisme , Racines de plante/microbiologie , Phosphore/métabolisme , Bacillus subtilis/métabolisme , Sol , Zea mays/microbiologieRÉSUMÉ
This study is an extension of our previous studies in which the lysozyme was isolated and purified from Bacillus subtilis BSN314 (Naveed et al., 2022; Naveed et al., 2023). In this study, the lysozyme genes were cloned into the E. coli BL21. For the expression of lysozyme in E. coli BL21, two target genes, Lyz-1 and Lyz-2, were ligated into the modified vector pET28a to generate pET28a-Lyz1 and pET28a-Lyz2, respectively. To increase the production rate of the enzyme, 0.5-mM concentration of IPTG was added to the culture media and incubated at 37 °C and 220 rpm for 24 h. Lyz1 was identified as N-acetylmuramoyl-L-alanine amidase and Lyz2 as D-alanyl-D-alanine carboxypeptidase. They were purified by multi-step methodology (ammonium sulfate, precipitation, dialysis, and ultrafiltration), and antimicrobial activity was determined. For Lyz1, the lowest MIC/MBC (0.25 µg/mL; with highest ZOI = 22 mm) were recorded against Micrococcus luteus, whereas the highest MIC/MBC with lowest ZOI were measured against Salmonella typhimurium (2.50 µg /mL; with ZOI = 10 mm). As compared with Aspergillus oryzae (MIC/MFC; 3.00 µg/mL), a higher concentration of lysozyme was required to control the growth of Saccharomyces cerevisiae (MIC/MFC; 50 µg/mL). Atomic force microscopy (AFM) was used to analyze the disintegrating effect of Lyz1 on the cells of selected Gram-positive bacteria, Gram-negative bacteria, and yeast. The AFM results showed that, as compared to Gram-negative bacteria, a lower concentration of lysozyme (Lyz1) was required to disintegrate the cell of Gram-positive bacteria.
Sujet(s)
Anti-infectieux , Lysozyme , Lysozyme/génétique , Lysozyme/pharmacologie , Lysozyme/métabolisme , Escherichia coli , Anti-infectieux/pharmacologie , Bacillus subtilis/génétiqueRÉSUMÉ
AIM: To assess the effectiveness of Bacillus subtilis strain LN8B as a biocollector for recovering pyrite (Py) and chalcopyrite (CPy) in both seawater (Sw) and deionized water (Dw), and to explore the underlying adhesion mechanism in these bioflotation experiments. MATERIALS AND METHODS: The bioflotation test utilized B. subtilis strain LN8B as the biocollector through microflotation experiments. Additionally, frother methyl isobutyl carbinol (MIBC) and conventional collector potassium amyl xanthate (PAX) were introduced in some experiments. The zeta potential (ZP) and Fourier-transform infrared spectroscopy (FTIR) was employed to explore the adhesion mechanism of Py and CPy interacting with the biocollector in Sw and Dw. The adaptability of the B. subtilis strain to different water types and salinities was assessed through growth curves measuring optical density. Finally, antibiotic susceptibility tests were conducted to evaluate potential risks of the biocollector. RESULTS: Superior outcomes were observed in Sw where Py and CPy recovery was â¼39.3% ± 7.7% and 41.1% ± 5.8%, respectively, without microorganisms' presence. However, B. subtilis LN8B potentiate Py and CPy recovery, reaching 72.8% ± 4.9% and 84.6% ± 1.5%, respectively. When MIBC was added, only the Py recovery was improved (89.4% ± 3.6%), depicting an adverse effect for CPy (81.8% ± 1.1%). ZP measurements indicated increased mineral surface hydrophobicity when Py and CPy interacted with the biocollector in both Sw and Dw. FTIR revealed the presence of protein-related amide peaks, highlighting the hydrophobic nature of the bacterium. The adaptability of this strain to diverse water types and salinities was assessed, demonstrating remarkable growth versatility. Antibiotic susceptibility tests indicated that B. subtilis LN8B was susceptible to 23 of the 25 antibiotics examined, suggesting it poses minimal environmental risks. CONCLUSIONS: The study substantiates the biotechnological promise of B. subtilis strain LN8B as an efficient sulfide collector for promoting cleaner mineral production. This effectiveness is attributed to its ability to induce mineral surface hydrophobicity, a result of the distinct characteristics of proteins within its cell wall.
Sujet(s)
Bacillus subtilis , Cuivre , Fer , Minéraux , Bacillus subtilis/métabolisme , Eau de mer , Sulfures/pharmacologie , Sulfures/métabolisme , Eau/métabolisme , Antibactériens/pharmacologie , Antibactériens/métabolismeRÉSUMÉ
Uma área de pesquisa que vem ganhando muita atenção nos últimos anos é a nanomedicina, com especial atenção para os sistemas com entrega controlada de fármacos, ou drug delivery. Dentre as diversas nanopartículas utilizadas para este fim, destacam-se os sistemas formados por lipídeos e polímeros, como por exemplo os lipossomos e os cubossomos. Neste trabalho, é estudada a influência estrutural da lisozima e da curcumina, proteínas modelo. A lisozima é uma enzima antimicrobiana produzida por animais e que faz parte do sistema imunológico. Ela é uma hidrolase glicosídica que catalisa a hidrólise dos componentes da parede celular de bactérias gram-positivas. Esta hidrólise, por sua vez, compromete a integridade das paredes celulares, causando a lise (e como consequência a morte) das bactérias. Curcumina é um composto cristalino de cor amarelada brilhante, encontrada no caule da Curcuma longa (ou açafrão), que tem sido utilizada como corante ou até mesmo como aditivo alimentar. Este composto tem sido uma grande aposta no tratamento de doenças crônicas como inflamação, artrite, síndrome metabólica, doença hepática, obesidade, doenças neurodegenerativas e principalmente canceres, sendo também utilizada em estudos como potencial agente antibacteriano. O principal objetivo deste trabalho é construir sistemas nanoestruturados com potencial de atuarem como sistemas antimicrobianos, com a liberação controlada de ambos dos fármacos. Estes sistemas são compostos por cubossomos de fitantriol (PHY) em ausência e presença da lisozima, da curcumina e de suas combinações, a fim de analisar ação antimicrobiana conjunta da lisozima e da curcumina. As técnicas biofísicas utilizadas para caracterizar essas partículas são SAXS (espalhamento de raios-X em baixos ângulos), DLS (espalhamento dinâmico de luz), Cryo-TEM (criomicroscopia eletrônica de transmissão) e NTA (análise de rastreamento de nanopartículas). Foi possível verificar que as formulações lipídicas são eficazes na formação de estruturas cúbicas com estabilidade desejável. As nanopartículas cúbicas demonstraram alta capacidade de encapsulação da lisozima e da curcumina. A cinética de liberação desses medicamentos mostrou-se promissora, sugerindo que a encapsulação dos fármacos é eficaz, bem como a liberação controlada e direcionada. Duas linhagens de bactérias foram estudadas, sendo que a E. coli, não sofreu nenhum dano citotóxico, enquanto a Bacillus subtilis sim. Tal resultado indica o potencial antimicrobiano do sistema para alguns tipos de bactérias
An area of research that has gained significant attention in recent years is nanomedicine, with a particular focus on drug delivery systems. Among the various nanoparticles used for this purpose, lipid and polymer-based systems, such as liposomes and cubosomes stand out. This study investigate the structural influence of encapsulating lysozyme and curcumin, model compounds. Lysozyme is an antimicrobial enzyme produced by animals and is part of the immune system. It is a glycosidic hydrolase that catalyzes the hydrolysis of components in the cell walls of gram-positive bacteria. This hydrolysis compromises the integrity of cell walls, leading to the lysis (and consequently the death) of bacteria. Curcumin is a bright yellow crystalline compound found in the stem of Curcuma longa (or turmeric), commonly used as a dye or even as a food additive. It has been a significant focus in the treatment of chronic diseases such as inflammation, arthritis, metabolic syndrome, liver disease, obesity, neurodegenerative diseases, and especially cancers. It is also studied as a potential antibacterial agent. The main objective of this study is to construct nanostructured systems with the potential to act as antimicrobial agents, with controlled release of both drugs. These systems consist of phytantriol (PHY) cubosomes in the absence and presence of lysozyme, curcumin, and their combinations to analyze the joint antimicrobial action of lysozyme and curcumin. Biophysical techniques used for characterization include Small-Angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), Cryo-Transmission Electron Microscopy (Cryo-TEM), and Nanoparticle Tracking Analysis (NTA). It was observed that lipid formulations are effective in forming cubic structures with desirable stability. Cubic nanoparticles have demonstrated a high encapsulation capacity for lysozyme and curcumin. The release kinetics of these drugs have shown promise, suggesting that drug encapsulation is effective, as well as their controlled and targeted release. Two bacterial strains were studied, with E. coli showing no cytotoxic damage, while Bacillus subtilis did. This result indicates the antimicrobial potential of the system against types of bacteria
Sujet(s)
Lysozyme/effets indésirables , Curcumine/effets indésirables , Additifs alimentaires/classification , Bacillus subtilis/classification , Préparations pharmaceutiques/analyse , Maladie chronique/prévention et contrôle , Microscopie électronique en transmission à balayage/méthodes , Cryomicroscopie électronique/méthodes , Microscopie électronique à transmission/méthodes , Agents colorants/classification , Anti-infectieux/effets indésirablesRÉSUMÉ
A proper balance of metabolic pathways is crucial for engineering microbial strains that can efficiently produce biochemicals on an industrial scale while maintaining cell fitness. High production loads can negatively impact cell fitness and hinder industrial-scale production. To address this, fine-tuning gene expression using engineered promoters and genetic circuits can promote control over multiple targets in pathways and reduce the burden. We took advantage of the robust carbon catabolite repression system of Bacillus subtilis to engineer a glucose-inducible genetic circuit that supports growth and production. The circuit is resilient, enabling a quick switch in the production status when exposed to the correct carbon source. By performing serial cultivations for 61 generations under repressive conditions, we preserved the production capacity of the cells, which could be fully accessed by switching to glucose in the next cultivation step. Switching to glucose after 61 generations resulted in 34-fold activation and generated 70% higher production in comparison to standard cultivation in glucose. Conversely, serial cultivation under permanent induction resulted in 62% production loss after 67 generations alongside an increase in the culture growth rate. As a pathway-independent circuit activated by the preferred carbon source, our engineered glucose-inducible genetic circuit is broadly useful and imposes no additional cost to traditional production processes.
Sujet(s)
Glucose , Voies et réseaux métaboliques , Glucose/métabolisme , Carbone/métabolisme , Bacillus subtilis/métabolismeRÉSUMÉ
The present study was conducted to characterize the native plant growth-promoting rhizobacteria (PGPRs) from the pulse rhizosphere of the Bundelkhand region of India. Twenty-four bacterial isolates belonging to nineteen species (B. amyloliquefaciens, B. subtilis, B. tequilensis, B. safensis, B. haynesii, E. soli, E. cloacae, A. calcoaceticus, B. valezensis, S. macrescens, P. aeruginosa, P. fluorescens, P. guariconensis, B. megaterium, C. lapagei, P. putida, K. aerogenes, B. cereus, and B. altitudinis) were categorized and evaluated for their plant growth-promoting potential, antifungal properties, and enzymatic activities to identify the most potential strain for commercialization and wider application in pulse crops. Phylogenetic identification was done on the basis of 16 s rRNA analysis. Among the 24 isolates, 12 bacterial strains were gram positive, and 12 were gram negative. Among the tested 24 isolates, IIPRAJCP-6 (Bacillus amyloliquefaciens), IIPRDSCP-1 (Bacillus subtilis), IIPRDSCP-10 (Bacillus tequilensis), IIPRRLUCP-5 (Bacillus safensis), IIPRCDCP-2 (Bacillus subtilis), IIPRAMCP-1 (Bacillus safensis), IIPRMKCP-10 (Bacillus haynesii), IIPRANPP-3 (Bacillus amyloliquefaciens), IIPRKAPP-5 (Enterobacter soli), IIPRAJCP-2 (Enterobacter cloacae), IIPRDSCP-11 (Acinetobacter calcoaceticus), IIPRDSCP-9 (Bacillus valezensis), IIPRMKCP-3 (Seratia macrescens), IIPRMKCP-1 (Pseudomonas aeruginosa), IIPRCKPP-3 (Pseudomonas fluorescens), IIPRMKCP-9 (Pseudomonas guariconensis), IIPRMKCP-8 (Bacillus megatirium), IIPRMWCP-9 (Cedecea lapagei), IIPRKUCP-10 (Pseudomonas putida), IIPRAMCP-4 (Klebsiella aerogenes), IIPRCKPP-7 (Enterobacter cloacae), IIPRAMCP-5 (Bacillus cereus), IIPRSHEP-6 (Bacillus subtilis), IIPRRSBa89 (Bacillus altitudinis) bacterial isolates, IIPRMKCP-9, IIPRAJCP-6, IIPRMKCP-10, IIPRAMCP-5, IIPRSHEP-6, and IIPRMKCP-3 showed the maximum antagonistic activity against Fusarium oxysporum f. sp. ciceris (FOC), Fusarium oxysporum f. sp. lentis (FOL), and Fusarium udum (FU) causing wilt disease of chickpea, lentil, and pigeonpea, respectively, and maximum plant growth-promoting enzyme (phosphatase), plant growth hormone (IAA), and siderophore production show promising results under greenhouse conditions. This study is the first report of bacterial diversity in the pulse-growing region of India.